Research article Special Issues

Chaos, Lyapunov exponent, and sensitivity demonstration of the coupled nonlinear integrable model with soliton solutions

  • Received: 10 August 2025 Revised: 13 September 2025 Accepted: 24 September 2025 Published: 10 October 2025
  • MSC : 26A48, 26A51, 33B10, 37K40, 39B62

  • The stochastic Schrödinger–Hirota equation is a well-established model for describing nonlinear pulse propagation in magneto-optic waveguides and fiber optics. While prior research has primarily concentrated on isolated soliton solutions, broader chaotic dynamics affecting signal stability remain less explored. In this work, we applied the Generalized Arnous method, planar dynamical system theory, and numerical simulations with the Runge–Kutta method to construct and analyze the solutions of the stochastic Schrödinger–Hirota equation. The result yielded tan-type bright, cot-type dark, and periodic solutions. Chaotic behavior was characterized via bifurcation diagrams, positive Lyapunov exponents, Poincaré sections, and time-series analyses. Sensitivity to initial conditions confirmed the presence of deterministic chaos. These results demonstrate that the stochastic Schrödinger–Hirota equation displays a rich spectrum of dynamical behavior, with the stability strongly influenced by parameter variations and perturbations. These insights offer a theoretical foundation for advancing the stability of optical soliton transmission and reducing the adverse effects of chaos in nonlinear communication systems.

    Citation: Khizar Farooq, Aljethi Reem Abdullah, Ejaz Hussain, Muhammad Amin S. Murad. Chaos, Lyapunov exponent, and sensitivity demonstration of the coupled nonlinear integrable model with soliton solutions[J]. AIMS Mathematics, 2025, 10(10): 22929-22957. doi: 10.3934/math.20251019

    Related Papers:

  • The stochastic Schrödinger–Hirota equation is a well-established model for describing nonlinear pulse propagation in magneto-optic waveguides and fiber optics. While prior research has primarily concentrated on isolated soliton solutions, broader chaotic dynamics affecting signal stability remain less explored. In this work, we applied the Generalized Arnous method, planar dynamical system theory, and numerical simulations with the Runge–Kutta method to construct and analyze the solutions of the stochastic Schrödinger–Hirota equation. The result yielded tan-type bright, cot-type dark, and periodic solutions. Chaotic behavior was characterized via bifurcation diagrams, positive Lyapunov exponents, Poincaré sections, and time-series analyses. Sensitivity to initial conditions confirmed the presence of deterministic chaos. These results demonstrate that the stochastic Schrödinger–Hirota equation displays a rich spectrum of dynamical behavior, with the stability strongly influenced by parameter variations and perturbations. These insights offer a theoretical foundation for advancing the stability of optical soliton transmission and reducing the adverse effects of chaos in nonlinear communication systems.



    加载中


    [1] A. Sommerfeld, Partial differential equations in physics, Academic Press, 1949. https://doi.org/10.1016/B978-0-12-654658-3.X5001-0
    [2] W. F. Ames, Nonlinear partial differential equations in engineering, Academic Press, 1965.
    [3] S. M. R. Islam, K. Khan, M. A. Akbar, Optical soliton solutions, bifurcation, and stability analysis of the Chen-Lee-Liu model, Results Phys., 51 (2023), 106620. https://doi.org/10.1016/j.rinp.2023.106620 doi: 10.1016/j.rinp.2023.106620
    [4] R. A. M. Attia, Y. Xia, X. Zhang, M. M. A. Khater, Analytical and numerical investigation of soliton wave solutions in the fifth-order KdV equation within the KdV-kP framework, Results Phys., 51 (2023), 106646. https://doi.org/10.1016/j.rinp.2023.106646 doi: 10.1016/j.rinp.2023.106646
    [5] M. M. A. Khater, Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation, Results Phys., 44 (2023), 106193. https://doi.org/10.1016/j.rinp.2022.106193 doi: 10.1016/j.rinp.2022.106193
    [6] E. Hussain, A. H. Tedjani, K. Farooq, Beenish, Modeling and exploration of localized wave phenomena in optical fibers using the generalized Kundu–Eckhaus equation for femtosecond pulse transmission, Axioms, 14 (2025), 513. https://doi.org/10.3390/axioms14070513 doi: 10.3390/axioms14070513
    [7] M. M. A. Khater, Abundant and accurate computational wave structures of the nonlinear fractional biological population model, Int. J. Mod. Phys. B, 37 (2023), 2350176. https://doi.org/10.1142/S021797922350176X doi: 10.1142/S021797922350176X
    [8] G. Karamali, M. Dehghan, M. Abbaszadeh, Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method, Eng. Comput.-Germany, 35 (2019), 87–100. https://doi.org/10.1007/s00366-018-0585-7 doi: 10.1007/s00366-018-0585-7
    [9] E. Zauderer, Partial differential equations of applied mathematics, John Wiley & Sons, 2011. https://doi.org/10.1002/9781118033302
    [10] N. Tufillaro, An experimental approach to nonlinear dynamics and chaos, ScienceOpen Preprints, 2024.
    [11] M. A. Chowdhury, M. M. Miah, M. M. Rasid, S. Rehman, J. R. M. Borhan, A.-M. Wazwaz, et al., Further quality analytical investigation on soliton solutions of some nonlinear PDEs with analyses: Bifurcation, sensitivity, and chaotic phenomena, Alex. Eng. J., 103 (2024), 74–87. https://doi.org/10.1016/j.aej.2024.05.096 doi: 10.1016/j.aej.2024.05.096
    [12] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner, et al., A general memristor-based partial differential equation solver, Nat. Electron., 1 (2018), 411–420. https://doi.org/10.1038/s41928-018-0100-6 doi: 10.1038/s41928-018-0100-6
    [13] F. Gaitan, Finding solutions of the Navier-Stokes equations through quantum computing—recent progress, a generalization, and next steps forward, Adv. Quantum Technol., 4 (2021), 2100055. https://doi.org/10.1002/qute.202100055 doi: 10.1002/qute.202100055
    [14] M. A. E. Abdelrahman, E. H. M. Zahran, M. M. A. Khater, The Exp $(-\varphi (\xi))$-expansion method and its application for solving nonlinear evolution equations, International Journal of Modern Nonlinear Theory and Application, 4 (2015), 37.
    [15] S. A. El-Wakil, M. A. Abdou, The extended mapping method and its applications for nonlinear evolution equations, Phys. Lett. A, 358 (2006), 275–282. https://doi.org/10.1016/j.physleta.2006.05.040 doi: 10.1016/j.physleta.2006.05.040
    [16] S. M. R. Islam, Bifurcation analysis and exact wave solutions of the nano-ionic currents equation: via two analytical techniques, Results Phys., 58 (2024), 107536. https://doi.org/10.1016/j.rinp.2024.107536 doi: 10.1016/j.rinp.2024.107536
    [17] J.-H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5
    [18] C. Gu, H. Hu, Z. Zhou, Darboux transformations in integrable systems: theory and their applications to geometry, Dordrecht: Springer, 2004. https://doi.org/10.1007/1-4020-3088-6
    [19] M. S. Islam, K. Khan, A. H. Arnous, Generalized Kudryashov method for solving some (3+1)-dimensional nonlinear evolution equations, New Trends in Mathematical Sciences, 3 (2015), 46–57.
    [20] Y. Gurefe, E. Misirli, A. Sonmezoglu, M. Ekici, Extended trial equation method to generalized nonlinear partial differential equations, Appl. Math. Comput., 219 (2013), 5253–5260. https://doi.org/10.1016/j.amc.2012.11.046 doi: 10.1016/j.amc.2012.11.046
    [21] J. Hietarinta, Introduction to the Hirota bilinear method, In: Integrability of nonlinear systems, Berlin, Heidelberg: Springer, 2007, 95–103. https://doi.org/10.1007/BFb0113694
    [22] Z. Li, E. Hussain, Qualitative analysis and traveling wave solutions of a (3+1)-dimensional generalized nonlinear Konopelchenko–Dubrovsky–Kaup–Kupershmidt system, Fractal Fract., 9 (2025), 285. https://doi.org/10.3390/fractalfract9050285 doi: 10.3390/fractalfract9050285
    [23] Z. Yan, The extended Jacobian elliptic function expansion method and its application in the generalized Hirota–Satsuma coupled KdV system, Chaos Soliton. Fract., 15 (2003), 575–583. https://doi.org/10.1016/S0960-0779(02)00145-5 doi: 10.1016/S0960-0779(02)00145-5
    [24] S. M. Mirhosseini-Alizamini, H. Rezazadeh, M. Eslami, M. Mirzazadeh, A. Korkmaz, New extended direct algebraic method for the Tzitzica type evolution equations arising in nonlinear optics, Comput. Methods Differ. Equ., 8 (2020), 28–53.
    [25] K. Farooq, E. Hussain, H. A. Abujabal, F. S. Alshammari, Propagation of nonlinear dispersive waves in shallow water and acoustic media in the framework of integrable Schwarz–Korteweg–de Vries equation, AIMS Math., 10 (2025), 17543–17566. https://doi.org/10.3934/math.2025784 doi: 10.3934/math.2025784
    [26] S. A. El-Wakil, M. A. Abdou, The extended Fan sub-equation method and its applications for a class of nonlinear evolution equations, Chaos Soliton. Fract., 36 (2008), 343–353. https://doi.org/10.1016/j.chaos.2006.06.065 doi: 10.1016/j.chaos.2006.06.065
    [27] G. L. Lamb Jr., Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys., 15 (1974), 2157–2165. https://doi.org/10.1063/1.1666595 doi: 10.1063/1.1666595
    [28] Z. Li, Optical solutions of the nonlinear Kodama equation with the M-truncated derivative via the extended $(G'/G)-$expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
    [29] M. A. Abdou, A generalized auxiliary equation method and its applications, Nonlinear Dyn., 52 (2008), 95–102. https://doi.org/10.1007/s11071-007-9261-y doi: 10.1007/s11071-007-9261-y
    [30] M. E. Islam, M. M. Hossain, K. M. Helal, U. S. Basak, R. C. Bhowmik, M. A. Akbar, Solitary wave analysis of the Kadomtsev–Petviashvili model in mathematical physics, Arab Journal of Basic and Applied Sciences, 30 (2023), 329–340. https://doi.org/10.1080/25765299.2023.2216536 doi: 10.1080/25765299.2023.2216536
    [31] N. A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik, 206 (2020), 163550. https://doi.org/10.1016/j.ijleo.2019.163550 doi: 10.1016/j.ijleo.2019.163550
    [32] K. Farooq, E. Hussain, U. Younas, H. Mukalazi, T. M. Khalaf, A. Mutlib, et al., Exploring the wave's structures to the nonlinear coupled system arising in surface geometry, Sci. Rep., 15 (2025), 11624. https://doi.org/10.1038/s41598-024-84657-w doi: 10.1038/s41598-024-84657-w
    [33] J. Skipp, J. Laurie, S. Nazarenko, Hamiltonian derivation of the point vortex model from the two-dimensional nonlinear Schrödinger equation, Phys. Rev. E, 107 (2023), 025107. https://doi.org/10.1103/PhysRevE.107.025107 doi: 10.1103/PhysRevE.107.025107
    [34] M. A. S. Murad, F. S. Alshammari, M. S. Salih, K. Farooq, Optical soliton structures in the nonlinear conformable Schrödinger equation with quadratic–cubic nonlinearity, Nonlinear Dyn., in press. https://doi.org/10.1007/s11071-025-11775-z
    [35] V. P. Shyaman, A. Sreelakshmi, A. Awasthi, An adaptive tailored finite point method for the generalized Burgers' equations, J. Comput. Sci., 62 (2022), 101744. https://doi.org/10.1016/j.jocs.2022.101744 doi: 10.1016/j.jocs.2022.101744
    [36] T. Alotaibi, A. Althobaiti, Exact solutions of the nonlinear modified Benjamin-Bona-Mahony equation by an analytical method, Fractal Fract., 6 (2022), 399. https://doi.org/10.3390/fractalfract6070399 doi: 10.3390/fractalfract6070399
    [37] B. A. Alwan, M. A. Bakar, W. A. Faridi, A. Turcu, A. Akgül, M. Sallah, The propagating exact solitary waves formation of generalized Calogero–Bogoyavlenskii–Schiff equation with robust computational approaches, Fractal Fract., 7 (2023), 191. https://doi.org/10.3390/fractalfract7020191 doi: 10.3390/fractalfract7020191
    [38] S. Singh, S. S. Ray, Integrability and new periodic, kink-antikink and complex optical soliton solutions of (3+1)-dimensional variable coefficient DJKM equation for the propagation of nonlinear dispersive waves in inhomogeneous media, Chaos Soliton. Fract., 168 (2023), 113184. https://doi.org/10.1016/j.chaos.2023.113184 doi: 10.1016/j.chaos.2023.113184
    [39] M. M. A. Khater, Computational simulations of propagation of a tsunami wave across the ocean, Chaos Soliton. Fract., 174 (2023), 113806. https://doi.org/10.1016/j.chaos.2023.113806 doi: 10.1016/j.chaos.2023.113806
    [40] K. Farooq, F. S. Alshammari, Z. Li, E. Hussain, Soliton dynamics and stability in the Boussinesq equation for shallow water applications, Front. Phys., 13 (2025), 1637491. https://doi.org/10.3389/fphy.2025.1637491 doi: 10.3389/fphy.2025.1637491
    [41] W. A. Faridi, S. A. AlQahtani, The explicit power series solution formation and computation of Lie point infinitesimals generators: Lie symmetry approach, Phys. Scr., 98 (2023), 125249. https://doi.org/10.1088/1402-4896/ad0948 doi: 10.1088/1402-4896/ad0948
    [42] Y. Zhao, C. Xu, Y. Xu, J. Lin, Y. Pang, Z. Liu, et al., Mathematical exploration on control of bifurcation for a 3D predator–prey model with delay, AIMS Math., 9 (2024), 29883–29915. https://doi.org/10.3934/math.20241445 doi: 10.3934/math.20241445
    [43] Q. Cui, C. Xu, Y. Xu, W. Ou, Y. Pang, Z. Liu, et al., Bifurcation and controller design of 5D BAM neural networks with time delay, Int. J. Numer. Model. Electron. Netw. Devices Fields, 37 (2024), e3316. https://doi.org/10.1002/jnm.3316 doi: 10.1002/jnm.3316
    [44] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, Dispersive optical solitons in magneto-optic waveguides with stochastic generalized Schrödinger–Hirota equation, Optik, 271 (2022), 170069. https://doi.org/10.1016/j.ijleo.2022.170069 doi: 10.1016/j.ijleo.2022.170069
    [45] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, A. Biswas, L. Moraru, S. Khan, et al., Dispersive optical solitons with Schrödinger–Hirota model having multiplicative white noise via Itô calculus, Phys. Lett. A, 445 (2022), 128268. https://doi.org/10.1016/j.physleta.2022.128268 doi: 10.1016/j.physleta.2022.128268
    [46] L. Tang, Optical solitons perturbation and traveling wave solutions in magneto-optic waveguides with the generalized stochastic Schrödinger–Hirota equation, Opt. Quant. Electron., 56 (2024), 773. https://doi.org/10.1007/s11082-024-06669-0 doi: 10.1007/s11082-024-06669-0
    [47] H. Cakicioglu, M. Ozisik, A. Secer, M. Bayram, Optical soliton solutions of Schrödinger–Hirota equation with parabolic law nonlinearity via generalized Kudryashov algorithm, Opt. Quant. Electron., 55 (2023), 407. https://doi.org/10.1007/s11082-023-04634-x doi: 10.1007/s11082-023-04634-x
    [48] S. Kumar, I. Hamid, M. A. Abdou, Dynamic frameworks of optical soliton solutions and soliton-like formations to Schrödinger–Hirota equation with parabolic law non-linearity using a highly efficient approach, Opt. Quant. Electron., 55 (2023), 1261. https://doi.org/10.1007/s11082-023-05461-w doi: 10.1007/s11082-023-05461-w
    [49] A. Biswas, M. Mirzazadeh, M. Eslami, Dispersive dark optical soliton with Schrödinger–Hirota equation by $G'/G$-expansion approach in power law medium, Optik, 125 (2014), 4215–4218. https://doi.org/10.1016/j.ijleo.2014.03.039 doi: 10.1016/j.ijleo.2014.03.039
    [50] B. Kilic, M. Inc, Optical solitons for the Schrödinger–Hirota equation with power law nonlinearity by the Bäcklund transformation, Optik, 138 (2017), 64–67. https://doi.org/10.1016/j.ijleo.2017.03.017 doi: 10.1016/j.ijleo.2017.03.017
    [51] T. Han, Y. Liang, W. Fan, Dynamics and soliton solutions of the perturbed Schrödinger–Hirota equation with cubic–quintic–septic nonlinearity in dispersive media, AIMS Math., 10 (2025), 754–776. https://doi.org/10.3934/math.2025035 doi: 10.3934/math.2025035
    [52] M. Khaliq, S. Ahmad, A. Ullah, H. Ahmad, S. Saifullah, T. A. Nofal, New waves solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation using a novel expansion method, Results Phys., 50 (2023), 106450. https://doi.org/10.1016/j.rinp.2023.106450 doi: 10.1016/j.rinp.2023.106450
    [53] T. Han, H. Rezazadeh, M. U. Rahman, High-order solitary waves, fission, hybrid waves and interaction solutions in the nonlinear dissipative (2+1)-dimensional Zabolotskaya–Khokhlov model, Phys. Scr., 99 (2024), 115212. https://doi.org/10.1088/1402-4896/ad7f04 doi: 10.1088/1402-4896/ad7f04
    [54] K. Farooq, A. H. Tedjani, Z. Li, E. Hussain, Soliton dynamics of the nonlinear Kodama equation with M-truncated derivative via two innovative schemes: the generalized Arnous method and the Kudryashov method, Fractal Fract., 9 (2025), 436. https://doi.org/10.3390/fractalfract9070436 doi: 10.3390/fractalfract9070436
    [55] Beenish, H. Kurkcu, M. B. Riaz, M. Imran, A. Jhangeer, Lie analysis and nonlinear propagating waves of the (3+1)-dimensional generalized Boiti–Leon–Manna–Pempinelli equation, Alex. Eng. J., 80 (2023), 475–486. https://doi.org/10.1016/j.aej.2023.08.067 doi: 10.1016/j.aej.2023.08.067
    [56] Z. Li, J. Lyu, E. Hussain, Bifurcation, chaotic behaviors and solitary wave solutions for the fractional Twin-Core couplers with Kerr law non-linearity, Sci. Rep., 14 (2024), 22616. https://doi.org/10.1038/s41598-024-74044-w doi: 10.1038/s41598-024-74044-w
    [57] S. A. A. Shah, E. Hussain, W.-X. Ma, Z. Li, A. E. Ragab, T. M. Khalaf, Qualitative analysis and new variety of solitons profiles for the (1+1)-dimensional modified equal width equation, Chaos Soliton. Fract., 187 (2024), 115353. https://doi.org/10.1016/j.chaos.2024.115353 doi: 10.1016/j.chaos.2024.115353
    [58] Z. U. Rehman, Z. Hussain, Z. Li, T. Abbas, I. Tlili, Bifurcation analysis and multi-stability of chirped form optical solitons with phase portrait, Results Eng., 21 (2024), 101861. https://doi.org/10.1016/j.rineng.2024.101861 doi: 10.1016/j.rineng.2024.101861
    [59] A. Jhangeer, Beenish, A. M. Talafha, A. R. Ansari, M. Imran, Analytical and dynamical analysis of nonlinear Riemann wave equation in plasma systems, Arab Journal of Basic and Applied Sciences, 31 (2024), 536–553.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(589) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog