Research article Special Issues

Improved convergence analysis on the accelerated modulus-based matrix splitting iteration method for nonlinear complementarity problems

  • Received: 17 July 2025 Revised: 03 September 2025 Accepted: 23 September 2025 Published: 10 October 2025
  • MSC : 65F10, 90C33

  • In this paper, we focused on the accelerated modulus-based matrix splitting iteration method for solving nonlinear complementarity problems. A thorough analysis of convergence conditions for the method was conducted. Compared to the work "B. H. Huang, C. F. Ma, Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems, Comp. Appl. Math., 37 (2018), 3053–3076", our results achieved three significant improvements: Relaxing the assumptions on matrix splittings, providing an expanded convergence domain for parameter matrix, and simplifying conditions for relaxation parameters. The validity of the theoretical findings was verified by numerical examples.

    Citation: Yanmei Chen, Yihang Lin, Jianwei Dong. Improved convergence analysis on the accelerated modulus-based matrix splitting iteration method for nonlinear complementarity problems[J]. AIMS Mathematics, 2025, 10(10): 22980-22994. doi: 10.3934/math.20251021

    Related Papers:

  • In this paper, we focused on the accelerated modulus-based matrix splitting iteration method for solving nonlinear complementarity problems. A thorough analysis of convergence conditions for the method was conducted. Compared to the work "B. H. Huang, C. F. Ma, Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems, Comp. Appl. Math., 37 (2018), 3053–3076", our results achieved three significant improvements: Relaxing the assumptions on matrix splittings, providing an expanded convergence domain for parameter matrix, and simplifying conditions for relaxation parameters. The validity of the theoretical findings was verified by numerical examples.



    加载中


    [1] M. C. Ferris, J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669–713. https://doi.org/10.1137/S0036144595285963 doi: 10.1137/S0036144595285963
    [2] P. T. Harker, J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Program., 48 (1990), 161–220. https://doi.org/10.1007/BF01582255 doi: 10.1007/BF01582255
    [3] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, 1992.
    [4] K. G. Murty, F. T. Yu, Linear complementarity, linear and nonlinear programming, Berlin: Heldermann, 1988.
    [5] Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebr., 17 (2010), 917–933. https://doi.org/10.1002/nla.680 doi: 10.1002/nla.680
    [6] X. M. Fang, The convergence of the modulus-based Jacobi (MJ) iteration method for solving horizontal linear complementarity problems, Comp. Appl. Math., 41 (2022), 134. https://doi.org/10.1007/s40314-022-01842-1 doi: 10.1007/s40314-022-01842-1
    [7] X. M. Fang, Z. Gu, Z. J. Qiao, Convergence of the two-point modulus-based matrix splitting iteration method, J. Appl. Anal. Comput., 13 (2023), 2504–2521. https://doi.org/10.11948/20220400 doi: 10.11948/20220400
    [8] X. M. Fang, Z. W. Zhu, The modulus-based matrix double splitting iteration method for linear complementarity problems, Comput. Math. Appl., 78 (2019), 3633–3643. https://doi.org/10.1016/j.camwa.2019.06.012 doi: 10.1016/j.camwa.2019.06.012
    [9] W. X. Guo, H. Zheng, X. P. Lu, Y. X. Zhang, On the two-stage multisplitting itera-tion methods for linear complementarity problems, Appl. Math. Comput., 475 (2024), 128741. https://doi.org/10.1016/j.amc.2024.128741 doi: 10.1016/j.amc.2024.128741
    [10] W. X. Guo, H. Zheng, X. F. Peng. New convergence results of the modulus-based methods for vertical linear complementarity problems, Appl. Math. Lett., 135 (2023), 108444. https://doi.org/10.1016/j.aml.2022.108444 doi: 10.1016/j.aml.2022.108444
    [11] H. Ren, X. Wang, X. B. Tang, T. Wang, The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems, Comput. Math. Appl., 77 (2019), 1071–1081. https://doi.org/10.1016/j.camwa.2018.10.040 doi: 10.1016/j.camwa.2018.10.040
    [12] S. L. Wu, C. X. Li, A class of new modulus-based matrix splitting iteration methods for linear complementarity problems, Optim. Lett., 16 (2022), 1427–1443. https://doi.org/10.1007/s11590-021-01781-6 doi: 10.1007/s11590-021-01781-6
    [13] N. Zheng, J. F. Yin, Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem, Numer. Algor., 64 (2013), 245–262. https://doi.org/10.1007/s11075-012-9664-9 doi: 10.1007/s11075-012-9664-9
    [14] N. Zheng, J. F. Yin, Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an $H_+$-matrix, J. Comput. Appl. Math., 260 (2014), 281–293. https://doi.org/10.1016/j.cam.2013.09.079 doi: 10.1016/j.cam.2013.09.079
    [15] H. Zheng, S. Vong, On the modulus-based methods without auxiliary variable for vertical linear complementarity problems, J. Appl. Math. Comput., 71 (2025), 31–48. https://doi.org/10.1007/s12190-024-02218-w doi: 10.1007/s12190-024-02218-w
    [16] H. Zheng, Y. X. Zhang, X. P. Lu, S. Vong, Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems, Numer. Algor., 93 (2023), 711–729. https://doi.org/10.1007/s11075-022-01436-2 doi: 10.1007/s11075-022-01436-2
    [17] Z. Z. Bai, V. Migall$\acute{o}$n, J. Penad$\acute{e}$s, D. B. Szyld, Block and asynchronous two-stage methods for mildly nonlinear systems, Numer. Math., 82 (1999), 1–20. https://doi.org/10.1007/s002110050409 doi: 10.1007/s002110050409
    [18] N. Huang, C. F. Ma, The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems, Numer. Linear Algebr., 23 (2016), 558–569. https://doi.org/10.1002/nla.2039 doi: 10.1002/nla.2039
    [19] Z. C. Xia, C. L. Li, Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem, Appl. Math. Comput., 271 (2015), 34–42. https://doi.org/10.1016/j.amc.2015.08.108 doi: 10.1016/j.amc.2015.08.108
    [20] X. M. Fang, The convergence of modulus-based matrix splitting iteration methods for implicit complementarity problems, J. Comput. Appl. Math., 411 (2022), 114241. https://doi.org/10.1016/j.cam.2022.114241 doi: 10.1016/j.cam.2022.114241
    [21] W. X. Guo, J. Q. Li, Y. Y. Li, X. P. Lu, H. Zheng, A modulus-based inner-outer iteration method for nonlinear complementarity problems, J. Comput. Appl. Math., 463 (2025), 116489. https://doi.org/10.1016/j.cam.2025.116489 doi: 10.1016/j.cam.2025.116489
    [22] W. X. Guo, X. P. Lu, H. Zheng, A two-step iteration method for solving vertical nonlinear complementarity problems, AIMS Math., 9 (2024), 14358–14375. https://doi.org/10.3934/math.2024698 doi: 10.3934/math.2024698
    [23] B. H. Huang, C. F. Ma, Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems, Comp. Appl. Math., 37 (2018), 3053–3076. https://doi.org/10.1007/s40314-017-0496-z doi: 10.1007/s40314-017-0496-z
    [24] H. Zheng. Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of $H$-matrices, Calcolo, 54 (2017), 1481–1490. https://doi.org/10.1007/s10092-017-0236-1
    [25] H. Zheng, L. Liu, A two-step modulus-based matrix splitting iteration method for solving nonlinear complementarity problems of $H_+$-matrices, Comp. Appl. Math., 37 (2018), 5410–5423. https://doi.org/10.1007/s40314-018-0646-y doi: 10.1007/s40314-018-0646-y
    [26] H. Zheng, S. Vong, L. Liu, A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices, Appl. Math. Comput., 353 (2019), 396–405. https://doi.org/10.1016/j.amc.2019.02.015 doi: 10.1016/j.amc.2019.02.015
    [27] H. Zheng, S. Vong, L. Liu. The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems, Int. J. Comput. Math., 96 (2019), 1648–1667. https://doi.org/10.1080/00207160.2018.1504928 doi: 10.1080/00207160.2018.1504928
    [28] R. Varga, Matrix iterative analysis, Berlin: Springer, 2000.
    [29] F. Mezzadri, E. Galligani. Modulus-based matrix splitting methods for horizontal linear complementarity problems, Numer. Algor., 83 (2020), 201–219. https://doi.org/10.1007/s11075-019-00677-y doi: 10.1007/s11075-019-00677-y
    [30] F. Mezzadri, E. Galligani, Modulus-based matrix splitting algorithms for generalized complex-valued horizontal linear complementarity problems, J. Comput. Appl. Math., 460 (2025), 116440. https://doi.org/10.1016/j.cam.2024.116440 doi: 10.1016/j.cam.2024.116440
    [31] J. G. Hu, Estimates of $||{B^{-1}C}||_\infty$ and their applications, Math. Numer. Sin., 4 (1982), 272–282.
    [32] A. Berman, R. J. Plemmons, Nonnegative matrix in the mathematical sciences, Society for Industrial and Applied Mathematics, 1994.
    [33] Z. Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM J. Matrix Anal. Appl., 21 (1999), 67–78. https://doi.org/10.1137/s0895479897324032 doi: 10.1137/s0895479897324032
    [34] G. Strang, Calculus, Wellesley Cambridge Press, 1991.
    [35] F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, New York: Springer, 2003. https://doi.org/10.1007/b97544
    [36] C. M. Elliott, I. R. Ockendon, Weak and variational methods for moving boundary problems, 1982.
    [37] K. H. Hoffmann, J. Zou, Parallel solution of variational inequality problems with nonlinear source terms, IMA J. Numer. Anal., 16 (1996), 31–45. https://doi.org/10.1093/imanum/16.1.31 doi: 10.1093/imanum/16.1.31
    [38] G. H. Meyer, Free boundary problems with nonlinear source terms, Numer. Math., 43 (1984), 463–483. https://doi.org/10.1007/bf01390185 doi: 10.1007/bf01390185
    [39] Z. Sun, J. P. Zeng, A monotone semismooth Newton type method for a class of complementarity problems, J. Comput. Appl. Math., 235 (2011), 1261–1274. https://doi.org/10.1016/j.cam.2010.08.012 doi: 10.1016/j.cam.2010.08.012
    [40] Z. Z. Li, H. Zhang, L. Ou-Yang, The selection of the optimal parameter in the modulus-based matrix splitting algorithm for linear complementarity problems, Comput. Optim. Appl., 80 (2021), 617–638. https://doi.org/10.1007/s10589-021-00309-z doi: 10.1007/s10589-021-00309-z
    [41] Z. Z. Li, H. Zhang, On estimation of the optimal parameter of the modulus-based matrix splitting algorithm for linear complementarity problems on second-order cones, Numer. Linear Algebr., 30 (2023), e2480. https://doi.org/10.1002/nla.2480 doi: 10.1002/nla.2480
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(357) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog