Research article Topical Sections

Finsler warped product metrics with isotropic $ E $-curvature

  • Published: 30 October 2025
  • MSC : 53B40, 53C60

  • The $ E $-curvature is one of the most important non-Riemannian quantities in Finsler geometry. In this paper, we study Finsler warped product metrics with isotropic $ E $-curvature and constant $ E $-curvature. The equations that characterize Finsler warped product metrics of the above $ E $-curvature are given. Moreover, some specific metrics with isotropic $ E $-curvature are constructed.

    Citation: Benling Li, Ke Xu. Finsler warped product metrics with isotropic $ E $-curvature[J]. AIMS Mathematics, 2025, 10(10): 24958-24970. doi: 10.3934/math.20251104

    Related Papers:

  • The $ E $-curvature is one of the most important non-Riemannian quantities in Finsler geometry. In this paper, we study Finsler warped product metrics with isotropic $ E $-curvature and constant $ E $-curvature. The equations that characterize Finsler warped product metrics of the above $ E $-curvature are given. Moreover, some specific metrics with isotropic $ E $-curvature are constructed.



    加载中


    [1] Z. Shen, Differential geometry of spray and Finsler spaces, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-015-9727-2
    [2] X. Chen, Z. Shen, Randers metrics with special curvature properties, Osaka J. Math., 40 (2003), 87–101.
    [3] X. Chen, Z. Shen, On Douglas metrics, Publ. Math. Debrecen, 66 (2005), 503–512. https://doi.org/10.5486/PMD.2005.3192
    [4] B. Tiwari, R. Gangopadhyay, G. K. Prajapati, A class of Finsler spaces with general $(\alpha, \beta)$-metrics, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950102. https://doi.org/10.1142/S0219887819501020 doi: 10.1142/S0219887819501020
    [5] M. Li, L. Zhang, Properties of Berwald scalar curvature, Front. Math. China, 15 (2020), 1143–1153. https://doi.org/10.1007/s11464-020-0872-7 doi: 10.1007/s11464-020-0872-7
    [6] Z. Yang, Y. He, X. L. Zhang, $S$-curvature of doubly warped product of Finsler manifolds, Acta Math. Sin. English Ser., 36 (2020), 1292–1298. https://doi.org/10.1007/s10114-020-9427-9 doi: 10.1007/s10114-020-9427-9
    [7] K. Wang, C. Zhong, A characterization of weakly Berwald spaces with $(\alpha, \beta)$-metrics, Differ. Geom. Appl., 82 (2022), 101870. https://doi.org/10.1016/j.difgeo.2022.101870 doi: 10.1016/j.difgeo.2022.101870
    [8] M. Crampin, $S$-curvature, $E$-curvature, and Berwald scalar curvature of Finsler spaces, Differ. Geom. Appl., 92 (2024), 102080. https://doi.org/10.1016/j.difgeo.2023.102080 doi: 10.1016/j.difgeo.2023.102080
    [9] A. Tayebi, On $E$-curvature of homogeneous Finsler manifolds, Period. Math. Hung., 90 (2025), 140–155. https://doi.org/10.1007/s10998-024-00610-4 doi: 10.1007/s10998-024-00610-4
    [10] M. Gabrani, B. Rezaei, On general $(\alpha, \beta)$-metrics with isotropic $E$-curvature, J. Korean Math. Soc., 55 (2018), 415–424. https://doi.org/10.4134/JKMS.j170277 doi: 10.4134/JKMS.j170277
    [11] H. Liu, X. Mo, Finsler warped product metrics of Douglas type, Can. Math. Bull., 62 (2019), 119–130. https://doi.org/10.4153/CMB-2017-077-0 doi: 10.4153/CMB-2017-077-0
    [12] H. Liu, X. Mo, H. Zhang, Finsler warped product metrics with special Riemannian curvature properties, Sci. China Math., 63 (2020), 1391–1408. https://doi.org/10.1007/s11425-018-9422-4 doi: 10.1007/s11425-018-9422-4
    [13] H. Liu, X. Mo, L. Zhu, Finsler warped product metrics with isotropic $S$-curvature, Differ. Geom. Appl., 81 (2022), 101865. https://doi.org/10.1016/j.difgeo.2022.101865 doi: 10.1016/j.difgeo.2022.101865
    [14] D. Zheng, Landsberg Finsler warped product metrics with zero flag curvature, Differ. Geom. Appl., 93 (2024), 102082. https://doi.org/10.1016/j.difgeo.2023.102082 doi: 10.1016/j.difgeo.2023.102082
    [15] B. Chen, Z. Shen, L. Zhao, Constructions of Einstein Finsler metrics by warped product, Int. J. Math., 29 (2018), 1850081. https://doi.org/10.1142/S0129167X18500817 doi: 10.1142/S0129167X18500817
    [16] S. Dhasmana, Z. K. Silagadze, Finsler spacetime in light of Segal's principle, Mod. Phys. Lett. A, 35 (2020), 2050019. https://doi.org/10.1142/S0217732320500194 doi: 10.1142/S0217732320500194
    [17] R. G. Torromé, On singular generalized Berwald spacetimes and the equivalence principle, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750091. https://doi.org/10.1142/S0219887817500918 doi: 10.1142/S0219887817500918
    [18] M. Zhou, S. D. Liang, Finslerian geometrodynamics, Int. J. Theor. Phys., 63 (2024), 158. https://doi.org/10.1007/s10773-024-05681-0
    [19] Z. Shen, Landsberg curvature, $S$-curvature and Riemann curvature, In: A sampler of Riemann-Finsler geometry, 50 (2004), 303–355.
    [20] X. Cheng, Z. Shen, A class of Finsler metrics with isotropic $S$-curvature, Israel J. Math., 169 (2009), 317–340. https://doi.org/10.1007/s11856-009-0013-1 doi: 10.1007/s11856-009-0013-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(502) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog