AIMS Mathematics, 10(10): 22980-22994.
DOI:10.3934/math.20251021

AIMS Mathematics Received: 17 July 2025

Revised: 03 September 2025

Accepted: 23 September 2025
https://www.aimspress.com/journal/Math Published: 10 October 2025

Research article

Improved convergence analysis on the accelerated modulus-based matrix
splitting iteration method for nonlinear complementarity problems

Yanmei Chen!, Yihang Lin' and Jianwei Dong?*

' School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China

2 College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou,
China

* Correspondence: Email: dongjianwei@ gpdu.edu.cn, djw8026@ 163.com.

Abstract: In this paper, we focused on the accelerated modulus-based matrix splitting iteration
method for solving nonlinear complementarity problems. A thorough analysis of convergence
conditions for the method was conducted. Compared to the work “B. H. Huang, C. F. Ma, Accelerated
modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems,
Comp. Appl. Math., 37 (2018), 3053-3076”, our results achieved three significant improvements:
Relaxing the assumptions on matrix splittings, providing an expanded convergence domain for
parameter matrix, and simplifying conditions for relaxation parameters. The validity of the theoretical
findings was verified by numerical examples.

Keywords: nonlinear complementarity problem; modulus-based method; H,-matrix; H-splitting
Mathematics Subject Classification: 65F10, 90C33

1. Introduction

Consider a class of nonlinear complementarity problems (NCP) defined as follows: a matrix A €
R™" and a nonlinear mapping ¢ : R” — R”, find a vector z € R” such that

220, r=Az+¢(x)>0and 7 r = 0.

The NCP has widespread applications in scientific computing, economics, engineering, and many other
fields (see [1,2]).

When ¢(z) = g € R”", the NCP reduces to the classical linear complementarity problem (LCP),
which arises in numerous areas; see [3,4]. Modulus-based matrix splitting (MMS) iteration methods
have emerged as an efficient class of solvers for the LCP, attracting significant research interest. These
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methods are derived from the equivalent fixed-point formulation of the LCP. Bai [5] first introduced
the MMS iteration method, and subsequent works proposed acceleration techniques to improve its
convergence rate (e.g., [6-16]). Compared to projected-type methods [3], the key advantage of MMS
methods is that each iteration requires solving only a linear system than a projected LCP. When ¢(z) is
a general nonlinear function, the resulting NCP is said to exhibit weak nonlinearity. The weakly linear
equations with weakly nonlinearity was first considered in [17], which is also equivalently called the
mildly nonlinear system. In recent years, MMS iteration methods have been successfully extended to
solve the NCP. The foundational MMS schemes for the NCP were developed in [18, 19]. Building on
these works, improved techniques, analogous to those applied in the LCP case, have been adapted for
the NCP and other related complementarity problems (see [20-27]).

To enhance the convergence rate of the MMS iteration method for solving the NCP, we focus
particularly on the accelerated techniques. In the study of numerical methods for complementarity
problems, the accelerated technique was first introduced by [13] for solving the LCP. The core idea is
analogous to the construction principle of the Gauss-Seidel iteration method for solving linear
systems [28], namely the strategy of partial updates and immediate utilization of the latest
information. During the iteration process, once a new value for a component is computed, it
immediately replaces the old value and participates in subsequent calculations, thereby accelerating
convergence. Beyond the LCP, this technique has also been successfully applied in the MMS iteration
methods for solving the NCP [23], horizontal LCP [29] and the generalized complex-valued
horizontal LCP [30]. In this paper, we focus on the accelerated modulus-based matrix
splitting (AMMS) iteration method for solving the NCP [23]. It is worth noting that in the
convergence conditions established by [23], all matrix splitting assumptions are required to be
H-compatible splittings. However, as is well-known, this assumption cannot always be guaranteed for
the commonly used AOR splitting. Therefore, we conduct an in-depth investigation into the
convergence analysis of the AMMS iteration method, with three major innovative contributions:

e Establishing new convergence results that relax the assumptions on matrix splittings;

e Obtaining a larger convergence domain of the parameter matrix;

e Performing comprehensive analysis of the widely-used AOR splitting method, thereby obtaining
simpler conditions for relaxation parameters.

Next, after necessary preliminaries in Section 2, we present the new convergence analysis of the
AMMS iteration method in Section 3. Subsequently, in Section 4, numerical experiments are
conducted to validate the correctness of the theoretical results obtained. Finally, in Section 5, we
conclude the paper with a summary.

2. Preliminaries

We begin by introducing some necessary notations, definitions, and lemmas.

For a matrix A € R™" and x € R", use a;; to represent the element in the i-th row and j-th column
of A and x; to represent the i-th component of x. Let A = Dy — By = Dy — Ly — Uy, where
Dj,—Bs,—Ly, and —U, denote the diagonal, off-diagonal, strictly lower-triangular, and strictly
upper-triangular parts of A, respectively. Same as [3], the modulus of A is defined by |A| = (|a;;|) and
its comparison matrix (A) = ({a;;)) is given by {(a;;) = la;j| for i = j and {a;;) = —la;;| fori # j.
Following [32], matrix A is called
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e A Z-matrix if a;; < O foralli # j;

e A nonsingular M-matrix if it is a nonsingular Z-matrix with A~! > 0;

e An H-matrix if (A) is a nonsingular M-matrix;

e A strictly diagonally dominant (s.d.d.) matrix if |a;| > 3 -y jz la;j| forall 1 <i <n.

An H,-matrix is an H-matrix with a; > 0 for every i; see [33]. The splitting A = M — N is termed:

e An M-splitting if M is a nonsingular M-matrix and N > 0;
e An H-splitting if (M) — |N| is an M-matrix;
e An H-compatible splitting if (A) = (M) — |N|.

A function F : R" — R” is said to be a uniform P-function on a subset X C R”" if there exists a
constant 7 > 0 such that for every pair of distinct vectors x and y in X, the following inequality holds:

max (x; = y)(Fi(x) = Fiy) 2 n(x - W (x -y,

see [35].
Lemma 2.1. Let A be an H-matrix. Then, we have |JA™"| < (A)~\.

Lemma 2.2. [31] Let B € R be a s.d.d. matrix. Then YC € R™",

_ (ICle);
I1B7'Clle < max ———,
1<i<n ((B)e);
where e = (1,1,...,1)" € R" and || - - - || denotes the infinity norm of matrix.

Lemma 2.3. [32] p(DZIIBAI) < 1 holds if A € R™" is an H,-matrix.

Lemma 2.4. [32] Let A, B be two Z-matrices, A be a nonsingular M-matrix, and B > A.Then, B is a
nonsingular M-matrix.

Lemma 2.5. [32] Let A be a nonsingular M-matrix. If A = M—N is an M-splitting, then p(M~'N) < 1.

Lemma 2.6. [32] Let A be a Z-matrix. Then, A is a nonsingular M-matrix if and only if there exists
a positive diagonal matrix D making AD is an s.d.d. matrix.

Lemma 2.7. [32] A € R™" is a nonsingular M-matrix if and only if A can be expressed as A = sl — B,
where s > 0, B> 0, and s > p(B).

3. New results

We begin by reviewing the established AMMS method from [23], followed by the presentation of
our new results.

Let Q € R™" be a positive diagonal matrix, o > 0 be a constant scalar parameter, and A = M| —N, =
M, — N, represent two matrix splittings of A. Through the introduction of an auxiliary variable x and the
transformation z = (lr(lxl + x), solving the NCP becomes equivalent to solving the following modulus

equation system:
(Q+ M))x = Nix + (Q — My)|x| + Ny|x| — 0¢(2). (3.1)

Based on (3.1), the AMMS method was established in [23].
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Method 3.8. [23] Given A, ¢,Q, 0 and xV, for k = 1,2,..., calculate z® = é(x(k) + [x®)) until the
sequences {zV}° | is convergent, where xX**V is solved from the following linear equation

Q + M)X®D = N x® 4+ (Q = M)|xP| + No|x® V| — 5p(z®). (3.2)

The iterative scheme (3.2) was designed with the idea of splitting the matrix A in front of the modulus
term |x®| in the MMS iteration method into two parts through a second matrix splitting A = M, — N,.
Once a new value for any component is computed, it immediately replaces the corresponding old
value in the latter part of the modulus term. Here, N, can be configured as a matrix with special
structure (such as a strictly lower triangular matrix) to achieve this effect. In practical applications, the
accelerated overrelaxation (AOR) splitting is commonly employed given by

{ Ml = i(DA _ﬁLA)aNl = Ml _Aa

My = Da - U, N = L, -3)

where a and  are relaxation parameters. In this context, we refer to Method 3.8 as the
AMAOR (accelerated modulus-based accelerated overrelaxation) iteration method. When o = S,
a = =1 and (a,8) = (1,0), it is called the AMSOR (accelerated modulus-based successive
overrelaxation), AMGS (accelerated modulus-based Gauss-Seidel), and AMIJ (accelerated
modulus-based Jacobi) iteration methods, respectively.

Before presenting the new convergence analysis, we state the following assumptions on the
nonlinear function ¢ of the NCP, which are analogous to those adopted in [18,23]. Let

#(2) = (91(21), $2(22)5 - - - » Bu(z))",

where z; € R and ¢;(z;) is differentiable with respect to z;,i = 1,2,...n. Assume that 0 < ddzi"—if") < Y,
where ; € R,i = 1,2,...,n. By the Lagrange theorem [34], we have

(e
$i(2) - ¢i(g)) = %(Z@ —),i=1,2,....n,

where (l.(k) is selected as an intermediate value lying between zgk) and z;. Denote

dg1(¢P) dgn @y (™)

PO = di ey ————
tag( dz dz, dz, )
and
WV = diag(y1, ¥, -+, ¥n). (3.4)
Then, one can get
1
¢(z") - p(z") = PO - 2) = ;‘P(k)[(x(k) = x) + (IX0] = 1)) (3.5)
and
PO <y

We now present the new convergence theorem for Method 3.8 under the assumption that A is an H, -
matrix. Recall that the aforementioned conditions imposed on the nonlinear function ¢ guarantee
that f(z) = Az + ¢(z) becomes a uniform P-function, which consequently ensures the existence and
uniqueness of the solution to the NCP, as established in [35].
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Theorem 3.9. Let A € R™" be an H.-matrix. Assume that A = M, —N, = M, — N, are two H-splittings
satisfying (My) > (M,). Then, VxV € R", {z®} | produced by Method 3.8 converges to the solution of
the NCP provided
Q>Dy, +Y, (3.6)
or .
§(|M2| + |No| = (M;) + |Ni| + 2¥)De < QDe < Dy, De, (3.7)

where ¥ is defined in (3.4) and D is a positive diagonal matrix satisfying ((M,) —|N;|)D being an s.d.d.
matrix.

Proof. Since (M) > (M;) — |N;|, by Lemma 2.4, (M) is a nonsingular M-matrix. Note that A is an
H,-matrix, which implies that Dy = Dy, — Dy, > 0. If D), <0, we have Dy, < 0 and |Dy,| > |Dy,|,
resulting Dy, v, < 0, where contradicts (M) — |N;| being a nonsingular M-matrix. Hence, we have
Dy, > 0. Therefore, Q + M, is an H,-matrix. Then, by Lemma 2.1,we have

0<|Q+ M) <@+ (M)
Let (z*, r*) be the solution of the NCP. Then, x* = %(z* — Q7 'r*) is the solution of (3.1) and
(Q+ M)x* = Nix* + (Q = My)|xX"| + Np|x"| = op(Z). (3.8)

Together with (3.5) and (3.2) gives

x(k+1) —x

Ni(x® = x) +(Q = M)(Ix®] = [x7]) + Na(1x*D] = 1x*]) = o(8(z?) — ¢(2))
= (N; =¥ ® = x) + (Q = My — PO (x| = [x*]) + No(Ix* D] = [x7]).

Denote
s = |x(k) _ x*|,5(k) — ||x(k)| — x|
We have
M < 1@+ M) AN = PPIP + N6 + 1 - M, — PPI5D)
< (Q+ (M) AQ = My = PP+ [Ny — PODSD + [NyJs* D],
and
[ = (Q+ (M) IN16%D < (@ + (M) IN — PP +1Q — My — PP (3.9)

Since Q+(M;)—|N,| is a nonsingular M-matrix and (M,) > (M,), it follows from Lemma 2.4 that both
Q+(M;) —|N;| and Q + (M) are nonsingular M-matrices. Consequently, the splitting Q + (M) — |N,|
constitutes an M-splitting, and Lemma 2.5 guarantees that p((Q + (M, ))"'|N,|) < 1. This implies that
I — (Q + (M))"!|N| is a nonsingular M-matrix with a nonnegative inverse by Lemma 2.7. Then, we
can deduce (3.9) to

(Q+ (M) QA+ (M) = INNSED < (Q+ (M) (N =9+ 1Q = My — PO
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= (Q+ (M) = [N,6™D < (1IN = P01 +1Q = My — 9O
= 04D < (Q+ (M) = IN:D T (N = WO+ 1Q = My = w96,

Given that (M) > (M») and ({M,) — |N,|)D is an s.d.d. matrix, it follows that (Q + (M;) — |N,|)D must
also be s.d.d., due to the fact that

(Q+ (M) = IN2D)De 2 (Q + (M3) — IN2[)De > ((M3) — |N2[)De > 0.

Let
LY =@+ (M) = N2 (N = PO +1Q — My — 9.

Then, by Lemma 2.3, we have

ID™' LDl

I((Q+ (M) = IN2DD) ™ (INy = YO +1Q = My — YODD|,
[N = PP +1Q - M, — PY|)De];

max .

I<i<n [(Q + (M) — |N2|)De];

IA

(3.10)

Furthermore, for every 1 < i < n, we get

[(Q + (M) = IN2))De]; = [N, = ¥©| +1Q = My — ¥ De];
> (Q+ (M) =Nl = INi| =¥ = |Q = Dy, =¥ = By, ) Del;.

If (3.6) hold, we can further bound the above inequality to obtain

[(Q + (M,) — [N2])De]; = [(INy = ¥®| +1Q — My — ¥P|)De];
> [((M;) = INy| + (M) — |N>|)De];
> 0.

On the other hand, if (3.7) is satisfied, we have

[(Q+ (M) — IN2])Del; — [(IN; = ¥®| +1Q — M, — ¥®|)De];
> [2Q+(My) — IN1| = |M>| = |N2| = 2¥)De];
> 0.

Consequently, with (3.10), we obtain
p(LY) = p(D™' LUD) < ID7'LYD]l < 1,

which immediately establishes the convergence of the iteration.

Remark 3.10. The positive diagonal matrix D in Theorem 3.9 can be obtained by solving the
system ({(M,) — |N,|)x = p for a positive vector x, where p is any positive vector, and then setting
D = diag(x).

In Theorem 4.1 of [23], the convergence results for Method 3.8 are given as follows.
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Lemma 3.11. /23] Assume that:

(Al) A is an H,-matrix and Q + M, — |N,| is a nonsingular M-matrix;

(A2) A = M, — N, = M, — N, are two H-compatible splittings;

(A3) (A) — G is a nonsingular M-matrix, where G is a nonnegative matrix such that

1¢(21) = P(z2)l < Glzy — 2l (3.1

forany 71,7, € R";
(A4) Q > Dy..
Then, Method 3.8 is convergent for any x'V € R".

Comparing with the assumptions in Theorem 3.9, we make the following remarks:

From the proof of Theorem 3.9, it is evident that Assumption (A1) is required by both theorems.
Regarding Assumption (A2), while it is well-known that an H-compatible splitting is necessarily
an H-splitting, the converse does not hold. Theorem 3.9 thus relaxes the matrix splitting
assumptions, enabling us to explore more matrix splittings for either algorithmic acceleration or
deeper theoretical analysis.

Assumption (A3) serves as an additional condition. In this comparison, Theorem 3.9 proves
superior.

Turn to Assumption (A4). The condition (3.7) formally permits € to take values smaller than D,
flexibility not afforded by Assumption (A4). This demonstrates that condition (3.7) effectively
expands the convergence domain of the parameter matrix Q. It is worth noting that, when Q >
Dy, , the parameter range in Assumption (A4) is broader than that in (3.6). However, according
to Theorem 4.5 in [23], the optimal € is precisely 2 = D,, which corresponds to Q = Dy, in the
case AMAOR iteration method. Therefore, the parameter range in (3.6) we provide can include
the optimal choice.

Moreover, we consider the convergence of the AMAOR iteration method given by (3.3) following
the proof framework of Theorem 3.9. When A is an H,-matrix, we have ,o(DZl |B4|) < 1 by Lemma 2.3.
To guarantee that the assumptions of Theorem 3.9 are satisfied, it is sufficient to make A = M; — N, be
an H-splitting. In fact, by (3.3), if 0 < 8 < «, we have

(M) — |Ny|
1 1l -«
= Py, v =By v Uy
a a a a
T
YA B i S YRS R N BR Y
a a (04 a
1—-|1-q
e L TR
o
(A), if 0<a<l;
(2 =1DD4y —|Bal, if a>1.

For the case where 0 < @ < 1, (M;) — |[N;| = (A) is a nonsingular M-matrix when A is an H,-matrix.

In contrast, when a > 1, by further restricting the strict upper bound of « to

2 .
LB 1€
2

l<a<—reg—ri,
1+ p(D}"|Bal)
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we can obtain 2 — 1 > p(D;'|B4|), which implies that (2 — 1)I — D;;'|B4| is a nonsingular M-matrix by
Lemma 2.7. Then, we obtain the fact that

2 2
(M) = INi| = (= = DD = [Bsl = Da[(> = 1) - D;'|Bal]

is a nonsingular M-matrix by Lemma 2.6.
In summary, (M;) — |N;| is a nonsingular M-matrix provided

2

0<f<a< ———e—r.
1+ p(Dy"|Bal)

(3.12)

Therefore, we get the following theorem.

Theorem 3.12. Let A € R™" be an H,-matrix and My, Ny, M», N, be given by (3.3). Assume that
satisfied (3.6) or (3.7). Then, Vx'V € R", the AMAOR iteration method converges provided that (3.12)
holds.

In Theorem 4.2 of [23], the convergence results of the AMAOR iteration method are listed below.

Lemma 3.13. [23] Assume that:
(B1) A is an H.-matrix,
(B2) p(A)"'G) < 1;

(B3)a < < m,ﬁ € [0,a] U @, ab,], where 6, € [1,+c0) such that

_ a+1-1]1-¢
p(D™ BILal + U4l + G)) = R yo—
o

(B4) Q > Dy.
Then, AMAOR iteration method is convergent for any x'V € R".

In comparison with our results, the following observations can be made.

e Assumption (B1) is also present in Theorem 3.12.

e Assumption (B2) imposes an additional constraint, requiring a mutual dependence between the
system matrix A and the nonnegative matrix G associated with the nonlinear function ¢. This
restricts the applicability of Lemma 3.13. For example, when

4 -1 -1 0
-1 4 0 -1

A= , = 4sin(z),
1o a4 -1 %@ )
0 -1 -1 4

where G = 41 can satisfy (3.11), we have p((A)"'G) = 2 > 1. This implies that Assumption (B2)
fails to hold.

e Assumption (B3) involves a highly intricate relationship among «,B, and A, making it
significantly more difficult to verify than condition (3.12). In fact, the relaxation parameters
used in the AMSOR iteration numerical examples of [23] were presented without any theoretical
justification related to Assumption (B3).

e Comments on Assumption (B4) are similar to those on Assumption (A4) in Lemma 3.11.

In summary, Theorems 3.9 and 3.12 demonstrate clear advantages over Lemmas 3.11 and 3.13,
respectively.
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4. Numerical examples

This section, we present numerical experiments validate the effectiveness of the theoretical results
obtained.

Example 4.14. [36-39] Consider an NCP derived from the discretization of a boundary value
problem. Take the domain Q = (0,1) x (0, 1) with boundary conditions specified by the function
g(x1, x2), where g(0, x3) = x2(1 — x3), g(x1,x2) =00n x, =0,x, = 1, or x; = 1. The problem requires
finding u, satisfying the following system:

u>0, inQ,
—Au + ¢(u, x1, x3) — 8(x, — 0.5) > 0, in Q,
u(—Au + ¢(u, x1, %) — 8(x, —0.5)) =0, inQ,
u=g, on 0Q),

where%ZOoan{u:uZO}.

Using the standard five-point finite difference discretization scheme, one can obtain the
corresponding NCP.

Example 4.15. [5] Let
S -0.51

A1 s c R

-0.51
-1.51 S

where n = m?, S = tridiag(—1.5,4, —0.5) € R™™, [ € R™" js the identity matrix.

The numerical experiments are conducted on a PC equipped with a 12th Gen Intel Core 17-12700
processor (2.10 GHz) using MATLAB. The stopping criterion is chosen as |[min{Az® + ¢(z), 2P}l <
1077,

4.1. Experiment 1

In this subsection, we focus on the computational performance of Method 3.8 when neither
Assumption (A3) in Lemma 3.11 nor Assumption (B2) in Lemma 3.13 is satisfied, while all
assumptions of Theorem 3.9 are met.

We first set Q = D, + 41. For Example 4.14, selecting the nonlinear function ¢(u, xi, x,)
as 4sinu,4arctanu and 4In(1 + u). As for Example 4.15, the nonlinear function ¢(z) is chosen
as 4sinz + g, 4arctanz + ¢, and 4In(1 + z) + g, where the vector ¢ = (-1,1,-1,1,...)" € R". For the
three nonlinear functions considered here, we can choose G = 41 € R¥* to satisfy (3.11). By utilizing
the “eigs” function in MATLAB, we can estimate the p({(A)~'G). For m = 10,20, and 30, the spectral
radius values are 89.53, 194.90, and 340.80 in Example 4.14, and 6.96, 7.22, and 7.32 in
Example 4.15, respectively. For these two examples, neither Assumption (A3) in Lemma 3.11 nor
Assumption (B2) in Lemma 3.13 is satisfied, thereby rendering the convergence theorem in [23]
inapplicable. In contrast, Theorem 3.9 and Theorem 3.12 proposed in our work satisfy all required
conditions.

AIMS Mathematics Volume 10, Issue 10, 22980-22994.
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For both methods, we employ the AMJ and AMGS iteration methods. Note that in Theorem 4.4
of [23], by the proof process of the AMAOR iteration method, the case where the spectral radius of
the amplified iteration matrix reaches its minimum corresponds precisely to the AMGS iteration
method. Consequently, we exclusively focus on the AMGS iteration method without considering
other AMAOR variants. Numerical results are presented for three different sizes: m = 20, 30,40, as
shown in Table 1 (for Example 4.14) and Table 2 (for Example 4.15), where “IT” and “CPU” denote
the number of iteration steps and the computation time (in seconds), respectively. The numerical
results demonstrate that AMJ and AMGS methods successfully satisfy the stopping criterion for all
test cases. Comparatively, the AMGS requires fewer iteration steps and less computation time than
the AMIJ, which aligns with the performance trends observed in the literature. These experimental
findings validate the correctness of Theorems 3.9 and 3.12.

Table 1. Results of Example 4.14 when Q = D, + 41.

o(u) m AMJ AMGS
IT CPU IT CPU
4sinu 20 36 0.0824 22 0.0489
30 37 0.2608 22 0.1585
40 37 0.6271 22 0.4125
4arctanu 20 35 0.0850 21 0.0474
30 35 0.2416 21 0.1459
40 35 0.5946 21 0.3896
4In(1 + u) 20 27 0.0662 17 0.0384
30 28 0.1972 18 0.1280
40 28 0.4811 18 0.3223

Table 2. Results of Example 4.15 when Q = D, + 41

#(2) m AMIJ AMGS
IT CPU IT CPU
4sinz 20 34 0.0800 19 0.0431
30 35 0.2552 19 0.1319
40 35 0.5937 19 0.3432
4arctanz 20 33 0.0796 18 0.0420
30 34 0.2366 18 0.1276
40 34 0.5794 18 0.3403
4In(1 + 2) 20 29 0.0704 14 0.0318
30 30 0.2075 14 0.0994
40 30 0.5103 15 0.2698
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4.2. Experiment 2

In this subsection, we examine the performance of Method 3.8 in cases where the parameter matrix
Q falls outside the range required by Assumptions (A4) of Lemmas 3.11 and Assumption (B4) in

Lemma 3.13 but remain within the range specified by Theorems 3.9 and 3.12.

Here, we take Q = 0.9D,. In Example 4.14, we employ the nonlinear functions ¢(u, x, x,) as
sinu, arctanu, and In(1 + u). Correspondingly, in Example 4.15, the function ¢(z) is chosen to be
sinz + g, arctanz + ¢ and In(1 + z) + g, with the vector g = (-1,1,-1,1,...)T € R". A direct examination
reveals that while Assumptions (A4) and (B4) in Lemmas 3.11 and 3.13, respectively, fail to hold for
both test cases, while all requisite conditions are completely satisfied for the proposed Theorems 3.9

and 3.12.
Table 3. Results of Example 4.14 when Q = 0.9D,.
o(u) m AMIJ AMGS
IT CpPU IT CpU
sinu 20 49 0.1071 22 0.0503
30 50 0.3413 23 0.1629
40 50 0.8523 23 0.4273
arctanu 20 46 0.1058 22 0.0505
30 47 0.3246 22 0.1543
40 47 0.8053 22 0.4100
In(1 + u) 20 43 0.1033 20 0.0459
30 44 0.2998 20 0.1403
40 44 0.7520 20 0.3752
Table 4. Results of Example 4.15 when Q = 0.9D,.
#(2) m AMJ AMGS
IT CpPU IT CpU
sing 20 36 0.0808 17 0.0375
30 37 0.2547 17 0.1198
40 37 0.6200 17 0.3073
arctang 20 35 0.0835 16 0.0365
30 35 0.2422 17 0.1210
40 36 0.6048 17 0.3125
In(1 + 2) 20 32 0.0744 15 0.0335
30 32 0.2222 15 0.1056
40 33 0.5609 15 0.2714

We also show the numerical results of the AMJ and AMGS iteration methods for different sizes; see
Tables 3 and 4. The numerical results demonstrate that AMJ and AMGS iteration methods continue
to satisfy the stopping criterion across all test cases, exhibiting performance characteristics consistent
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with Experiment 1. This observation further validates the effectiveness of the proposed theorems.

Remark 4.16. It is worth noting that in this subsection, we have simply chosen a parameter matrix
smaller than D, to test the effectiveness of the AMMS iteration method, aiming to demonstrate that the
proposed convergence range is larger than that in [23]. However, due to the presence of the modulus
term in the equivalent modulus equation of the complementarity problem, a theoretical analysis of
the parameter matrix CQ is rather challenging. In recent literature [40, 41], the authors conducted
theoretical analyses on the selection of Q in the MMS iteration method for the LCP and second-order
cone LCP, respectively, and under certain conditions, derived improved strategies for choosing Q.
For the MMS and AMMS methods used to solve the NCP, a corresponding theoretical analysis of the
selection of Q can also be anticipated, which represents a meaningful direction for future research.

5. Conclusions

We present a rigorous analysis of convergence conditions for the AMMS iteration method in
solving the NCP, establishing two novel convergence theorems (Theorems 3.9 and 3.12). Compared
with corresponding results in [23], the proposed convergence conditions are theoretically weaker,
offering three significant advantages: Greater flexibility in matrix splitting selection, broader
admissible ranges for positive diagonal parameter matrix, and more easily verifiable assumptions
regarding relaxation parameters in the AOR splitting. The numerical experiments further confirm the
accuracy and effectiveness of these theoretical advancements.
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