Research article Special Issues

A new aftertreatment technique for the Mittag-Leffler function of a fractional nonlinear SIR-epidemic model

  • Received: 09 August 2025 Revised: 12 September 2025 Accepted: 18 September 2025 Published: 09 October 2025
  • MSC : 34A08, 34A34, 92D30

  • This paper introduced a new aftertreatment technique for solving a fractional nonlinear Susceptible-Infectious-Recovered (SIR)-epidemic model. The proposed approach reformulated the power series solution via incorporating the Laplace transform and its inverse. Basically, it applied the Laplace transform to convert the series solution into different Pad$ \acute{e} $-approximants involving Laplace's parameter with arbitrary order. This procedure facilitated the method of deriving the inverse Laplace transform explicitly, as a final step, using basic special functions in fractional calculus. Our analysis was capable of obtaining a sequence of closed-form approximations in terms of the Mittag-Leffler functions. The current results may be provided for the first time regarding the Mittag-Leffler solution of the fractional SIR-model. Additionally, the outcome of this analysis revealed that our approach was not only effective but also applicable to a wide range of fractional differential equations and systems.

    Citation: Laila F. Seddek, Abdelhalim Ebaid, Essam R. El-Zahar, Mona D. Aljoufi. A new aftertreatment technique for the Mittag-Leffler function of a fractional nonlinear SIR-epidemic model[J]. AIMS Mathematics, 2025, 10(10): 22869-22882. doi: 10.3934/math.20251016

    Related Papers:

  • This paper introduced a new aftertreatment technique for solving a fractional nonlinear Susceptible-Infectious-Recovered (SIR)-epidemic model. The proposed approach reformulated the power series solution via incorporating the Laplace transform and its inverse. Basically, it applied the Laplace transform to convert the series solution into different Pad$ \acute{e} $-approximants involving Laplace's parameter with arbitrary order. This procedure facilitated the method of deriving the inverse Laplace transform explicitly, as a final step, using basic special functions in fractional calculus. Our analysis was capable of obtaining a sequence of closed-form approximations in terms of the Mittag-Leffler functions. The current results may be provided for the first time regarding the Mittag-Leffler solution of the fractional SIR-model. Additionally, the outcome of this analysis revealed that our approach was not only effective but also applicable to a wide range of fractional differential equations and systems.



    加载中


    [1] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, New York: Academic Press, 1998.
    [2] K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [3] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [4] K. Diethelm, N. Ford, A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [5] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [6] K. Nisar, M. Farman, M. Abdel-Aty, C. Ravichandran, A review of fractional order epidemic models for life sciences problems: past, present and future, Alex. Eng. J., 95 (2024), 283–305. https://doi.org/10.1016/j.aej.2024.03.059
    [7] W. Alharbi, A. Shater, A. Ebaid, C. Cattani, M. Areshi, M. Jalal, et al., Communicable disease model in view of fractional calculus, AIMS Mathematics, 8 (2023), 10033–10048. https://doi.org/10.3934/math.2023508 doi: 10.3934/math.2023508
    [8] N. Sene, SIR epidemic model with Mittag-Leffler fractional derivative, Chaos Soliton. Fract., 137 (2020), 109833. https://doi.org/10.1016/j.chaos.2020.109833 doi: 10.1016/j.chaos.2020.109833
    [9] S. Saqib, M. Anjum, A. Hasanc, M. Qasmi, Integrating novel deep neural networks on the analysis of fractional epidemiological models in both populations with disease infection, Journal of Mathematical Modeling and Fractional Calculus, 1 (2025), 119–149. https://doi.org/10.48165/jmmfc.2024.1207 doi: 10.48165/jmmfc.2024.1207
    [10] S. Uçar, Analysis of a basic SEIRA model with Atangana-Baleanu derivative, AIMS Mathematics, 5 (2020), 1411–1424. https://doi.org/10.3934/math.2020097 doi: 10.3934/math.2020097
    [11] P. Karaji, N. Nyamoradi, Analysis of a fractional SIR model with General incidence function, Appl. Math. Lett., 108 (2020), 106499. https://doi.org/10.1016/j.aml.2020.106499 doi: 10.1016/j.aml.2020.106499
    [12] L. Verma, R. Meher, O. Nikan, A. Al-Saedi, Numerical study on fractional order nonlinear SIR-SI model for dengue fever epidemics, Sci. Rep., 15 (2025), 30677. https://doi.org/10.1038/s41598-025-16599-w doi: 10.1038/s41598-025-16599-w
    [13] K. Kozioł, R. Stanisławski, G. Bialic, Fractional-order sir epidemic model for transmission prediction of COVID-19 disease, Appl. Sci., 10 (2020), 8316. https://doi.org/10.3390/app10238316 doi: 10.3390/app10238316
    [14] K. Sarkar, S. Khajanchi, J. Nieto, Modeling and forecasting the COVID-19 pandemic in India, Chaos Soliton. Fract., 139 (2020), 110049. https://doi.org/10.1016/j.chaos.2020.110049 doi: 10.1016/j.chaos.2020.110049
    [15] A. Shaikh, I. Shaikh, K. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Differ. Equ., 2020 (2020), 373. https://doi.org/10.1186/s13662-020-02834-3 doi: 10.1186/s13662-020-02834-3
    [16] P. Verma, S. Tiwari, A. Verma, Theoretical and numerical analysis of fractional order mathematical model on recent COVID-19 model using singular kernel, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 93 (2023), 219–232. https://doi.org/10.1007/s40010-022-00805-9 doi: 10.1007/s40010-022-00805-9
    [17] H. Joshi, B. K. Jha, M. Yavuz, Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data, Math. Biosci. Eng., 20 (2023), 213–240. https://doi.org/10.3934/mbe.2023010 doi: 10.3934/mbe.2023010
    [18] H. Batool, I. Khan, W. Li, M. Junaid, J. Zhang, A. Nawaz, et al., Fractional modeling and numerical investigations of COVID-19 epidemic model with non-singular fractional derivatives: a case study, Sci. Rep., 15 (2025), 13256. https://doi.org/10.1038/s41598-025-93095-1 doi: 10.1038/s41598-025-93095-1
    [19] J. Zhou, S. Salahshour, A. Ahmadian, N. Senu, Modeling the dynamics of COVID-19 using fractal-fractional operator with a case study, Results Phys., 33 (2022), 105103. https://doi.org/10.1016/j.rinp.2021.105103 doi: 10.1016/j.rinp.2021.105103
    [20] C. Siettos, L. Russo, Mathematical modeling of infectious disease dynamics, Virulence, 4 (2013), 295–306. https://doi.org/10.4161/viru.24041 doi: 10.4161/viru.24041
    [21] S. Jenness, S. Goodreau, M. Morris, Epimodel: an R package for mathematical modeling of infectious disease over networks, J. Stat. Softw., 84 (2018), 1–47. https://doi.org/10.18637/jss.v084.i08 doi: 10.18637/jss.v084.i08
    [22] D. Xenikos, A. Asimakopoulos, Power-law growth of the COVID-19 fatality incidents in Europe, Infectious Disease Modelling, 6 (2021), 743–750. https://doi.org/10.1016/j.idm.2021.05.001 doi: 10.1016/j.idm.2021.05.001
    [23] W. Zhu, S. Shen, An improved SIR model describing the epidemic dynamics of the COVID-19 in China, Results Phys., 25 (2021), 104289. https://doi.org/10.1016/j.rinp.2021.104289 doi: 10.1016/j.rinp.2021.104289
    [24] G. Martelloni, G. Martelloni, Modelling the downhill of the Sars-Cov-2 in Italy and a universal forecast of the epidemic in the world, Chaos Soliton. Fract., 139 (2020), 110064. https://doi.org/10.1016/j.chaos.2020.110064 doi: 10.1016/j.chaos.2020.110064
    [25] K. Ghosh, A. Ghosh, Study of COVID-19 epidemiological evolution in India with a multi-wave SIR model, Nonlinear Dyn., 109 (2022), 47–55. https://doi.org/10.1007/s11071-022-07471-x doi: 10.1007/s11071-022-07471-x
    [26] F. de Abajo, Simple mathematics on COVID-19 expansion, MedRxiv, 2020. https://doi.org/10.1101/2020.03.17.20037663
    [27] K. Gepreel, M. Mohamed, H. Alotaibi, A. Mahdy, Dynamical behaviors of nonlinear coronavirus (COVID-19) model with numerical studies, Comput. Mater. Con., 67 (2021), 675–686. https://doi.org/10.32604/cmc.2021.012200 doi: 10.32604/cmc.2021.012200
    [28] A. Ebaid, C. Cattani, A. Al Juhani1, E. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Differ. Equ., 2021 (2021), 88. https://doi.org/10.1186/s13662-021-03235-w doi: 10.1186/s13662-021-03235-w
    [29] A. Aljohani, A. Ebaid, E. Algehyne, Y. Mahrous, C. Cattani, H. Al-Jeaid, The Mittag-Leffler function for re-evaluating the chlorine transport model: comparative analysis, Fractal Fract., 6 (2022), 125. https://doi.org/10.3390/fractalfract6030125 doi: 10.3390/fractalfract6030125
    [30] A. Ebaid, H. Al-Jeaid, The Mittag-Leffler functions for a class of first-order fractional initial value problems: dual solution via Riemann-Liouville fractional derivative, Fractal Fract., 6 (2022), 85. https://doi.org/10.3390/fractalfract6020085 doi: 10.3390/fractalfract6020085
    [31] L. Seddek, A. Ebaid, E. El-Zahar, M. Aljoufi, Exact solution of non-homogeneous fractional differential system containing 2n periodic terms under physical conditions, Mathematics, 11 (2023), 3308. https://doi.org/10.3390/math11153308 doi: 10.3390/math11153308
    [32] A. Alsubaie, M. Aljoufi, A. Alotaibi, A. Alfaydi, R. Alyoubi, B. Aljuhani, et al., Adomian's method for solving a nonlinear epidemic model, Adv. Differ. Equ. Contr., 31 (2024), 95–107. https://doi.org/10.17654/0974324324006 doi: 10.17654/0974324324006
    [33] F. Rihan, U. Kandasamy, H. Alsakaji, N. Sottocornola, Dynamics of a fractional-order delayed model of COVID-19 with vaccination efficacy, Vaccines, 11 (2023), 758. https://doi.org/10.3390/vaccines11040758 doi: 10.3390/vaccines11040758
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(342) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog