Research article

Second order neutral multi-delay differential equations and its oscillatory criteria derived by linearization

  • Received: 18 August 2025 Revised: 13 October 2025 Accepted: 16 October 2025 Published: 30 October 2025
  • MSC : 34K40, 34K25, 34K06, 34K11

  • In this paper, we investigate the oscillatory behavior of second-order neutral multi-delay differential equations

    $ \begin{equation*} \left( r \left({t}\right)\left[\left( u\left({t}\right) + \sum\limits_{i = 1}^nb_i(t)u(\psi_i(t))\right)'\right]^{\alpha}\right)^\prime + Q\left({t}, u\left( \tau \left({t}\right)\right)\right) = 0. \end{equation*} $

    We introduce new monotonic properties of the non-oscillatory solutions of the equation, which are then used to linearize the equation and derive new oscillatory criteria. Our results are further supported by a numerical simulation example.

    Citation: Pakize Temtek. Second order neutral multi-delay differential equations and its oscillatory criteria derived by linearization[J]. AIMS Mathematics, 2025, 10(10): 24971-24982. doi: 10.3934/math.20251105

    Related Papers:

  • In this paper, we investigate the oscillatory behavior of second-order neutral multi-delay differential equations

    $ \begin{equation*} \left( r \left({t}\right)\left[\left( u\left({t}\right) + \sum\limits_{i = 1}^nb_i(t)u(\psi_i(t))\right)'\right]^{\alpha}\right)^\prime + Q\left({t}, u\left( \tau \left({t}\right)\right)\right) = 0. \end{equation*} $

    We introduce new monotonic properties of the non-oscillatory solutions of the equation, which are then used to linearize the equation and derive new oscillatory criteria. Our results are further supported by a numerical simulation example.



    加载中


    [1] J. K. Hale, Functional differential equations, Berlin: Springer, 1971.
    [2] B. Baculikova, J. Dzurina, Oscillatory criteria via linearization of half linear second order delay differential equations, Opuscula Math., 40 (2020), 523–536. https://doi.org/10.7494/OpMath.2020.40.5.523 doi: 10.7494/OpMath.2020.40.5.523
    [3] B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
    [4] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Springer Dordrecht, 2002. https://doi.org/10.1007/978-94-017-2515-6
    [5] P. Temtek, A. Tiryaki, Oscillation criteria for a certain second-order nonlinear perturbed differential equations, J. Inequal. Appl., 2013 (2013), 524. https://doi.org/10.1186/1029-242X-2013-524 doi: 10.1186/1029-242X-2013-524
    [6] P. Temtek, Oscillation criteria for second-order nonlinear perturbed differential equations, Electron. J. Differ. Eq., 2014 (2014), 1–10.
    [7] J. Dzurina, E. Thandapani, B. Baculikova, C. Dharuman, N. Prabaharan, Oscillation of second order nonlinear differential equations with several sub-linear neutral terms, Nonlinear Dyn. Syst. Theory, 19 (2019), 124–132.
    [8] L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation theory for functional differential equations, Routledge, 2017.
    [9] M. T. Şenel, T. Candan, B. Çına, Existence of nonoscillatory solutions of second-order nonlinear neutral differential equations with distributed deviating arguments, J. Taibah Univ. Sci., 13 (2019), 998–1005. https://doi.org/10.1080/16583655.2019.1668101 doi: 10.1080/16583655.2019.1668101
    [10] R. Koplatadze, G. Kvinikadze, I. P. Stavroulakis, Properties $A$ and $B$ of $n$th order linear differential equations with deviating argument, Georgian Math. J., 6 (1999), 553–566. https://doi.org/10.1515/GMJ.1999.553 doi: 10.1515/GMJ.1999.553
    [11] O. Moaaz, A. Al-Jaser, Functional differential equations of the neutral type: oscillatory features of solutions, AIMS Math., 9 (2024), 16544–16563. https://doi.org/10.3934/math.2024802 doi: 10.3934/math.2024802
    [12] L. Hua, J. Sun, W. Li, Y. Pang, Oscillation of solutions for second-order neutral multi-delay differential equations, AIMS Math., 10 (2025), 18586–18602. https://doi.org/10.3934/math.2025830 doi: 10.3934/math.2025830
    [13] A. A. El-Gaber, M. M. A. El-Sheikh, H. M. Rezk, M. Zakarya, G. AlNemer, E. I. El-Saedy, On the oscillatory behavior of solutions of second-order damped differential equations with several sub-linear neutral terms, Mathematics, 12 (2024), 3217. https://doi.org/10.3390/math12203217 doi: 10.3390/math12203217
    [14] O. Bazighifan, N. Alshammari, F. Aldosari, L. F. Iambor, Oscillation solutions for nonlinear second-order neutral differential equations, Mathematics, 13 (2025), 247. https://doi.org/10.3390/math13020247 doi: 10.3390/math13020247
    [15] T. Kusano, M. Naito, Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan, 33 (1981), 509–532. https://doi.org/10.2969/jmsj/03330509 doi: 10.2969/jmsj/03330509
    [16] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Marcl Dekker, 1987.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(185) PDF downloads(11) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog