In this paper, we establish weak bounds for fractional Hardy operators on central Morrey spaces within the framework of homogeneous groups. We provide precise operator norms and investigate weak bounds for Hardy operators on central Morrey spaces with power weights. These results significantly extend previous findings in the study of Hardy-type operators and contribute to a broader understanding of their behavior in more general settings, particularly within homogeneous groups.
Citation: Hongbin Liu, Juan Zhang, Qianjun He. Sharp weak bounds for fractional Hardy-type operators on homogeneous groups[J]. AIMS Mathematics, 2025, 10(10): 23292-23305. doi: 10.3934/math.20251033
In this paper, we establish weak bounds for fractional Hardy operators on central Morrey spaces within the framework of homogeneous groups. We provide precise operator norms and investigate weak bounds for Hardy operators on central Morrey spaces with power weights. These results significantly extend previous findings in the study of Hardy-type operators and contribute to a broader understanding of their behavior in more general settings, particularly within homogeneous groups.
| [1] |
C. Aykol, Z. O. Azizova, J. J. Hasanov, M. A. Ragusa, Weighted Hardy operators in the local generalized variable exponent weighted Morrey spaces and applications to differential operators, Partial Differ. Equ. Appl. Math., 12 (2024), 101006. https://doi.org/10.1016/j.padiff.2024.101006 doi: 10.1016/j.padiff.2024.101006
|
| [2] | J. Alvarez, J. Lakey, M. Guzman-Partida, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures, Collect. Math., 51 (2000), 1–47. |
| [3] |
R. A. Bandaliyev, Application of multidimensional Hardy operator and its connection with a certain nolinear differential equation in weighted variable Lebesgue spaces, Ann. Funct. Anal., 4 (2013), 118–130. https://doi.org/10.15352/afa/1399899530 doi: 10.15352/afa/1399899530
|
| [4] | R. A. Bandaliyev, Connection of two nonlinear differential equations with a two-dimensional Hardy operator in weighted Lebesgue spaces with mixed norms, Electron. J. Differ. Equ., 2016 (2016), 1–10. |
| [5] | A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-22870-9 |
| [6] |
P. Briet, H. Hammedi, D. Krejčiřík, Hardy inequalities in globally twisted waveguides, Lett. Math. Phys., 105 (2015), 939–958. https://doi.org/10.1007/s11005-015-0768-8 doi: 10.1007/s11005-015-0768-8
|
| [7] | H. Chen, K. T. Gkikas, P. T. Nguyen, Semilinear elliptic equations involving fractional Hardy operators, 2023, arXiv: 2302.02099. |
| [8] |
M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.2307/2160978 doi: 10.2307/2160978
|
| [9] | J. L. Cao, Q. J. He, D. Y. Yan, Weighted Hardy operator and its commutators on homogeneous groups, J. Univ. Chin. Acad. Sci., 2025, 1–9. https://doi.org/10.7523/j.ucas.2025.003 |
| [10] |
Z. W. Fu, S. Z. Lu, W. Yuan, A weighted variant of Riemann-Liouville fractional integral on $\mathbb{R}^{n}$, Abstr. Appl. Anal., 2012 (2012), 780132. https://doi.org/10.1155/2012/780132 doi: 10.1155/2012/780132
|
| [11] | G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Princeton: Princeton University Press, 1982. https://doi.org/10.1515/9780691222455 |
| [12] |
G. L. Gao, X. M. Hu, C. J. Zhang, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7 (2016), 421–433. https://doi.org/10.1215/20088752-3605447 doi: 10.1215/20088752-3605447
|
| [13] |
G. L. Gao, F. Y. Zhao, Sharp weak bounds for Hausdorff operators, Anal. Math., 41 (2015), 163–173. https://doi.org/10.1007/s10476-015-0204-4 doi: 10.1007/s10476-015-0204-4
|
| [14] |
S. X. He, S. P. Tao, Boundedness of some operators in grand generalized weighted Morrey spaces on RD-spaces, Filomat, 39 (2025), 2269–2279. https://doi.org/10.2298/FIL2507269H doi: 10.2298/FIL2507269H
|
| [15] |
D. Krejčiřík, The Hardy inequality and the heat flow in curved wedges, Port. Math., 73 (2016), 91–113. https://doi.org/10.4171/PM/1978 doi: 10.4171/PM/1978
|
| [16] |
D. Lukkassen, A. Meidell, L. E. Persson, N. Samko, Hardy and singular operators in weighted generalized Morrey spaces with applications to singular integral equations, Math. Methods Appl. Sci., 35 (2012), 1300–1311. https://doi.org/10.1002/mma.2532 doi: 10.1002/mma.2532
|
| [17] |
S. Z. Lu, D. Y. Yan, F. Y. Zhao, Sharp bounds for Hardy-type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013), 148. https://doi.org/10.1186/1029-242X-2013-148 doi: 10.1186/1029-242X-2013-148
|
| [18] | V. G. Maz'ja, Sobolev spaces, Berlin: Springer, 1985. |
| [19] |
H. X. Mo, Commutators of generalized Hardy operators on homogeneous groups, Acta Math. Sci., 30 (2010), 897–906. https://doi.org/10.1016/S0252-9602(10)60087-2 doi: 10.1016/S0252-9602(10)60087-2
|
| [20] | C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. |
| [21] | M. Ruzhansky, D. Suragan, Hardy inequalities on homogeneous groups: 100 years of Hardy inequalities, Cham: Birkhäuser, 2019. https://doi.org/10.1007/978-3-030-02895-4 |
| [22] |
M. Ruzhansky, B. Sabitbek, D. Suragan, Geometric Hardy and Hardy-Sobolev inequalities on Heisenberg groups, Bull. Math. Sci., 10 (2020), 2050016. https://doi.org/10.1142/s1664360720500162 doi: 10.1142/s1664360720500162
|
| [23] |
M. Ruzhansky, A. Shriwastawa, B. Tiwari, A note on best constants for weighted integral Hardy inequalities on homogeneous groups, Results Math., 79 (2024), 29. https://doi.org/10.1007/s00025-023-02058-3 doi: 10.1007/s00025-023-02058-3
|
| [24] |
N. Sarfraz, M. B. Riaz, S. Mehmood, M. Zaman, Characterization of $p$-adic mixed $\lambda$-central bounded mean oscillation space via commutators of $p$-adic Hardy-type operators, J. Funct. Spaces, 2024 (2024), 1800295. https://doi.org/10.1155/2024/1800295 doi: 10.1155/2024/1800295
|
| [25] |
J. L. Vazquez, E. Zuaua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103–153. https://doi.org/10.1006/jfan.1999.3556 doi: 10.1006/jfan.1999.3556
|
| [26] |
Q. Y. Wu, Z. W. Fu, Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc., 40 (2017), 635–654. https://doi.org/10.1007/s40840-017-0444-5 doi: 10.1007/s40840-017-0444-5
|
| [27] |
H. X. Yu, J. F. Li, Sharp weak bounds for $n$-dimensional fractional Hardy operators, Front. Math. China, 13 (2018), 449–457. https://doi.org/10.1007/s11464-018-0685-0 doi: 10.1007/s11464-018-0685-0
|
| [28] |
F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
|