In this work, we explored the three-dimensional Kadomtsev-Petviashvili equation by the $ \phi^{6} $-model expansion method to generate precise solutions, such as periodic waves and singular structures, kink-type solitons, and dark solitons. The periodic solutions are the repeating patterns of a wave, and the singular solutions are the profiles that have unlimited amplitude at a certain point. The kink-type solitons depict sudden transitions, and the dark solitons represent local amplitude depressions in optical systems. Two- and three-dimensional plots were used to show the dynamic behavior and interactions of these solutions. The $ \phi^{6} $-model expansion technique is highly effective to study nonlinear systems, and can potentially be applied to fluid mechanics, plasma physics, and optical communication. The obtained results contribute to the understanding of the soliton propagation in the multi-dimensional systems.
Citation: Abid Ullah Khan, Asif Khan, Salma Trabelsi, Marwa Balti. Soliton solutions and dynamics of the (3+1)-dimensional Kadomtsev-Petviashvili equation via $ \phi^{6} $-model expansion method[J]. AIMS Mathematics, 2025, 10(10): 22883-22910. doi: 10.3934/math.20251017
In this work, we explored the three-dimensional Kadomtsev-Petviashvili equation by the $ \phi^{6} $-model expansion method to generate precise solutions, such as periodic waves and singular structures, kink-type solitons, and dark solitons. The periodic solutions are the repeating patterns of a wave, and the singular solutions are the profiles that have unlimited amplitude at a certain point. The kink-type solitons depict sudden transitions, and the dark solitons represent local amplitude depressions in optical systems. Two- and three-dimensional plots were used to show the dynamic behavior and interactions of these solutions. The $ \phi^{6} $-model expansion technique is highly effective to study nonlinear systems, and can potentially be applied to fluid mechanics, plasma physics, and optical communication. The obtained results contribute to the understanding of the soliton propagation in the multi-dimensional systems.
| [1] | A. Khan, A. U. Khan, S. Ahmad, Investigation of fractal fractional nonlinear Korteweg-de-Vries-Schrödinger system with power law kernel, Phys. Scr., 98 (2023), 085202. http://www.aimspress.com/journal/Math |
| [2] |
A. Kasman, A brief history of solitons and the KdV equation, Curr. Sci., 115 (2018), 1486–1496. https://doi.org/10.18520/cs/v115/i8/1486-1496 doi: 10.18520/cs/v115/i8/1486-1496
|
| [3] |
Z. Ali, M. S. Yang, Analysis of renewable energies based on circular bipolar complex intuitionistic fuzzy linguistic information with Frank power aggregation operators and MABAC model, Int. J. Comput. Intell. Syst., 18 (2025), 1–40. https://doi.org/10.1007/s44196-025-00800-z doi: 10.1007/s44196-025-00800-z
|
| [4] | P. Capetillo, J. Hornewall, Introduction to the Hirota direct method, 2021. |
| [5] |
T. A. Nofal, Simple equation method for nonlinear partial differential equations and its applications, J. Egypt. Math. Soc., 24 (2016), 204–209. https://doi.org/10.1016/j.joems.2015.05.006 doi: 10.1016/j.joems.2015.05.006
|
| [6] |
S. Yasin, F. S. Alshammari, A. Khan, Beenish, Quasi-periodic dynamics and wave solutions of the Ivancevic option pricing model using multi-solution techniques, Symmetry, 17 (2025), 1137. https://doi.org/10.3390/sym17071137 doi: 10.3390/sym17071137
|
| [7] |
M. M. A. Khater, R. A. M. Attia, D. Lu, Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions, Math. Comput. Appl., 24 (2018), 1. https://doi.org/10.3390/mca24010001 doi: 10.3390/mca24010001
|
| [8] |
A. M. Abourabia, Y. A. Eldreeny, Analytical solution of the complex polymer equation systems via the homogeneous balance method, Phys. Sci. Int. J., 23 (2019), 1–8. https://doi.org/10.9734/PSIJ/2019/v23i430164 doi: 10.9734/PSIJ/2019/v23i430164
|
| [9] | Y. H. Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional vakhnenko-parkes equation, Fractals, 2025, 2550102. https://doi.org/10.1142/S0218348X25501026 |
| [10] |
R. T. Marler, J. S. Arora, Function-transformation methods for multi-objective optimization, Eng. Optim., 37 (2005), 551–570. https://doi.org/10.1080/03052150500114289 doi: 10.1080/03052150500114289
|
| [11] |
M. B. Hossen, H. O. Roshid, M. Z. Ali, Modified double sub-equation method for finding complexiton solutions to the (1+1) dimensional nonlinear evolution equations, Int. J. Appl. Comput. Math., 3 (2017), 679–697. https://doi.org/10.1007/s40819-017-0377-6 doi: 10.1007/s40819-017-0377-6
|
| [12] |
S. Yasin, M. A. Khan, S. Ahmad, S. F. Aldosary, Abundant new optical solitary waves of paraxial wave dynamical model with Kerr media via new extended direct algebraic method, Opt. Quantum Electron., 56 (2024), 925. https://doi.org/10.1007/s11082-024-06845-2 doi: 10.1007/s11082-024-06845-2
|
| [13] |
Y. C. Hon, E. Fan, Binary Bell polynomial approach to the non-isospectral and variable-coefficient KP equations, IMA J. Appl. Math., 77 (2012), 236–251. https://doi.org/10.1093/imamat/hxr023 doi: 10.1093/imamat/hxr023
|
| [14] |
J. Yu, Y. Feng, Lie symmetries, exact solution and conservation laws of (2+1)-dimensional time fractional Kadomtsev–Petviashvili system, Analysis, 45 (2025), 115–127. https://doi.org/10.1515/anly-2024-0048 doi: 10.1515/anly-2024-0048
|
| [15] |
S. Yasin, A. Khan, S. Ahmad, M. S. Osman, New exact solutions of (3+1)-dimensional modified KdV–Zakharov–Kuznetsov equation by Sardar-subequation method, Opt. Quantum Electron., 56 (2024), 90. https://doi.org/10.1007/s11082-023-05558-2 doi: 10.1007/s11082-023-05558-2
|
| [16] |
A. Khan, A. U. Khan, A. Faryad, U. Faryad, S. Ahmad, Computational and numerical analysis of the fractional three-components nonlinear Schrödinger equation with singular and non-singular kernels, Partial Differ. Equ. Appl. Math., 2024 (2024), 100901. https://doi.org/10.1016/j.padiff.2024.100901 doi: 10.1016/j.padiff.2024.100901
|
| [17] |
S. R. Choudhury, Painlevé analysis of nonlinear evolution equations—an algorithmic method, Chaos Soliton. Fract., 27 (2006), 139–152. https://doi.org/10.1016/j.chaos.2005.02.043 doi: 10.1016/j.chaos.2005.02.043
|
| [18] |
H. Naher, F. A. Abdullah, New approach of $G'/G$-expansion method and new approach of generalized $G'/G$-expansion method for nonlinear evolution equation, AIP Adv., 3 (2013), 032116. https://doi.org/10.1063/1.4794947 doi: 10.1063/1.4794947
|
| [19] |
J. R. M. Borhan, M. M. Miah, F. Z. Duraihem, M. A. Iqbal, W. X. Ma, New optical soliton structures, bifurcation properties, chaotic phenomena, and sensitivity analysis of two nonlinear partial differential equations, Int. J. Theor. Phys., 63 (2024), 183. https://doi.org/10.1007/s10773-024-05713-9 doi: 10.1007/s10773-024-05713-9
|
| [20] |
M. J. Ablowitz, Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915. https://doi.org/10.1088/0951-7715/29/3/915 doi: 10.1088/0951-7715/29/3/915
|
| [21] |
Y. A. Madani, K. S. Mohamed, S. Yasin, S. Ramzan, K. Aldwoah, M. Hassan, Exploring novel solitary wave phenomena in Klein–Gordon equation using $\phi^6$ model expansion method, Sci. Rep., 15 (2025), 1834. https://doi.org/10.1038/s41598-025-85461-w doi: 10.1038/s41598-025-85461-w
|
| [22] |
A. M. Wazwaz, The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188 (2007), 1467–1475. https://doi.org/10.1016/j.amc.2006.11.013 doi: 10.1016/j.amc.2006.11.013
|
| [23] |
M. A. Noor, S. T. Mohyud-Din, A. Waheed, E. A. Al-Said, Exp-function method for traveling wave solutions of nonlinear evolution equations, Appl. Math. Comput., 216 (2010), 477–483. https://doi.org/10.1016/j.amc.2010.01.042 doi: 10.1016/j.amc.2010.01.042
|
| [24] |
K. J. Wang, A fast insight into the optical solitons of the generalized third-order nonlinear Schrödinger's equation, Results Phys., 40 (2022), 105872. https://doi.org/10.1016/j.rinp.2022.105872 doi: 10.1016/j.rinp.2022.105872
|
| [25] |
K. J. Wang, The generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions, Nonlinear Dyn., 112 (2024), 7309–7324. https://doi.org/10.1007/s11071-024-09356-7 doi: 10.1007/s11071-024-09356-7
|