Research article Special Issues

An epidemiological model of the mumps virus via Mittag-Leffler Kernel: Stability analysis and artificial neural network solutions

  • Received: 17 July 2025 Revised: 19 October 2025 Accepted: 21 October 2025 Published: 30 October 2025
  • MSC : 26A33, 34A08, 34A34, 65L20, 92B20, 92D30

  • This study presents a mathematical model utilizing fractal fractional-order Mittag-Leffler (FFM) operators to investigate the transmission dynamics of the mumps virus. The model was assessed both qualitatively and quantitatively, focusing on the existence and uniqueness of solutions, Ulam-Hyers stability, well-posedness, and treatment sensitivity analysis related to the Paramyxoviridae family. Fixed-point theory was used to establish solution constraints for modeling fractional dynamics. A comparative analysis revealed that the fractional-order model outperforms traditional integer-order approaches, offering a more robust and realistic framework for studying mumps virus epidemiology. Synthetic data generated from the two-step Newton solver with a Mittag-Leffler kernel was analyzed using supervised learning techniques and artificial neural networks. The neural network predictions closely matched the numerical results, showing minimal errors, and were validated through convergence metrics and regression analysis. This integrated framework offers a strong method for understanding the transmission dynamics of the mumps virus.

    Citation: I-Hung Lee, Sanaullah Saqib, Qin Sheng, Yin-Tzer Shih. An epidemiological model of the mumps virus via Mittag-Leffler Kernel: Stability analysis and artificial neural network solutions[J]. AIMS Mathematics, 2025, 10(10): 24923-24957. doi: 10.3934/math.20251103

    Related Papers:

  • This study presents a mathematical model utilizing fractal fractional-order Mittag-Leffler (FFM) operators to investigate the transmission dynamics of the mumps virus. The model was assessed both qualitatively and quantitatively, focusing on the existence and uniqueness of solutions, Ulam-Hyers stability, well-posedness, and treatment sensitivity analysis related to the Paramyxoviridae family. Fixed-point theory was used to establish solution constraints for modeling fractional dynamics. A comparative analysis revealed that the fractional-order model outperforms traditional integer-order approaches, offering a more robust and realistic framework for studying mumps virus epidemiology. Synthetic data generated from the two-step Newton solver with a Mittag-Leffler kernel was analyzed using supervised learning techniques and artificial neural networks. The neural network predictions closely matched the numerical results, showing minimal errors, and were validated through convergence metrics and regression analysis. This integrated framework offers a strong method for understanding the transmission dynamics of the mumps virus.



    加载中


    [1] WHO. Deafness and hearing loss (updated 26 February 2025). Available from: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.
    [2] F. Kouilily, F. Z. Aboulkhouatem, N. Yousfi, N. Achtaich, M. El Khasmi, Modeling the social and epidemiological causes of hearing loss, Rev. Mex. Ing. Bioméd., 39 (2018), 248–258.
    [3] K. S. Nisar, M. Farman, Analysis of a mathematical model with hybrid fractional derivatives under different kernels for hearing loss due to mumps virus, Int. J. Model. Simul., 2024. https://doi.org/10.1080/02286203.2024.2322361
    [4] F. Kouilily, F. E. Aboulkhouatem, N. Yousfi, M. El Khasmi, N. Achtaich, Mathematical model of hearing loss caused by viral infection, Rev. Afr. Rech. Inform. Math. Appl., 2018.
    [5] J. Strachan, Mathematical model of hearing loss due to viral infection, Fla. Sci., 85 (2022), 64.
    [6] W. Al-Sadi, Z. Wei, I. Moroz, A. Alkhazzan, Existence and stability of solution in Banach space for an impulsive system involving Atangana–Baleanu and Caputo–Fabrizio derivatives, Fractals, 31 (2023), 2340085. https://doi.org/10.1142/S0218348X23400856 doi: 10.1142/S0218348X23400856
    [7] W. Al‐sadi, Z. Wei, T. Q. S. Abdullah, A. Alkhazzan, J. F. Gómez‐Aguilar, Dynamical and numerical analysis of the hepatitis B virus treatment model through fractal–fractional derivative, Math. Meth. Appl. Sci., 48 (2025), 639–657. https://doi.org/10.1002/mma.10348 doi: 10.1002/mma.10348
    [8] F. Arif, S. U. Saqib, Y. T. Shih, Y. T. Kausar, SEIR-VQ model for the NB.1.8.1 COVID-19 variant: Mathematical analysis and numerical simulations, AIMS Mathematics, 10 (2025), 18024–18054. https://doi.org/10.3934/math.2025803 doi: 10.3934/math.2025803
    [9] A. G. Schilder, L. Y. Chong, S. Ftouh, M. J. Burton, Bilateral versus unilateral hearing aids for bilateral hearing impairment in adults, Cochrane Database Syst. Rev., 12 (2017), CD012665. https://doi.org/10.1002/14651858.cd012665.pub2 doi: 10.1002/14651858.cd012665.pub2
    [10] M. R. Thulasiram, J. M. Ogier, A. Dabdoub, Hearing function, degeneration, and disease: Spotlight on the stria vascularis, Front. Cell Dev. Biol., 10 (2022), 841708. https://doi.org/10.3389/fcell.2022.841708 doi: 10.3389/fcell.2022.841708
    [11] B. Challa, J. Kethar, Connecting hearing loss: Causes, treatments, and prevention, J. Stud. Res., 11 (2022). https://doi.org/10.47611/jsrhs.v11i4.3717
    [12] Y. J. Zhou, J. Yu, Y. Z. Wu, L. Tian, Z. Han, J. Wang, et al., The potential dysfunction of otolith organs in patients after mumps infection, PLoS One, 12 (2017), e0181907. https://doi.org/10.1371/journal.pone.0181907 doi: 10.1371/journal.pone.0181907
    [13] M. Farman, A. Hasan, M. Sultan, A. Ahmad, A. Akgül, F. Chaudhry, et al., Yellow virus epidemiological analysis in red chili plants using Mittag-Leffler kernel, Alexandria Eng. J., 66 (2023), 811–825. https://doi.org/10.1016/j.aej.2022.10.064 doi: 10.1016/j.aej.2022.10.064
    [14] C. Xu, M. Farman, A. Hasan, A. Akgül, M. Zakarya, W. Albalawi, et al., Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional operator, Alexandria Eng. J., 61 (2022), 11787–11802. https://doi.org/10.1016/j.aej.2022.05.025 doi: 10.1016/j.aej.2022.05.025
    [15] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Solitons Fractals, 136 (2020), 109860. https://doi.org/10.1016/j.chaos.2020.109860
    [16] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [17] J. K. Asamoah, E. Addai, Y. D. Arthur, E. Okyere, A fractional mathematical model for listeriosis infection using two kernels, Decis. Anal. J., 6 (2023), 100191. https://doi.org/10.1016/j.dajour.2023.100191 doi: 10.1016/j.dajour.2023.100191
    [18] S. U. Saqib, U. Farooq, N. Fatima, Y. T. Shih, A. Mir, L. Kolsi, Novel recurrent neural networks for efficient heat transfer analysis in radiative moving porous triangular fin with heat generation, Case Stud. Therm. Eng., 64 (2024), 105516. https://doi.org/10.1016/j.csite.2024.105516 doi: 10.1016/j.csite.2024.105516
    [19] M. Shoaib, S. U. Saqib, M. A. Z. Raja, K. S. Nisar, Intelligent computing Levenberg Marquardt technique for MHD hybrid nanofluid radiative-dissipative flow along stretched surface under influence of slip and convective conditions, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2123572
    [20] M. W. Anjum, S. U. Saqib, Y. T. Shih, I. Ul Hassan, Adnan, I. H. Jaghdam, et al., Application of Kolmogorov-Arnold network (KAN) for solitary-Peakon investigation of Lax model, Case Stud. Therm. Eng., 73 (2025), 106537. https://doi.org/10.1016/j.csite.2025.106537 doi: 10.1016/j.csite.2025.106537
    [21] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(315) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(29)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog