In this work, we extended the classical Susceptible–Exposed–Vaccinated–Infected–Recovered (SEVIR) framework by incorporating an asymptomatic class, leading to the formulation of a new Susceptible–Exposed–Vaccinated–Asymptomatic–Infected–Recovered (SEVAIR) model that more accurately reflects the transmission characteristics of adenovirus. To account for memory effects and capture complex temporal behavior, the model was developed using the fractal-fractional Caputo-Fabrizio derivative with a power-law kernel. Existence and stability of solutions based on fixed point theory and Hyers-Ulam stability criteria were derived. Both the disease-free and endemic equilibrium states were derived, and their local stability properties were examined. Additionally, the basic reproduction number was computed to understand the disease's spread threshold. The theoretical results were supported by numerical simulations, which were performed using a modified Adams-Bashforth approach tailored for the fractional framework.
Citation: Mohamed S. Algolam, Ashraf A. Qurtam, Arshad Ali, Khaled Aldwoah, Amer Alsulami, Mohammed Rabih, Mahmoud M. Abdelwahab. Modeling adenovirus transmission dynamics using a SEVAIR framework with asymptomatic and vaccinated classes[J]. AIMS Mathematics, 2025, 10(10): 23235-23260. doi: 10.3934/math.20251031
In this work, we extended the classical Susceptible–Exposed–Vaccinated–Infected–Recovered (SEVIR) framework by incorporating an asymptomatic class, leading to the formulation of a new Susceptible–Exposed–Vaccinated–Asymptomatic–Infected–Recovered (SEVAIR) model that more accurately reflects the transmission characteristics of adenovirus. To account for memory effects and capture complex temporal behavior, the model was developed using the fractal-fractional Caputo-Fabrizio derivative with a power-law kernel. Existence and stability of solutions based on fixed point theory and Hyers-Ulam stability criteria were derived. Both the disease-free and endemic equilibrium states were derived, and their local stability properties were examined. Additionally, the basic reproduction number was computed to understand the disease's spread threshold. The theoretical results were supported by numerical simulations, which were performed using a modified Adams-Bashforth approach tailored for the fractional framework.
| [1] | Center for Disease Control (CDC), Conjunctivitis (pink eye). Available from: https://www.cdc.gov. |
| [2] |
S. R. Fehily, G. B. Cross, A. J. Fuller, Bilateral conjunctivitis in a returned traveler, PLoS Neglect. Trop. D., 9 (2015), e0003351. https://doi.org/10.1371/journal.pntd.0003351 doi: 10.1371/journal.pntd.0003351
|
| [3] |
R. H. Elliot, Conjunctivitis in the tropics, Brit. Med. J., 1 (1925), 12–14. https://doi.org/10.1136/bmj.1.3340.12-a doi: 10.1136/bmj.1.3340.12-a
|
| [4] |
K. N. Malu, Allergic conjunctivitis in Jos-Nigeria, Niger. Med. J., 55 (2014), 166–170. https://doi.org/10.4103/0300-1652.129664 doi: 10.4103/0300-1652.129664
|
| [5] | D. W. Kimberlin, Red book: 2018-2021 report of the committee on infectious diseases, 31 Eds., American Academy of Pediatrics: Itasca, IL, USA, 2018. |
| [6] | S. Sangsawang, T. Tanutpanit, W. Mumtong, P. Pongsumpun, Local stability analysis of mathematical model for hemorrhagic conjunctivitis disease, Current Appl. Sci. Technol., 12 (2012), 189–197. |
| [7] | O. Ghazali, K. B. Chua, K. P. Ng, P. S. Hooi, M. A. Pallansch, M. S. Oberste, et al., An outbreak of acute haemorrhagic conjunctivitis in Melaka, Malaysia, Singapore Med. J., 44 (2003), 511–516. |
| [8] | J. Chansaenroj, S. Vongpunsawad, J. Puenpa, A. Theamboonlers, V. Vuthitanachot, P. Chattakul, et al., Epidemic outbreak of acute haemorrhagic conjunctivitis caused by coxsackievirus A24 in Thailand, 2014. Epidemiol. Infect., 143 (2015), 3087–3093. https://doi.org/10.1017/S0950268815000643 |
| [9] |
G. Chowell, E. Shim, F. Brauer, P. Diaz-Dueas, J. M. Hyman, C. Castillo-Chavez, Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: Application to the 2003 outbreak in Mexico, Stat. Med., 25 (2006), 1840–1857. https://doi.org/10.1002/sim.2352 doi: 10.1002/sim.2352
|
| [10] | J. Suksawat, S. Naowarat, Effect of rainfall on the transmission model of conjunctivitis, Adv. Environ. Biol., 8 (2014), 99–104. |
| [11] | B. Unyong, S. Naowarat, Stability analysis of conjunctivitis model with nonlinear incidence term, Aust. J. Basic Appl. Sci., 8 (2014), 52–58. |
| [12] | S. Sangthongjeen, A. Sudchumnong, S. Naowarat, Effect of educational campaign on transmission model of conjunctivitis, Aust. J. Basic Appl. Sci., 9 (2015), 811–815. |
| [13] | E. K. Yeargers, R. W. Shonkwiler, J. V. Herod, An introduction to the mathematics of biology: With computer algebra models, Springer Science & Business Media: New York, NY, USA, 2013, 1–8. |
| [14] |
K. A. Aldwoah, M. A. Almalahi, M. Hleili, F. A. Alqarni, E. S. Aly, K. Shah, Analytical study of a modified-ABC fractional order breast cancer model, J. Appl. Math. Comput., 70 (2024), 3685–3716. https://doi.org/10.1007/s12190-024-02102-7 doi: 10.1007/s12190-024-02102-7
|
| [15] |
A. E. Hamza, O. Osman, A. Ali, A. Alsulami, K. Aldwoah, A. Mustafa, et al., Fractal-fractional-order modeling of liver fibrosis disease and its mathematical results with subinterval transitions, Fractal Fract., 8 (2024), 638. https://doi.org/10.3390/fractalfract8110638 doi: 10.3390/fractalfract8110638
|
| [16] |
H. Khan, J. Alzabut, A. Shah, Z. Y. He, S. Etemad, S. Rezapour, et al., On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 2340055. https://doi.org/10.1142/S0218348X23400558 doi: 10.1142/S0218348X23400558
|
| [17] |
T. Alraqad, M. A. Almalahi, N. Mohammed, A. Alahmade, K. A. Aldwoah, Modeling Ebola dynamics with a $\Phi$-piecewise hybrid fractional derivative approach, Fractal Fract., 8 (2024), 596. https://doi.org/10.3390/fractalfract8100596 doi: 10.3390/fractalfract8100596
|
| [18] |
Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563
|
| [19] |
M. S. Algolam, O. Osman, A. Ali, A. Mustafa, K. Aldwoah, A. Alsulami, Fixed point and stability analysis of a tripled system of nonlinear fractional differential equations with n-nonlinear terms, Fractal Fract., 8 (2024), 697. https://doi.org/10.3390/fractalfract8120697 doi: 10.3390/fractalfract8120697
|
| [20] |
M. Naim, Z. Yaagoub, A. Zeb, M. Sadki, K. Allali, Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity, Model. Earth Syst. Environ., 10 (2024), 1749–1769. https://doi.org/10.1007/s40808-023-01866-4 doi: 10.1007/s40808-023-01866-4
|
| [21] |
Z. Yaagoub, M. Sadki, K. Allali, A generalized fractional hepatitis B virus infection model with both cell-to-cell and virus-to-cell transmissions, Nonlinear Dyn., 112 (2024), 16559–16585. https://doi.org/10.1007/s11071-024-09867-3 doi: 10.1007/s11071-024-09867-3
|
| [22] |
Z. Yaagoub, K. Allali, Fractional HBV infection model with both cell-to-cell and virus-to-cell transmissions and adaptive immunity, Chaos Soliton. Fract., 165 (2022), 112855. https://doi.org/10.1016/j.chaos.2022.112855 doi: 10.1016/j.chaos.2022.112855
|
| [23] |
Z. Yaagoub, Fractional two-strain SVLIR epidemic model with vaccination and quarantine strategies, Int. J. Dynam. Control, 13 (2025), 55. https://doi.org/10.1007/s40435-024-01561-x doi: 10.1007/s40435-024-01561-x
|
| [24] |
Z. Yaagoub, A. El Bhih, K. Allali, Global analysis of a fractional-order infection model for the propagation of computer viruses, Model. Earth Syst. Environ., 11 (2025), 68. https://doi.org/10.1007/s40808-024-02270-2 doi: 10.1007/s40808-024-02270-2
|
| [25] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
| [26] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
|
| [27] |
K. Shah, T. Abdeljawad, Study of radioactive decay process of uranium atoms via fractals-fractional analysis, S. Afr. J. Chem. Eng., 48 (2024), 63–70. https://doi.org/10.1016/j.sajce.2024.01.003 doi: 10.1016/j.sajce.2024.01.003
|
| [28] |
A. Shah, H. Khan, M. De la Sen, J. Alzabut, S. Etemad, C. T. Deressa, On non-symmetric fractal-fractional modeling for ice smoking: Mathematical analysis of solutions, Symmetry, 15 (2022), 87. https://doi.org/10.3390/sym15010087 doi: 10.3390/sym15010087
|
| [29] |
F. Javed, A. Ahmad, A. H. Ali, E. Hincal, A. Amjad, Investigation of conjunctivitis adenovirus spread in human eyes by using bifurcation tool and numerical treatment approach, Phys. Scr., 99 (2024), 085253. https://doi.org/10.1088/1402-4896/ad62a5 doi: 10.1088/1402-4896/ad62a5
|
| [30] |
K. S. Nisar, A. Ahmad, M. Farman, E. Hincal, A. Zehra, Modeling and mathematical analysis of fractional order eye infection (conjunctivitis) virus model with treatment impact: Prelicence and dynamical transmission, Alex. Eng. J., 107 (2024), 33–46. https://doi.org/10.1016/j.aej.2024.07.020 doi: 10.1016/j.aej.2024.07.020
|
| [31] |
R. Sidaoui, W. E. Ahmed, A. Ali, M. Rabih, A. Alsulami, K. Aldwoah, et al., Mathematical and numerical analysis of a SEVIR-S model for adenovirus with immunity waning and reinfection effects, AIMS Math., 10 (2025), 16291–16316. https://doi.org/10.3934/math.2025728 doi: 10.3934/math.2025728
|
| [32] |
C. Liu, X. Yi, Y. Feng, Modelling and parameter identification for a two-stage fractional dynamical system in microbial batch process, Nonlinear Anal. Model. Control, 27 (2022), 350–367. https://doi.org/10.15388/namc.2022.27.26234 doi: 10.15388/namc.2022.27.26234
|
| [33] |
C. Liu, X. Yi, Z. Gong, M. Han, The control parametrization technique for numerically solving fractal-fractional optimal control problems involving Caputo-Fabrizio derivatives, J. Comput. Appl. Math., 472 (2026), 116814. https://doi.org/10.1016/j.cam.2025.116814 doi: 10.1016/j.cam.2025.116814
|
| [34] |
R. Sidaoui, A. A. Qurtam, A. Ali, M. Suhail, K. Aldwoah, A. Elsayed, et al., Modeling rotavirus transmission with booster vaccination using fractal-fractional derivatives, AIMS Math., 10 (2025), 20025–20049. https://doi.org/10.3934/math.2025895 doi: 10.3934/math.2025895
|