This paper examines the oscillatory behavior of solutions to Emden–Fowler neutral differential equations that incorporate a delayed damping term. To our knowledge, there are no prior results addressing the impact of delayed damping on the oscillatory behavior of neutral equations. We establish a new sufficient criterion to confirm that non-oscillatory solutions exhibit asymptotic behavior. Then, we refine and extend this criterion to include the ordinary case. Applying our results to an Euler-type equation shows that they are an extension and complement to the results reported in the literature.
Citation: Osama Moaaz, Wedad Albalawi. Investigation of the impact of delayed damping on the asymptotic behavior of solutions to Emden–Fowler neutral differential equations[J]. AIMS Mathematics, 2025, 10(10): 24983-24996. doi: 10.3934/math.20251106
This paper examines the oscillatory behavior of solutions to Emden–Fowler neutral differential equations that incorporate a delayed damping term. To our knowledge, there are no prior results addressing the impact of delayed damping on the oscillatory behavior of neutral equations. We establish a new sufficient criterion to confirm that non-oscillatory solutions exhibit asymptotic behavior. Then, we refine and extend this criterion to include the ordinary case. Applying our results to an Euler-type equation shows that they are an extension and complement to the results reported in the literature.
| [1] | R. H. Fowler, Further studies of Emden's and similar differential equations, Q. J. Math. 2 (1931), 259–288. https://doi.org/10.1093/qmath/os-2.1.259 |
| [2] |
J. S. W. Wong, On the generalized Emden–Fowler equation, SIAM Rev., 17 (1975), 339–360. https://doi.org/10.1137/1017036 doi: 10.1137/1017036
|
| [3] | L. M. Berkovich, The generalized Emden–Fowler equation, Symmetry Nonlinear Math. Phys., 1 (1997), 155–163. |
| [4] | J. K. Hale, Functional differential equations, New York: Springer-Verlag, 1971. |
| [5] | R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation: Theory for functional differential equations, In: Monographs and Textbooks in Pure and Applied Mathematics, USA, New York: Marcel Dekker, Inc., 2004. |
| [6] | L. H. Erbe, Q. Kong, B. G. Zhong, Oscillation theory for functional differential equations, USA, New York: Marcel Dekker, 1995. |
| [7] | I. Győri, G. E. Ladas, Oscillation theory of delay differential equations: With applications, Clarendon Press, 1991. |
| [8] | G. S. Ladde, B. G. Zhang, V. Lakshmikantham, Oscillation theory of differential equations with deviating arguments, USA, New York: Marcel Dekker Inc., 1987. |
| [9] | H. Li, Y. Wang, N. Jin, Further results on zeros distribution for second order nonlinear neutral delay differential equations, Appl. Math. Lett., 171 (2025) 109666. https://doi.org/10.1016/j.aml.2025.109666 |
| [10] | O. Dosly, P. Rehák, Half-linear differential equations, The Netherlands, Amsterdam: Elsevier, 2005. |
| [11] | R. P. Agarwal, Difference equations and inequalities: Theory, methods, and applications, USA, New York: Marcel Dekker Inc., 2019. |
| [12] | S. R. Grace, Oscillation theorems for nonlinear differential equations of second order, J. Math. Anal. Appl. 171 (1992), 220–241. https://doi.org/10.1016/0022-247x(92)90386-r |
| [13] |
X. Zhao, F. Meng, Oscillation of second-order nonlinear ODE with damping, Appl. Math. Comput., 182 (2006), 1861–1871. https://doi.org/10.1016/j.amc.2006.06.022 doi: 10.1016/j.amc.2006.06.022
|
| [14] |
Y. Huang, F. Meng, Oscillation of second-order nonlinear ODE with damping, Appl. Math. Comput., 199 (2007), 644–652. https://doi.org/10.1016/j.amc.2007.10.025 doi: 10.1016/j.amc.2007.10.025
|
| [15] |
T. Li, Y. Rogovchenko, S. Tang, Oscillation of second-order nonlinear differential equations with damping, Math. Slovaca, 64 (2014), 1227–1236. https://doi.org/10.2478/s12175-014-0271-1 doi: 10.2478/s12175-014-0271-1
|
| [16] |
Y. V. Rogovchenko, F. Tuncay, Oscillation criteria for second-order nonlinear differential equations with damping, Nonlinear Anal., 69 (2007), 208–221. https://doi.org/10.1016/j.na.2007.05.012 doi: 10.1016/j.na.2007.05.012
|
| [17] |
E. Tunç, H. Avcı, New oscillation theorems for a class of second-order damped nonlinear differential equations, Ukr. Math. J., 63 (2012), 1441–1457. https://doi.org/10.1007/s11253-012-0590-8 doi: 10.1007/s11253-012-0590-8
|
| [18] |
N. Shang, H. Qin, Comments on the paper: "Oscillation of second-order nonlinear ODE with damping'', Appl. Math. Comput., 218 (2011), 2979–2980. https://doi.org/10.1016/j.amc.2011.07.064 doi: 10.1016/j.amc.2011.07.064
|
| [19] |
X. Fu, T. Li, C. Zhang, Oscillation of second-order damped differential equations, Adv. Differ. Equ., 2013 (2013), 326. https://doi.org/10.1186/1687-1847-2013-326 doi: 10.1186/1687-1847-2013-326
|
| [20] | M. Bohner, M. H. Saker, Oscillation of damped second order nonlinear delay differential equations of Emden–Fowler type, Adv. Dyn. Syst. Appl., 1 (2006), 163–182. |
| [21] | H. Z. Qin, Y. Ren, Oscillation theorems for Second-Order damped nonlinear differential equations, Int. J. Differ. Equat., 2009 (2009). https://doi.org/10.1155/2009/714357 |
| [22] |
S. R. Grace, Oscillatory and asymptotic behavior of damped functional differential equations, Math. Nachr., 142 (1989), 297–305. https://doi.org/10.1002/mana.19891420121 doi: 10.1002/mana.19891420121
|
| [23] | S. H. Saker, P. Y. Pang, R. P. Agarwal, Oscillation theorems for second order nonlinear functional differential equations with damping, Dynam. Syst. Appl., 12 (2003). |
| [24] |
O. Moaaz, H. Ramos, On the oscillation of second-order functional differential equations with a delayed damping term, Appl. Math. Lett., 163 (2025), 109464. https://doi.org/10.1016/j.aml.2025.109464 doi: 10.1016/j.aml.2025.109464
|
| [25] |
A. M. Alomair, A. Muhib, Some new oscillation results for second-order differential equations with neutral term, AIMS Math., 10 (2025), 694–704. https://doi.org/10.3934/math.2025031 doi: 10.3934/math.2025031
|
| [26] |
X. Liu, J. Liu, H. Luo, J. Liu, M. Yang, Oscillation of second order non-linear differential equations with a damping term, Therm. Sci., 29 (2025), 1839–1848. https://doi.org/10.2298/tsci2503839l doi: 10.2298/tsci2503839l
|
| [27] |
M. Arab, H. Zaway, A. Muhib, S. K. Elagan, Second-order neutral differential equations with sublinear neutral terms: New criteria for the oscillation, Mathematics, 13 (2025), 903. https://doi.org/10.3390/math13060903 doi: 10.3390/math13060903
|
| [28] |
J. Dzurina, Properties of second order differential equations with advanced and delay argument, Appl. Math. Lett., 141 (2023), 108623. https://doi.org/10.1016/j.aml.2023.108623 doi: 10.1016/j.aml.2023.108623
|
| [29] |
T. S. Hassan, B. M. E. Matary, Asymptotic behavior and oscillation of third-order nonlinear neutral differential equations with mixed nonlinearities, Mathematics, 11 (2023), 424. https://doi.org/10.3390/math11020424 doi: 10.3390/math11020424
|
| [30] | T. S. Hassan, E. R. Attia, B. M. E. Matary, Iterative oscillation criteria of third-order nonlinear damped neutral differential equations, AIMS Math. 9 (2024), 23128–23141. https://doi.org/10.3934/math.20241124 |
| [31] | M. A. Rufai, T. Tran, B. Carpentieri, H. Ramos, Application of variable step-size hybrid methods for solving third-order Lane–Emden equations, Math. Method. Appl. Sci., 2025 (2025). https://doi.org/10.1002/mma.11147 |
| [32] |
M. Mazen, M. M. A. E. Sheikh, S. E. E. Tallah, G. A. F. Ismail, On the oscillation of fourth-order delay differential equations via Riccati transformation, Mathematics, 13 (2025), 494. https://doi.org/10.3390/math13030494 doi: 10.3390/math13030494
|
| [33] |
A. A. E. Gaber, M. M. A. E. Sheikh, Oscillation of fourth-order neutral differential equations with distributed deviating arguments, J. Math. Comput. Sci., 28 (2022), 60–71. https://doi.org/10.22436/jmcs.028.01.06 doi: 10.22436/jmcs.028.01.06
|
| [34] |
O. Moaaz, C. Cesarano, A. Muhib, Some new oscillation results for Fourth-Order neutral differential equations, Eur. J. Pure Appl. Math., 13 (2020), 185–199. https://doi.org/10.29020/nybg.ejpam.v13i2.3654 doi: 10.29020/nybg.ejpam.v13i2.3654
|
| [35] | B. Baculikova, Properties of third-order nonlinear functional differential equations with mixed arguments, Abstr. Appl. Anal., 2011 (2011), 857860. |
| [36] |
Y. Kitamuraand, T. Kusano, Oscillation of first-order nonlinear differential equations with deviating arguments, P. Am. Math. Soc., 78 (1980), 64–68. https://doi.org/10.1090/S0002-9939-1980-0548086-5 doi: 10.1090/S0002-9939-1980-0548086-5
|
| [37] | R. Koplatadze, G. Kvinkadze, I. P. Stavroulakis, Properties A and B of n-th order linear differential equations with deviating argument, Georgian Math. J., 6 (1999), 553–566. |
| [38] |
B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2018), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
|
| [39] |
B. Almarri, O. Moaaz, A. Muhib, Criteria for oscillation of half-linear functional differential equations of second-order, Axioms, 11 (2022), 719. https://doi.org/10.3390/axioms11120719 doi: 10.3390/axioms11120719
|