This article investigates the qualitative analysis and traveling wave solutions of the stochastic nonlinear Kodama equation within the Stratonovich framework. By applying a random traveling wave transformation, the equation is first converted into an ordinary differential equation. The qualitative behavior of the corresponding two-dimensional dynamical system and its perturbation is then examined using planar dynamical system analysis. Subsequently, the complete discriminant system method is employed to derive four distinct types of optical solutions. Three-dimensional plots illustrating these solutions under different parameters are also presented.
Citation: Jin Wang, Zhao Li. The impact of standard Wiener process on the qualitative analysis and traveling wave solutions of stochastic nonlinear Kodama equation in the Stratonovich sense[J]. AIMS Mathematics, 2025, 10(10): 24997-25010. doi: 10.3934/math.20251107
This article investigates the qualitative analysis and traveling wave solutions of the stochastic nonlinear Kodama equation within the Stratonovich framework. By applying a random traveling wave transformation, the equation is first converted into an ordinary differential equation. The qualitative behavior of the corresponding two-dimensional dynamical system and its perturbation is then examined using planar dynamical system analysis. Subsequently, the complete discriminant system method is employed to derive four distinct types of optical solutions. Three-dimensional plots illustrating these solutions under different parameters are also presented.
| [1] | Y. H. Yang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko-Parkes equation, Fractals, 2025. https://doi.org/10.1142/S0218348X25501026 |
| [2] |
K. J. Wang, An effective computational approach to the local fractional low-pass electrical transmission lines model, Alex. Eng. J., 110 (2025), 629–635. https://doi.org/10.1016/j.aej.2024.07.021 doi: 10.1016/j.aej.2024.07.021
|
| [3] |
N. A. Shah, H. A. Alyousef, S. A. EI-Tantawy, R. Shah, J. D. Chung, Analytical investigation of fractional-order Korteweg–De-Vries-Type equations under Atangana–Baleanu–Caputo operator: Modeling nonlinear waves in a plasma and fluid, Symmetry, 14 (2022), 739. https://doi.org/10.3390/sym14040739 doi: 10.3390/sym14040739
|
| [4] |
S. Q. Xu, J. Q. Duan, A Taylor expansion approach for solving partial differential equations with random Neumann boundary conditions, Appl. Math. Comput., 217 (2011), 9532–8542. https://doi.org/10.1016/j.amc.2011.03.137 doi: 10.1016/j.amc.2011.03.137
|
| [5] | B. Kharkongor, P. M. Kharmawlong, S. S. Pohlong, M. C. Mahato. Net transport and stochastic resonance in an underdamped system due to the application of a traveling-wave force-field, Physica D, 457 (2024), 133982. |
| [6] |
E. Ulutas, Travelling wave and optical soliton solutions of the Wick-type stochastic NLSE with conformable derivatives, Chaos Soliton. Fract., 148 (2021), 111052. https://doi.org/10.1016/j.chaos.2021.111052 doi: 10.1016/j.chaos.2021.111052
|
| [7] |
A. C. Cevikel, Optical solutions for the (3+1)-dimensional YTSF equation, Opt. Quant. Electron., 55 (2023), 510. https://doi.org/10.1007/s11082-023-04787-9 doi: 10.1007/s11082-023-04787-9
|
| [8] | S. Zhao, Z. Li. The analysis of traveling wave solutions and dynamical behavior for the stochastic coupled Maccari's system via Brownian motion, Ain Shams Eng. J., 15 (2024), 103037. https://doi.org/10.1016/j.asej.2024.103037 |
| [9] |
A. C. Cevikel, Traveling wave solutions of Fordy–Gibbons equation, Mod. Phys. Lett. B, 38 (2025), 2450448. https://doi.org/10.1142/S0217984924504487 doi: 10.1142/S0217984924504487
|
| [10] |
Z. Li, C. Y. Liu, Chaotic pattern and traveling wave solution of the perturbed stochastic nonlinear Schrödinger equation with generalized anti-cubic law nonlinearity and spatio-temporal dispersion, Results Phys., 56 (2024), 107305. https://doi.org/10.1016/j.rinp.2023.107305 doi: 10.1016/j.rinp.2023.107305
|
| [11] | M. Raheel, A. Bekir, K. U. Tariq, A. Cevikel, Soliton solutions to the generalized (1+1)-dimensional unstable space time-fractional nonlinear Schrödinger model, Opt. Quant. Electron., 54 (2022), 668. |
| [12] |
M. S. Algolam, A. I. Ahmed, H. M. Alshammary, F. E. Mansour, W. W. Mohammed, The impact of standard Wiener process on the optical solutions of the stochastic nonlinear Kodama equation using two different methods, J. Low Freq. Noise V. A., 43 (2024), 1939–1952. https://doi.org/10.1177/14613484241275313 doi: 10.1177/14613484241275313
|
| [13] |
F. N. K. Sağlam, Analytical approaches to the stochastic nonlinear Kodama equation via the impact of multiplicative noise, Math. Method. Appl. Sci., 48 (2025), 15092–15110. https://doi.org/10.1002/mma.70002 doi: 10.1002/mma.70002
|
| [14] |
W. W. Mohammed, F. M. Al-Askar, New stochastic traveling wave solutions for the Kundu–Mukherjee–Naskar equation with random variable coefficients, Alex. Eng. J., 120 (2025), 154–161. https://doi.org/10.1016/j.aej.2025.02.002 doi: 10.1016/j.aej.2025.02.002
|
| [15] |
A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. https://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
|
| [16] |
W. W. Mohammed, F. M. Al-Askar, C. Cesarano, Solitary solutions for the stochastic fokas system found in monomode optical fibers, Symmetry, 15 (2023), 1433. https://doi.org/10.3390/sym15071433 doi: 10.3390/sym15071433
|
| [17] |
K. Hosseini, F. Alizadeh, E. Hinçal, D. Baleanu, A. Akgül, A. M. Hassan, Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation, Results Phys., 54 (2023), 107129. https://doi.org/10.1016/j.rinp.2023.107129 doi: 10.1016/j.rinp.2023.107129
|
| [18] |
X. H. Du, C. S. Liu, New exact traveling wave solutions for compound KdV-Type equation with nonlinear terms of any order, Commun. Theor. Phys., 46 (2006), 787–792. https://doi.org/10.1088/0253-6102/46/5/004 doi: 10.1088/0253-6102/46/5/004
|