Research article

European option valuation under mixed rough Bergomi model equipped with jump factor: a pattern search calibration study

  • Received: 14 July 2025 Revised: 08 September 2025 Accepted: 10 September 2025 Published: 10 October 2025
  • MSC : 60G22, 62P05, 90C20

  • This paper extends the rough Bergomi model to enhance its accuracy in modeling financial market's dynamics. The proposed model incorporates a jump component into the price process to capture sudden market events. Additionally, the volatility process is enriched by combining two fractional Brownian motions with a common Hurst parameter, which allows for a more precise reflection of short-term volatility dependencies. To ensure arbitrage-free pricing, a risk-neutral probability measure is introduced. Under this measure, the martingale property of the price is verified, and the existence of a solution for the model is established. A combined formula for pricing a European call option is subsequently derived, and a pattern search algorithm is proposed for the model's calibration. The results demonstrate that the proposed model is capable of accurately reproducing market prices across both short- and long-term maturities. Furthermore, the model successfully reproduces the observed volatility smile and skew in the market. This capability affirms the model's effectiveness in capturing and understanding the empirical dynamics of financial markets.

    Citation: Zhengfang Long, Arezou Karimi, Farshid Mehrdoust. European option valuation under mixed rough Bergomi model equipped with jump factor: a pattern search calibration study[J]. AIMS Mathematics, 2025, 10(10): 22995-23024. doi: 10.3934/math.20251022

    Related Papers:

  • This paper extends the rough Bergomi model to enhance its accuracy in modeling financial market's dynamics. The proposed model incorporates a jump component into the price process to capture sudden market events. Additionally, the volatility process is enriched by combining two fractional Brownian motions with a common Hurst parameter, which allows for a more precise reflection of short-term volatility dependencies. To ensure arbitrage-free pricing, a risk-neutral probability measure is introduced. Under this measure, the martingale property of the price is verified, and the existence of a solution for the model is established. A combined formula for pricing a European call option is subsequently derived, and a pattern search algorithm is proposed for the model's calibration. The results demonstrate that the proposed model is capable of accurately reproducing market prices across both short- and long-term maturities. Furthermore, the model successfully reproduces the observed volatility smile and skew in the market. This capability affirms the model's effectiveness in capturing and understanding the empirical dynamics of financial markets.



    加载中


    [1] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
    [2] R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3 (1976), 125–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2
    [3] D. S. Bates, Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options, Rev. Financ. Stud., 9 (1996), 69–107. https://doi.org/10.1093/rfs/9.1.69 doi: 10.1093/rfs/9.1.69
    [4] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [5] S. G. Kou, A jump-diffusion model for option pricing, Management Sci., 48 (2002), 1086–1101. https://doi.org/10.1287/mnsc.48.8.1086.166 doi: 10.1287/mnsc.48.8.1086.166
    [6] T. S. Zaevski, Y. S. Kim, F. J. Fabozzi, Option pricing under stochastic volatility and tempered stable Lévy jumps, Int. Rev. Financ. Anal., 31 (2014), 101–108. https://doi.org/10.1016/j.irfa.2013.10.004 doi: 10.1016/j.irfa.2013.10.004
    [7] Y. X. Tian, H. Y. Zhang, European option pricing under stochastic volatility jump-diffusion models with transaction cost, Comput. Math. Appl., 79 (2020), 2722–2741. https://doi.org/10.1016/j.camwa.2019.12.001 doi: 10.1016/j.camwa.2019.12.001
    [8] Q. Li, L. Wang, Option pricing under jump diffusion model, Statist. Probab. Lett., 211 (2024), 110137. https://doi.org/10.1016/j.spl.2024.110137 doi: 10.1016/j.spl.2024.110137
    [9] J. E. Hilliard, J. Hilliard, J. T. D. Ngo, Implied parameter estimation for jump diffusion option pricing models: pricing accuracy and the role of loss and evaluation functions, J. Commod. Mark., 35 (2024), 100408. https://doi.org/10.1016/j.jcomm.2024.100408 doi: 10.1016/j.jcomm.2024.100408
    [10] X. J. He, S. Lin, Analytically pricing foreign exchange options under a three-factor stochastic volatility and interest rate model: a full correlation structure, Expert Syst. Appl., 246 (2024), 123203. https://doi.org/10.1016/j.eswa.2024.123203 doi: 10.1016/j.eswa.2024.123203
    [11] H. Mesgarani, Y. E. Aghdam, A. Beiranvand, J. F. Gómez-Aguilar, A novel approach to fuzzy based efficiency assessment of a financial system, Comput. Econom., 63 (2024), 1609–1626. https://doi.org/10.1007/s10614-023-10376-5 doi: 10.1007/s10614-023-10376-5
    [12] J. G. Wu, J. F. Gomez-Aguilar, R. Taleghani, Portfolio optimization under the uncertain financial model, Comput. Econom., 66 (2025), 571–592. https://doi.org/10.1007/s10614-024-10727-w doi: 10.1007/s10614-024-10727-w
    [13] J. Gatheral, T. Jaisson, M. Rosenbaum, Volatility is rough, 2014, arXiv: 1410.3394.
    [14] C. Bayer, P. Friz, J. Gatheral, Pricing under rough volatility, Quant. Finance, 16 (2016), 887–904. https://doi.org/10.1080/14697688.2015.1099717 doi: 10.1080/14697688.2015.1099717
    [15] A. Jacquier, C. Martini, A. Muguruza, On VIX futures in the rough Bergomi model, Quant. Finance, 18 (2018), 45–61.
    [16] O. El Euch, M. Rosenbaum, The characteristic function of rough Heston models, Math. Finance, 29 (2019), 3–38. https://doi.org/10.1111/mafi.12173 doi: 10.1111/mafi.12173
    [17] B. Horvath, A. Jacquier, P. Tankov, Volatility options in rough volatility models, SIAM J. Financ. Math., 11 (2020), 437–469. https://doi.org/10.1137/18M1169242 doi: 10.1137/18M1169242
    [18] E. Alòs, J. A. León, An intuitive introduction to fractional and rough volatilities, Mathematics, 9 (2021), 1–22. https://doi.org/10.3390/math9090994 doi: 10.3390/math9090994
    [19] J. T. Ma, H. F. Wu, A fast algorithm for simulation of rough volatility models, Quant. Finance, 22 (2022), 447–462. https://doi.org/10.1080/14697688.2021.1970213 doi: 10.1080/14697688.2021.1970213
    [20] K. Z. Tong, A. Liu, The valuation of barrier options under a threshold rough Heston model, J. Manag. Sci. Eng., 8 (2023), 15–31. https://doi.org/10.1016/j.jmse.2022.07.004 doi: 10.1016/j.jmse.2022.07.004
    [21] Z. G. Shi, P. Lyu, J. T. Ma, High-order methods for the option pricing under multivariate rough volatility models, Comput. Math. Appl., 139 (2023), 173–183. https://doi.org/10.1016/j.camwa.2022.05.039 doi: 10.1016/j.camwa.2022.05.039
    [22] S. Bianchi, D. Angelini, A. Pianese, M. Frezza, Rough volatility via the Lamperti transform, Commun. Nonlinear Sci. Numer. Simul., 127 (2023), 107582. https://doi.org/10.1016/j.cnsns.2023.107582 doi: 10.1016/j.cnsns.2023.107582
    [23] J. L. Dupret, J. Barbarin, D. Hainaut, Impact of rough stochastic volatility models on long-term life insurance pricing, Eur. Actuar. J., 13 (2023), 235–275. https://doi.org/10.1007/s13385-022-00317-1 doi: 10.1007/s13385-022-00317-1
    [24] Q. W. Zhu, X. D. Diao, C. F. Wu, Volatility forecast with the regularity modifications, Finance Res. Lett., 58 (2023), 104008. https://doi.org/10.1016/j.frl.2023.104008 doi: 10.1016/j.frl.2023.104008
    [25] D. Hainaut, Pricing of spread and exchange options in a rough jump-diffusion market, J. Comput. Appl. Math., 419 (2023), 114752. https://doi.org/10.1016/j.cam.2022.114752 doi: 10.1016/j.cam.2022.114752
    [26] A. Karimi, F. Mehrdoust, M. Salahi, Two-factor rough Bergomi model: American call option pricing and calibration by interior point optimization algorithm, Comput. Econ., 66 (2025), 681–714. https://doi.org/10.1007/s10614-024-10725-y doi: 10.1007/s10614-024-10725-y
    [27] A. Karimi, F. Mehrdoust, Modeling logarithmic volatility under the rough fractional Langevin equation: approximation equation and parameter estimation, Ann. Financ. Econ., 20 (2025), 2550005. https://doi.org/10.1142/S2010495225500058 doi: 10.1142/S2010495225500058
    [28] P. Gassiat, On the martingale property in the rough Bergomi model, Electron. Commun. Probab., 24 (2019), 1–9. https://doi.org/10.1214/19-ECP239 doi: 10.1214/19-ECP239
    [29] J. Hull, A. White, The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x doi: 10.1111/j.1540-6261.1987.tb02568.x
    [30] R. Hooke, T. A. Jeeves, "Direct search" solution of numerical and statistical problems, J. ACM (JACM), 8 (1961), 212–229.
    [31] A. Eberle, Stochastic analysis, University of Bonn, 2012.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(547) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog