Research article

A joint design method of interval function observer for discrete-continuous nonlinear interconnected systems

  • Received: 30 December 2024 Revised: 26 April 2025 Accepted: 16 May 2025 Published: 10 October 2025
  • MSC : 15A09, 93B07, 93B17, 93C10

  • The interval function observer designed to reconstructs only a linear function of the state variable. This specialized structure significantly reduces the order and complexity of the traditional state observer, making it particularly suitable for interval estimation of states—an increasingly prominent topic in control theory. First, unlike the interval state observer, the interval function observer is formally defined and constructed for nonlinear interconnected systems that exhibit discrete or continuous state changes over time. Second, sufficient conditions for the existence of such an observer are derived. Using the solution method for the generalized Sylvester equation, the gain matrix for nonlinear interconnected systems is calculated. The design method is further extended from simple systems to more complex interconnected systems. Finally, two models of interconnected systems are introduced, and the proposed design method is validated through two numerical examples, confirming its effectiveness and feasibility.

    Citation: Yanxiu Sun, Ying Du, Yuping Zhang. A joint design method of interval function observer for discrete-continuous nonlinear interconnected systems[J]. AIMS Mathematics, 2025, 10(10): 22958-22979. doi: 10.3934/math.20251020

    Related Papers:

  • The interval function observer designed to reconstructs only a linear function of the state variable. This specialized structure significantly reduces the order and complexity of the traditional state observer, making it particularly suitable for interval estimation of states—an increasingly prominent topic in control theory. First, unlike the interval state observer, the interval function observer is formally defined and constructed for nonlinear interconnected systems that exhibit discrete or continuous state changes over time. Second, sufficient conditions for the existence of such an observer are derived. Using the solution method for the generalized Sylvester equation, the gain matrix for nonlinear interconnected systems is calculated. The design method is further extended from simple systems to more complex interconnected systems. Finally, two models of interconnected systems are introduced, and the proposed design method is validated through two numerical examples, confirming its effectiveness and feasibility.



    加载中


    [1] N. H. Jo, J. H. Seo, Input-output linearization approach to state observer design for nonlinear system, IEEE T. Automat. Contr., 45 (2000), 2388–2393. https://doi.org/10.1109/9.895580 doi: 10.1109/9.895580
    [2] D. M. Adhyaru, State observer design for nonlinear systems using a neural network, Appl. Soft Comput., 12 (2012), 2530–2537. https://doi.org/10.1016/j.asoc.2012.02.017 doi: 10.1016/j.asoc.2012.02.017
    [3] Y. X. Sun. H. Li, Research on design method of state observer for nonlinear interconnected systems, Process Autom. Instrum., 44 (2023), 35–41. https://doi.org/10.16086/j.cnki.issn1000-0380.2022030068 doi: 10.16086/j.cnki.issn1000-0380.2022030068
    [4] R. Kicsiny, Z. Varga, Real-time state observer design for solar thermal heating systems, Appl. Math. Comput., 218 (2012), 11558–11569. https://doi.org/10.1016/j.amc.2012.05.040 doi: 10.1016/j.amc.2012.05.040
    [5] H. Liu, K. Ma, P. C. Loh, F. Blaabjerg, Design of state observer for modular multilevel converter, 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, 2015, 1–6. https://doi.org/10.1109/PEDG.2015.7223005
    [6] Y. Sun, H. Li, J. Long, A state observer design method for discrete nonlinear systems with perturbations, Journal of Shenyang University (Natural Science), 36 (2024), 306–311.
    [7] L. Bako, S. Lecoeuche, A sparse optimization approach to state observer design for switched linear systems, Syst. Control Lett., 62 (2013), 143–151. https://doi.org/10.1016/j.sysconle.2012.11.017 doi: 10.1016/j.sysconle.2012.11.017
    [8] H. Razmjooei, G. Palli, F. Janabi-Sharifi, S. Alirezaee, Adaptive fast-finite-time extended state observer design for uncertain electro-hydraulic systems, Eur. J. Control, 69 (2023), 100749. https://doi.org/10.1016/j.ejcon.2022.100749 doi: 10.1016/j.ejcon.2022.100749
    [9] J. W. Yue, L. Liu, Z. H. Peng, D. Wang, T. S. Li, Data-driven adaptive extended state observer design for autonomous surface vehicles with unknown in put gains based on concurrent learning, Neurocomputing, 467 (2022), 337–347. https://doi.org/10.1016/j.neucom.2021.09.062
    [10] P. Bernard, V. Andrieu, D. Astolfi, Observer design for continuous-time dynamical systems, Annu. Rev. Control, 53 (2022), 224–248. https://doi.org/10.1016/j.arcontrol.2021.11.002 doi: 10.1016/j.arcontrol.2021.11.002
    [11] M. Darouach, On the functional observers for linear descriptor systems, Syst. Control Lett., 61 (2012), 427–434. https://doi.org/10.1016/j.sysconle.2012.01.006 doi: 10.1016/j.sysconle.2012.01.006
    [12] G. Y. Qi, X. Li, Z. Q. Chen, Problems of extended state observer and proposal of compensation function observer for unknown model and application in UAV, IEEE T. Syst. Man Cy., 52 (2021), 2899–2910. https://doi.org/10.1109/TSMC.2021.3054790 doi: 10.1109/TSMC.2021.3054790
    [13] J. C. Zhang, Y. Wang, Design and existence discussion of finite time function observer for linear description systems, Control Theory Appl., 39 (2022), 263–275. https://link.cnki.net/urlid/44.1240.tp.20210629.1035.036
    [14] K. Emami, T. Fernando, B. Nener, H. Trinh, Y. Zhang, A functional observer based fault detection technique for dynamical systems, J. Franklin I., 352 (2015), 2113–2128. https://doi.org/10.1016/j.jfranklin.2015.02.006 doi: 10.1016/j.jfranklin.2015.02.006
    [15] H. Trinh, T. Fernando, Functional observers for dynamical systems, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-24064-5
    [16] X. L. Wang, H. S. Su, F. Zhang, G. R. Chen, A robust distributed interval observer for LTI systems, IEEE T. Automat. Contr., 68 (2022), 1337–1352. https://doi.org/10.1109/TAC.2022.3151586 doi: 10.1109/TAC.2022.3151586
    [17] Z. H. Wang, C.-C. Lim, Y. Shen, Interval observer design for uncertain discrete-time linear systems, Syst. Control Lett., 116 (2018), 41–46. https://doi.org/10.1016/j.sysconle.2018.04.003
    [18] F. Cacace, A. Germani, C. Manes, A new approach to design interval observers for linear systems, IEEE T. Automat. Contr., 60 (2014), 1665–1670. https://doi.org/10.1109/TAC.2014.2359714 doi: 10.1109/TAC.2014.2359714
    [19] G. Zheng, D. Efimov, W. Perruquetti, Design of interval observer for a class of uncertain unobservable nonlinear systems, Automatica, 63 (2016), 167–174. https://doi.org/10.1016/j.automatica.2015.10.007 doi: 10.1016/j.automatica.2015.10.007
    [20] S. H. Guo, F. L. Zhu. Design of interval observer for generalized systems, Control Decis., 31 (2016), 361–366. https://link.cnki.net/doi/10.13195/j.kzyjc.2014.1672
    [21] Z. H. Wang, Y. Shen, S, H. Guo, Design of interval observer for linear generalized systems, Control Theory Appl., 35 (2018), 956–962. https://link.cnki.net/urlid/44.1240.TP.20180615.1048.002
    [22] Y. Sun, Design of interval observer for a class of similar generalized interconnected systems, Industrial Instrumentation & Automation, 261 (2018), 59–61.
    [23] Y. Wang, D. M. Bevly, R. Rajamani, Interval observer design for LPV systems with parametric uncertainty, Automatica, 60 (2015), 79–85. https://doi.org/10.1016/j.automatica.2015.07.001
    [24] F. Mazenc, O. Bernard, Interval observers for linear time-invariant systems with disturbances, Automatica, 47 (2011), 140–147. https://doi.org/10.1016/j.automatica.2010.10.019 doi: 10.1016/j.automatica.2010.10.019
    [25] K. Liu, Q. R. Zhang, H. Guo, T. Liu, Y. Q. Xia, Design of discrete system interval observer under covert attack, Control Theory Appl., 37 (2020), 1673–1680. https://link.cnki.net/urlid/44.1240.TP.20200508.1021.030
    [26] D.-K. Gu, L.-W. Liu, G.-R. Duan, Functional interval observer for the linear systems with disturbances, IET Control Theory A., 12 (2018), 2562–2568. https://doi.org/10.1049/iet-cta.2018.5113 doi: 10.1049/iet-cta.2018.5113
    [27] D.-K. Gu, L.-W. Liu, G.-R. Duan, A parametric method of linear functional observers for linear time-varying systems, Int. J. Control Autom. Syst., 17 (2019), 647–656. http://doi.org/10.1007/s12555-018-0155-1 doi: 10.1007/s12555-018-0155-1
    [28] J. Huang, H. C. Che, T. Raïssi, Z. H. Wang, Functional interval observer for discrete-time switched descriptor systems, IEEE T. Automat. Contr., 67 (2021), 2497–2504. https://doi.org/10.1109/TAC.2021.3079193 doi: 10.1109/TAC.2021.3079193
    [29] D.-K. Gu, Q.-Z. Liu, Y.-D. Liu, Parametric design of functional interval observer for time-delay systems with additive disturbances, Circuits Syst. Signal Process., 41 (2022), 2614–2635. https://doi.org/10.1007/s00034-021-01906-3 doi: 10.1007/s00034-021-01906-3
    [30] W. Y. Leong, H. Trinh, T. Fernando, A practical functional observer scheme for interconnected time-delay systems, Int. J. Control, 88 (2015), 1963–1973. https://doi.org/10.1080/00207179.2015.1025429 doi: 10.1080/00207179.2015.1025429
    [31] D. C. Huong, Design of functional interval observers for nonlinear fractional-order interconnected systems, Int. J. Syst. Sci., 50 (2019), 2802–2814. https://doi.org/10.1080/00207721.2019.1690715 doi: 10.1080/00207721.2019.1690715
    [32] D. C. Huong, V. T. Huynh, H. Trinh, Distributed functional interval observers for nonlinear interconnected systems with time-delays and additive disturbances, IEEE Syst. J., 15 (2020), 411–422. https://doi.org/10.1109/JSYST.2020.2992726 doi: 10.1109/JSYST.2020.2992726
    [33] D. Efimov, W. Perruquetti, T. Raïssi, A. Zolghadri, Interval observers for time-varying discrete-time systems, IEEE T. Automat, Contr., 58 (2013), 3218–3224. https://doi.org/10.1109/TAC.2013.2263936 doi: 10.1109/TAC.2013.2263936
    [34] B. Zhou, G.-R. Duan, A new solution to the generalized Sylvester matrix equation AV-EVF = BW, Syst. Control Lett., 55 (2006), 193–198. https://doi.org/10.1016/j.sysconle.2005.07.002 doi: 10.1016/j.sysconle.2005.07.002
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(345) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog