In this article, we explored a comprehensive class of quadrature formulas characterized by a bi-parametric expression via the concept of multiplicative $ (s, P) $-convexity. Inspired by prior works in this field, we investigated formulas with varying points (ranging from $ 1 $ to $ 4 $) and established associated fractional multiplicative inequalities for functions whose multiplicative first-order derivatives exhibit multiplicative $ (s, P) $-convexity.
Citation: Mhamed Eddahbi, Abdelghani Lakhdari, Badreddine Meftah, Lassaad Mchiri, Mohamed Rhaima. A comprehensive analysis of Riemann-Liouville fractional multiplicative integral inequalities[J]. AIMS Mathematics, 2025, 10(11): 25227-25252. doi: 10.3934/math.20251117
In this article, we explored a comprehensive class of quadrature formulas characterized by a bi-parametric expression via the concept of multiplicative $ (s, P) $-convexity. Inspired by prior works in this field, we investigated formulas with varying points (ranging from $ 1 $ to $ 4 $) and established associated fractional multiplicative inequalities for functions whose multiplicative first-order derivatives exhibit multiplicative $ (s, P) $-convexity.
| [1] |
M. A. Ali, H. Budak, M. Z. Sarikaya, Z. Zhang, Ostrowski and Simpson type inequalities for multiplicative integrals, Proyecciones (Antofagasta Online), 40 (2021), 743–763. https://doi.org/10.22199/issn.0717-6279-4136 doi: 10.22199/issn.0717-6279-4136
|
| [2] | T. Abdeljawad, M. Grossman, On geometric fractional calculus, J. Semigroup Theory Appl., 2016 (2016), 2. |
| [3] |
M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial, R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Research Journal of Mathematics, 12 (2019), 1–11. https://doi.org/10.9734/arjom/2019/v12i330084 doi: 10.9734/arjom/2019/v12i330084
|
| [4] |
M. A. Ali, Z. Zhang, H. Budak, M. Z. Sarıkaya, On Hermite-Hadamard type inequalities for interval-valued multiplicative integrals, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (2020), 1428–1448. https://doi.org/10.31801/cfsuasmas.754842 doi: 10.31801/cfsuasmas.754842
|
| [5] |
M. B. Almatrafi, W. Saleh, A. Lakhdari, F. Jarad, B. Meftah, On the multiparameterized fractional multiplicative integral inequalities, J. Inequal. Appl., 2024 (2024), 52. https://doi.org/10.1186/s13660-024-03127-z doi: 10.1186/s13660-024-03127-z
|
| [6] |
A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
|
| [7] |
A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, A. Özyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6
|
| [8] |
H. Boulares, B. Meftah, A. Moumen, R. Shafqat, H. Saber, T. Alraqad, et al., Fractional multiplicative Bullen-type inequalities for multiplicative differentiable functions, Symmetry, 15 (2023), 451. https://doi.org/10.3390/sym15020451 doi: 10.3390/sym15020451
|
| [9] |
H. Budak, K. Özçelik, On Hermite-Hadamard type inequalities for multiplicative fractional integrals, Miskolc Math. Notes, 21 (2020), 91–99. https://doi.org/10.18514/MMN.2020.3129 doi: 10.18514/MMN.2020.3129
|
| [10] |
S. Chasreechai, M. A. Ali, S. Naowarat, T. Sitthiwirattham, K. Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, AIMS Math., 8 (2023), 3885–3896. https://doi.org/10.3934/math.2023193 doi: 10.3934/math.2023193
|
| [11] |
T. Du, Y. Long, The multi-parameterized integral inequalities for multiplicative Riemann-Liouville fractional integrals, J. Math. Anal. Appl., 541 (2025), 128692. https://doi.org/10.1016/j.jmaa.2024.128692 doi: 10.1016/j.jmaa.2024.128692
|
| [12] |
T. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582
|
| [13] |
H. Fu, Y. Peng, T. Du, Some inequalities for multiplicative tempered fractional integrals involving the $\lambda$-incomplete gamma functions, AIMS Math., 6 (2021), 7456–7478. https://doi.org/10.3934/math.2021436 doi: 10.3934/math.2021436
|
| [14] | M. Grossman, R, Katz, Non-Newtonian calculus: a self-contained, elementary exposition of the authors' investigations, Newton Institute, 1978. |
| [15] |
H. Kadakal, Multiplicatively $p$-functions and some new inequalities, New Trends in Mathematical Sciences, 6 (2018), 111–118. https://doi.org/10.20852/ntmsci.2018.321 doi: 10.20852/ntmsci.2018.321
|
| [16] |
D. Khan, S. I. Butt, Y. Seol, Analysis on multiplicatively $(p, m)$-superquadratic functions and related fractional inequalities with applications, Fractals, 33 (2025), 2450129. https://doi.org/10.1142/S0218348X24501299 doi: 10.1142/S0218348X24501299
|
| [17] |
S. Khan, H. Budak, On midpoint and trapezoid type inequalities for multiplicative integrals, Mathematica, 64 (2022), 95–108. https://doi.org/10.24193/mathcluj.2022.1.11 doi: 10.24193/mathcluj.2022.1.11
|
| [18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [19] |
A. Lakhdari, D. C. Benchettah, B. Meftah, Fractional multiplicative newton‐type inequalities for multiplicative $s$-convex positive functions with application, J. Comput. Appl. Math., 465 (2025), 116600. https://doi.org/10.1016/j.cam.2025.116600 doi: 10.1016/j.cam.2025.116600
|
| [20] |
B. Meftah, A. Lakhdari, Dual Simpson type inequalities for multiplicatively convex functions, Filomat, 37 (2023), 7673–7683. https://doi.org/10.2298/FIL2322673M doi: 10.2298/FIL2322673M
|
| [21] |
B. Meftah, A. Lakhdari, S. Wedad, C. D. Benchettah, Companion of Ostrowski inequality for multiplicatively convex functions, Sahand Commun. Math. Anal., 21 (2024), 289–304. https://doi.org/10.22130/scma.2023.2002136.1324 doi: 10.22130/scma.2023.2002136.1324
|
| [22] |
E. Misirli, A. Ozyapici, Exponential approximations on multiplicative calculus, Proceedings of the Jangjeon Mathematical Society, 12 (2009), 227–236. https://doi.org/10.17777/pjms.2009.12.2.009 doi: 10.17777/pjms.2009.12.2.009
|
| [23] |
A. Moumen, H. Boulares, B. Meftah, R. Shafqat, T. Alraqad, E. E. Ali, et al., Multiplicatively Simpson type inequalities via fractional integral, Symmetry, 15 (2023), 460. https://doi.org/10.3390/sym15020460 doi: 10.3390/sym15020460
|
| [24] |
Y. Peng, T. Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively $p$-functions, Filomat, 37 (2023), 9497–9509. https://doi.org/10.2298/FIL2328497P doi: 10.2298/FIL2328497P
|
| [25] |
Y. Peng, T. Du, On multiplicative $(s, p)$-convexity and related fractional inequalities within multiplicative calculus, Fractals, 32 (2024), 2450048. https://doi.org/10.1142/S0218348X24500488 doi: 10.1142/S0218348X24500488
|
| [26] | M. Riza, A. Özyapici, E. Misirli, Multiplicative finite difference methods, Quart. Appl. Math., 67 (2009), 745–754. |
| [27] | Z. Tan, T. Du, Fractional midpoint-type inequalities in multiplicative calculus, IAENG International Journal of Applied Mathematics, 55 (2025), 2550–2563. |
| [28] | B.-Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for $s$-logarithmically convex functions, Acta Mathematica Scientis, English Series, 35A (2015), 515–526. |
| [29] |
J. Xie, M. A. Ali, T. Sitthiwirattham, Some new midpoint and trapezoidal type inequalities in multiplicative calculus with applications, Filomat, 37 (2023), 6665–6675. https://doi.org/10.2298/FIL2320665X doi: 10.2298/FIL2320665X
|
| [30] | Z. Zhou, T. Du, Error estimation for a broad class of fractional multiplicative quadrature formulas, Exp. Math., in press. https://doi.org/10.1080/10586458.2025.2519603 |
| [31] |
W. Zhu, B. Meftah, H. Xu, F. Jarad, A. Lakhdari, On parameterized inequalities for fractional multiplicative integrals, Demonstr. Math., 57 (2024), 20230155. https://doi.org/10.1515/dema-2023-0155 doi: 10.1515/dema-2023-0155
|