This research uses Susceptible–Exposed–Infectious–Recovered (SEIR) and Susceptible–Exposed–Infectious–Vaccinated (SEIV) models to analyze rabies transmission in human and canine populations. The framework includes eight epidemiological compartments to evaluate intervention strategies. A fractional-order model is employed using the Atangana-Baleanu derivative in the Caputo sense to capture memory and the system's complexity. The model's validity is established through qualitative analysis. Existence and uniqueness are confirmed via fixed-point theory, and Ulam-Hyers criteria assess robustness. Numerical solutions are obtained using the iterative Adams and Adams-Bashforth methods for accurate time-series simulations. Numerical experiments evaluate vaccination effects under a constant rate for a subset of the population. The results show that vaccination effectively reduces disease prevalence, emphasizing its critical role in rabies control. Deep neural network (DNN) techniques are applied for training, validation, and testing. The DNN has three hidden layers (10,100, 10 neurons) and is trained over 1000 epochs using the Levenberg-Marquardt algorithm. The model achieves high predictive accuracy, with mean square errors as low as 0.00027 and root mean square errors under 0.17 across compartments. Overall, combining fractional calculus with deep learning provides a robust framework for modeling complex disease dynamics and offers valuable insights for public health strategies in regions with significant dog populations.
Citation: Mutum Zico Meetei, Ramsha Shafqat, Ahmed H. Msmali, Waleed Hamali. Deep neural network applications in mathematical epidemiology: Case of rabies virus[J]. AIMS Mathematics, 2025, 10(10): 23261-23291. doi: 10.3934/math.20251032
This research uses Susceptible–Exposed–Infectious–Recovered (SEIR) and Susceptible–Exposed–Infectious–Vaccinated (SEIV) models to analyze rabies transmission in human and canine populations. The framework includes eight epidemiological compartments to evaluate intervention strategies. A fractional-order model is employed using the Atangana-Baleanu derivative in the Caputo sense to capture memory and the system's complexity. The model's validity is established through qualitative analysis. Existence and uniqueness are confirmed via fixed-point theory, and Ulam-Hyers criteria assess robustness. Numerical solutions are obtained using the iterative Adams and Adams-Bashforth methods for accurate time-series simulations. Numerical experiments evaluate vaccination effects under a constant rate for a subset of the population. The results show that vaccination effectively reduces disease prevalence, emphasizing its critical role in rabies control. Deep neural network (DNN) techniques are applied for training, validation, and testing. The DNN has three hidden layers (10,100, 10 neurons) and is trained over 1000 epochs using the Levenberg-Marquardt algorithm. The model achieves high predictive accuracy, with mean square errors as low as 0.00027 and root mean square errors under 0.17 across compartments. Overall, combining fractional calculus with deep learning provides a robust framework for modeling complex disease dynamics and offers valuable insights for public health strategies in regions with significant dog populations.
| [1] | K. M. Addo, An SEIR mathematical model for dog rabies; Case study: Bongo District, Ghana, Doctoral dissertation, 2012. |
| [2] |
Q. Hou, Z. Jin, S. Ruan, Dynamics of rabies epidemics and the impact of control efforts in Guangdong Province, China, J. Theor. Biol., 300 (2012), 39–47. https://doi.org/10.1016/j.jtbi.2012.01.006 doi: 10.1016/j.jtbi.2012.01.006
|
| [3] |
R. M. Anderson, H. C. Jackson, R. M. May, A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765–771. https://doi.org/10.1038/289765a0 doi: 10.1038/289765a0
|
| [4] |
D. L. Smith, B. Lucey, L. A. Waller, J. E. Childs, L. A. Real, Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes, P. Natl. Acad. Sci., 99 (2002), 3668–3672. https://doi.org/10.1073/pnas.042400799 doi: 10.1073/pnas.042400799
|
| [5] |
C. A. Russell, D. L. Smith, J. E. Childs, L. A. Real, Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio, PLoS Biol., 3 (2005), e88. https://doi.org/10.1371/journal.pbio.0030088' doi: 10.1371/journal.pbio.0030088
|
| [6] |
E. Asano, L. J. Gross, S. Lenhart, L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model, Math. Biosci. Eng., 5 (2008), 219–238. https://doi.org/10.3934/mbe.2008.5.219 doi: 10.3934/mbe.2008.5.219
|
| [7] |
J. Zhang, Z. Jin, G. Q. Sun, T. Zhou, S. Ruan, Analysis of rabies in China: Transmission dynamics and control, PLoS One, 6 (2011), e20891. https://doi.org/10.1371/journal.pone.0020891 doi: 10.1371/journal.pone.0020891
|
| [8] | O. C. Eze, G. E. Mbah, D. U. Nnaji, N. E. Onyiaji, Mathematical modelling of transmission dynamics of rabies virus, Int. J. Math. Trends Technol.-IJMTT, 66 (2020). https://doi.org/10.14445/22315373/IJMTT-V66I7P506 |
| [9] | T. T. Ega, L. Luboobi, D. Kuznetsov, Modeling the dynamics of rabies transmission with vaccination and stability analysis, Appl. Comput. Math., 4 (2015). https://doi.org/10.11648/j.acm.20150406.13 |
| [10] |
M. Sambo, S. Cleaveland, H. Ferguson, T. Lembo, C. Simon, H. Urassa, et al., The burden of rabies in Tanzania and its impact on local communities, PLoS Neglect. Trop. D., 7 (2013), e2510. https://doi.org/10.1371/journal.pntd.0002510 doi: 10.1371/journal.pntd.0002510
|
| [11] |
S. Ruan, Modeling the transmission dynamics and control of rabies in China, Math. Biosci., 286 (2017), 65–93. https://doi.org/10.1016/j.mbs.2017.02.005 doi: 10.1016/j.mbs.2017.02.005
|
| [12] | M. Laager, Mathematical modelling of dog rabies transmission in N'Djamena, Chad, Doctoral dissertation, University of Basel, 2018. |
| [13] |
A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 3. https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010
|
| [14] |
R. Shafqat, A. Alsaadi, Artificial neural networks for stability analysis and simulation of delayed rabies spread models, AIMS Math., 9 (2024), 33495–33531. https://doi.org/10.3934/math.20241599 doi: 10.3934/math.20241599
|
| [15] |
A. Turab, R. Shafqat, S. Muhammad, M. Shuaib, M. F. Khan, M. Kamal, Predictive modeling of hepatitis B viral dynamics: A Caputo derivative-based approach using artificial neural networks, Sci. Rep., 14 (2024), 21853. https://doi.org/10.1038/s41598-024-70788-7 doi: 10.1038/s41598-024-70788-7
|
| [16] |
K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of the mathematical modelling of COVID-19 by using mild solution with delay Caputo operator, Symmetry, 15 (2023), 286. https://doi.org/10.3390/sym15020286 doi: 10.3390/sym15020286
|
| [17] | N. Anwar, M. A. Z. Raja, A. K. Kiani, I. Ahmad, M. Shoaib, C. M. Shu, Stochastic adaptive autoregressive eXogenous networks operative with Grünwald Letnikove fractional finite differences for nonlinear fractal differential system of coffee rust control model, Int. J. Comput. Math., 2025, 1–42. https://doi.org/10.1080/00207160.2025.2511771 |
| [18] | M. A. Z. Raja, A. Z. Abbasi, K. S. Nisar, A. Rafiq, M. Shoaib, A design of predictive intelligent networks for the analysis of fractional model of TB-virus, Comput. Model. Eng. Sci. (CMES), 143 (2025). https://doi.org/10.32604/cmes.2025.058020 |
| [19] |
A. Fida, M. A. Z. Raja, C. Y. Chang, M. J. A. A. Raja, Z. A. Khan, M. Shoaib, Novel intelligent exogenous neuro-architecture-driven machine learning approach for nonlinear fractional breast cancer risk system, Commun. Nonlinear Sci., 149 (2025), 108955. https://doi.org/10.1016/j.cnsns.2025.108955 doi: 10.1016/j.cnsns.2025.108955
|
| [20] | I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Cambridge: MIT press, 1 (2016). |
| [21] |
Chimmula, V. K. Reddy, L. Zhang, Time series forecasting of COVID-19 transmission in Canada using LSTM networks, Chaos Soliton. Fract., 135 (2020), 109864. https://doi.org/10.1016/j.chaos.2020.109864 doi: 10.1016/j.chaos.2020.109864
|
| [22] | F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, et al., Artificial intelligence in healthcare: Past, present and future, Stroke Vasc. Neurol., 2 (2017). https://doi.org/10.1136/svn-2017-000101 |
| [23] |
F. Sulayman, F. A. Abdullah, M. H. Mohd, An SVEIRE model of tuberculosis to assess the effect of an imperfect vaccine and other exogenous factors, Mathematics, 9 (2021), 327. https://doi.org/10.3390/math9040327 doi: 10.3390/math9040327
|
| [24] | H. W. Hethcote, The basic epidemiology models: Models, expressions for R0, parameter estimation, and applications, In: Mathematical understanding of infectious disease dynamics, 2009, 1–61. https://doi.org/10.1142/7020 |
| [25] | K. M. Addo, An SEIR mathematical model for dog rabies; Case Study: Bongo District, Ghana, PhD diss., 2012. |