The $ E $-curvature is one of the most important non-Riemannian quantities in Finsler geometry. In this paper, we study Finsler warped product metrics with isotropic $ E $-curvature and constant $ E $-curvature. The equations that characterize Finsler warped product metrics of the above $ E $-curvature are given. Moreover, some specific metrics with isotropic $ E $-curvature are constructed.
Citation: Benling Li, Ke Xu. Finsler warped product metrics with isotropic $ E $-curvature[J]. AIMS Mathematics, 2025, 10(10): 24958-24970. doi: 10.3934/math.20251104
The $ E $-curvature is one of the most important non-Riemannian quantities in Finsler geometry. In this paper, we study Finsler warped product metrics with isotropic $ E $-curvature and constant $ E $-curvature. The equations that characterize Finsler warped product metrics of the above $ E $-curvature are given. Moreover, some specific metrics with isotropic $ E $-curvature are constructed.
| [1] | Z. Shen, Differential geometry of spray and Finsler spaces, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-015-9727-2 |
| [2] | X. Chen, Z. Shen, Randers metrics with special curvature properties, Osaka J. Math., 40 (2003), 87–101. |
| [3] | X. Chen, Z. Shen, On Douglas metrics, Publ. Math. Debrecen, 66 (2005), 503–512. https://doi.org/10.5486/PMD.2005.3192 |
| [4] |
B. Tiwari, R. Gangopadhyay, G. K. Prajapati, A class of Finsler spaces with general $(\alpha, \beta)$-metrics, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950102. https://doi.org/10.1142/S0219887819501020 doi: 10.1142/S0219887819501020
|
| [5] |
M. Li, L. Zhang, Properties of Berwald scalar curvature, Front. Math. China, 15 (2020), 1143–1153. https://doi.org/10.1007/s11464-020-0872-7 doi: 10.1007/s11464-020-0872-7
|
| [6] |
Z. Yang, Y. He, X. L. Zhang, $S$-curvature of doubly warped product of Finsler manifolds, Acta Math. Sin. English Ser., 36 (2020), 1292–1298. https://doi.org/10.1007/s10114-020-9427-9 doi: 10.1007/s10114-020-9427-9
|
| [7] |
K. Wang, C. Zhong, A characterization of weakly Berwald spaces with $(\alpha, \beta)$-metrics, Differ. Geom. Appl., 82 (2022), 101870. https://doi.org/10.1016/j.difgeo.2022.101870 doi: 10.1016/j.difgeo.2022.101870
|
| [8] |
M. Crampin, $S$-curvature, $E$-curvature, and Berwald scalar curvature of Finsler spaces, Differ. Geom. Appl., 92 (2024), 102080. https://doi.org/10.1016/j.difgeo.2023.102080 doi: 10.1016/j.difgeo.2023.102080
|
| [9] |
A. Tayebi, On $E$-curvature of homogeneous Finsler manifolds, Period. Math. Hung., 90 (2025), 140–155. https://doi.org/10.1007/s10998-024-00610-4 doi: 10.1007/s10998-024-00610-4
|
| [10] |
M. Gabrani, B. Rezaei, On general $(\alpha, \beta)$-metrics with isotropic $E$-curvature, J. Korean Math. Soc., 55 (2018), 415–424. https://doi.org/10.4134/JKMS.j170277 doi: 10.4134/JKMS.j170277
|
| [11] |
H. Liu, X. Mo, Finsler warped product metrics of Douglas type, Can. Math. Bull., 62 (2019), 119–130. https://doi.org/10.4153/CMB-2017-077-0 doi: 10.4153/CMB-2017-077-0
|
| [12] |
H. Liu, X. Mo, H. Zhang, Finsler warped product metrics with special Riemannian curvature properties, Sci. China Math., 63 (2020), 1391–1408. https://doi.org/10.1007/s11425-018-9422-4 doi: 10.1007/s11425-018-9422-4
|
| [13] |
H. Liu, X. Mo, L. Zhu, Finsler warped product metrics with isotropic $S$-curvature, Differ. Geom. Appl., 81 (2022), 101865. https://doi.org/10.1016/j.difgeo.2022.101865 doi: 10.1016/j.difgeo.2022.101865
|
| [14] |
D. Zheng, Landsberg Finsler warped product metrics with zero flag curvature, Differ. Geom. Appl., 93 (2024), 102082. https://doi.org/10.1016/j.difgeo.2023.102082 doi: 10.1016/j.difgeo.2023.102082
|
| [15] |
B. Chen, Z. Shen, L. Zhao, Constructions of Einstein Finsler metrics by warped product, Int. J. Math., 29 (2018), 1850081. https://doi.org/10.1142/S0129167X18500817 doi: 10.1142/S0129167X18500817
|
| [16] |
S. Dhasmana, Z. K. Silagadze, Finsler spacetime in light of Segal's principle, Mod. Phys. Lett. A, 35 (2020), 2050019. https://doi.org/10.1142/S0217732320500194 doi: 10.1142/S0217732320500194
|
| [17] |
R. G. Torromé, On singular generalized Berwald spacetimes and the equivalence principle, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750091. https://doi.org/10.1142/S0219887817500918 doi: 10.1142/S0219887817500918
|
| [18] | M. Zhou, S. D. Liang, Finslerian geometrodynamics, Int. J. Theor. Phys., 63 (2024), 158. https://doi.org/10.1007/s10773-024-05681-0 |
| [19] | Z. Shen, Landsberg curvature, $S$-curvature and Riemann curvature, In: A sampler of Riemann-Finsler geometry, 50 (2004), 303–355. |
| [20] |
X. Cheng, Z. Shen, A class of Finsler metrics with isotropic $S$-curvature, Israel J. Math., 169 (2009), 317–340. https://doi.org/10.1007/s11856-009-0013-1 doi: 10.1007/s11856-009-0013-1
|