Research article Special Issues

Asymmetric Lyapunov-Krasovskii functional-driven adaptive event-triggered LFC for semi-Markovian power systems

  • Received: 04 August 2025 Revised: 07 September 2025 Accepted: 10 September 2025 Published: 09 October 2025
  • MSC : 93-XX

  • This paper proposes an innovative semi-Markov jump power system $ H_{\infty} $ load frequency control (LFC) strategy, incorporating an adaptive event-triggered mechanism (AETM) to enhance control efficiency and stability under complex environmental conditions. Specifically, to address power system uncertainties caused by environmental factors, we first modeled the system using a semi-Markov jump process, effectively capturing its dynamic variations across different operational states. Subsequently, to reduce communication and computational burdens, we introduced a novel AETM that selectively determines triggering conditions, thereby avoiding unnecessary control signal updates. Furthermore, we constructed multimodal asymmetric Lyapunov-Krasovskii functionals (LKFs). By relaxing constraints on matrix symmetry and positive definiteness, this method reduces the conservatism of stability criteria, ensuring stable system operation and maintaining strong robustness even in the presence of external disturbances. Finally, simulation results validated the effectiveness of the proposed strategy, demonstrating its capability to significantly enhance power system control performance and stability while effectively reducing resource consumption.

    Citation: Kaibo Shi, Chuan Liu, Yuping Zhang, Xiangkun Wang, Yanbin Sun, Xiao Cai. Asymmetric Lyapunov-Krasovskii functional-driven adaptive event-triggered LFC for semi-Markovian power systems[J]. AIMS Mathematics, 2025, 10(10): 22850-22868. doi: 10.3934/math.20251015

    Related Papers:

  • This paper proposes an innovative semi-Markov jump power system $ H_{\infty} $ load frequency control (LFC) strategy, incorporating an adaptive event-triggered mechanism (AETM) to enhance control efficiency and stability under complex environmental conditions. Specifically, to address power system uncertainties caused by environmental factors, we first modeled the system using a semi-Markov jump process, effectively capturing its dynamic variations across different operational states. Subsequently, to reduce communication and computational burdens, we introduced a novel AETM that selectively determines triggering conditions, thereby avoiding unnecessary control signal updates. Furthermore, we constructed multimodal asymmetric Lyapunov-Krasovskii functionals (LKFs). By relaxing constraints on matrix symmetry and positive definiteness, this method reduces the conservatism of stability criteria, ensuring stable system operation and maintaining strong robustness even in the presence of external disturbances. Finally, simulation results validated the effectiveness of the proposed strategy, demonstrating its capability to significantly enhance power system control performance and stability while effectively reducing resource consumption.



    加载中


    [1] J. Shair, H. Li, J. Hu, X. Xie, Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics, Renew. Sust. Energ. Rev., 145 (2021), 111111. https://doi.org/10.1016/j.rser.2021.111111 doi: 10.1016/j.rser.2021.111111
    [2] M. O. Qays, I. Ahmad, D. Habibi, A. Aziz, T. Mahmoud, System strength shortfall challenges for renewable energy-based power systems: A review, Renew. Sust. Energ. Rev., 183 (2023), 113447. https://doi.org/10.1016/j.rser.2023.113447 doi: 10.1016/j.rser.2023.113447
    [3] N. M. Manousakis, P. S. Karagiannopoulos, G. J. Tsekouras, F. D. Kanellos, Integration of renewable energy and electric vehicles in power systems: A review, Processes, 11 (2023), 1544. https://doi.org/10.3390/pr11051544 doi: 10.3390/pr11051544
    [4] K. D. Lu, Z. G. Wu, Resilient event-triggered load frequency control for cyber-physical power systems under dos attacks, IEEE Trans. Power Syst., 38 (2022), 5302–5313. https://doi.org/10.1109/TPWRS.2022.3229667 doi: 10.1109/TPWRS.2022.3229667
    [5] F. Mohammadi, B. Mohammadi-Ivatloo, G. B. Gharehpetian, M. H. Ali, W. Wei, O. Erdinç, et al., Robust control strategies for microgrids: A review, IEEE Syst. J., 16 (2022), 2401–2412. https://doi.org/10.1109/JSYST.2021.3077213 doi: 10.1109/JSYST.2021.3077213
    [6] A. M. Eltamaly, A. A. Z. Diab, A. G. Abo-Khalil, Robust control based on $ {H_\infty} $ and linear quadratic gaussian of load frequency control of power systems integrated with wind energy system, In: Control and operation of grid-connected wind energy systems, Cham: Springer, 2021, 73–86. https://doi.org/10.1007/978-3-030-64336-2_4
    [7] T. Sasaki, K. Enomoto, Dynamic analysis of generation control performance standards, IEEE Trans. Power Syst., 17 (2002), 806–811. https://doi.org/10.1109/TPWRS.2002.800946 doi: 10.1109/TPWRS.2002.800946
    [8] X. Zhao, Z. Ma, S. Li, S. Zou, Robust lfc of power systems with wind power under packet losses and communication delays, IEEE J. Emerg. Sel. Top. Circuits Syst., 12 (2022), 135–148.
    [9] H. Zhan, J. Wu, L. Cheng, X. Zhan, H. Yan, Design of $ {H_\infty}$ control strategies with dynamic event-triggered scheme under markovian deception attacks, Int. J. Control Autom. Syst., 22 (2024), 3108–3116. https://doi.org/10.1007/s12555-024-0423-1 doi: 10.1007/s12555-024-0423-1
    [10] S. Liu, C. Duan, W. Zhou, Event-triggering control of networked control systems under random deception attacks: An adaptive triggering strategy with saturation constraint, Int. J. Control Autom. Syst., 21 (2023), 2916–2926. https://doi.org/10.1007/s12555-022-0502-0 doi: 10.1007/s12555-022-0502-0
    [11] G. Zhang, J. Li, O. Bamisile, Y. Xing, D. Cai, Q. Huang, An $ {H_\infty}$ load frequency control scheme for multi-area power system under cyber-attacks and time-varying delays, IEEE Trans. Power Syst., 38 (2022), 1336–1349. https://doi.org/10.1109/TPWRS.2022.3171101 doi: 10.1109/TPWRS.2022.3171101
    [12] M. S. Aslam, X. Dai, $ {H_\infty} $ control for network T-S fuzzy systems under time varying delay for multi-area power systems, Int. J. Control Autom. Syst., 18 (2020), 2774–2787. https://doi.org/10.1007/s12555-019-0844-4 doi: 10.1007/s12555-019-0844-4
    [13] S. Zhao, L. Zhao, S. Wen, L. Cheng, Secure synchronization control of markovian jump neural networks under DoS attacks with memory-based adaptive event-triggered mechanism, Artif. Intell. Sci. Eng., 1 (2025), 64–78. https://doi.org/10.23919/AISE.2025.000006 doi: 10.23919/AISE.2025.000006
    [14] S. Dong, M. Liu, Adaptive fuzzy asynchronous control for nonhomogeneous markov jump power systems under hybrid attacks, IEEE Trans. Fuzzy Syst., 31 (2022), 1009–1019. https://doi.org/10.1109/TFUZZ.2022.3193805 doi: 10.1109/TFUZZ.2022.3193805
    [15] A. Kazemy, M. Hajatipour, Event-triggered load frequency control of markovian jump interconnected power systems under denial-of-service attacks, Int. J. Electr. Power Energy Syst., 133 (2021), 107250. https://doi.org/10.1016/j.ijepes.2021.107250 doi: 10.1016/j.ijepes.2021.107250
    [16] X. Wang, B. Xu, J. Ding, C. Ren, Q. Zhang, Finite-time $ {H_\infty}$ fault detection for large-scale power system via markov jumping mechanism, IET Control Theory Appl., 18 (2024), 2886–2898. https://doi.org/10.1049/cth2.12732 doi: 10.1049/cth2.12732
    [17] X. Cai, K. Shi, Y. Sun, J. Cao, S. Wen, Z. Tian, Intelligent event-triggered control supervised by mini-batch machine learning and data compression mechanism for T-S fuzzy NCSs under DoS attacks, IEEE Trans. Fuzzy Syst., 32 (2023), 804–815. https://doi.org/10.1109/TFUZZ.2023.3308933 doi: 10.1109/TFUZZ.2023.3308933
    [18] D. Ding, Z. Tang, C. Wen, Z. Ji, J. H. Park, Secure impulsive synchronization for derivatively coupled networks against DoS attacks: A memory-compensated strategy, Syst. Control Lett., 193 (2024), 105939. https://doi.org/10.1016/j.sysconle.2024.105939 doi: 10.1016/j.sysconle.2024.105939
    [19] B. Li, L. Zhao, S. Wen, Periodic event-triggered consensus of stochastic multi-agent systems under switching topology, Artif. Intell. Sci. Eng., 1 (2025), 147–156. https://doi.org/10.23919/AISE.2025.000011 doi: 10.23919/AISE.2025.000011
    [20] D. Yue, E. Tian, Q. L. Han, A delay system method for designing event-triggered controllers of networked control systems, IEEE Trans. Automat. Cntrol, 58 (2012), 475–481. https://doi.org/10.1109/TAC.2012.2206694 doi: 10.1109/TAC.2012.2206694
    [21] Y. Chen, C. Wan, P. Cheng, Event-triggered stochastic model predictive control based on distributionally robust optimization approach for network control systems under DoS attacks, Signal Process., 238 (2026), 110–182. https://doi.org/10.1016/j.sigpro.2025.110182 doi: 10.1016/j.sigpro.2025.110182
    [22] S. Dharani, R. Rakkiyappan, J. Cao, Robust stochastic sampled-data ${H_\infty}$ control for a class of mechanical systems with uncertainties, J. Dyn. Sys., Meas. Control, 137 (2015), 101008. https://doi.org/10.1115/1.4030800 doi: 10.1115/1.4030800
    [23] J. Yang, Q. Zhong, K. Shi, S. Zhong, Dynamic-memory event-triggered ${H_\infty} $ load frequency control for reconstructed switched model of power systems under hybrid attacks, IEEE Trans. Cybernet., 53 (2023), 3913–3925. https://doi.org/10.1109/TCYB.2022.3170560 doi: 10.1109/TCYB.2022.3170560
    [24] M. Shen, X. Wang, S. Zhu, Z. Wu, T. Huang, Data-driven event-triggered adaptive dynamic programming control for nonlinear systems with input saturation, IEEE Trans. Cybernet., 54 (2024), 1178–1188. https://doi.org/10.1109/TCYB.2023.3337779 doi: 10.1109/TCYB.2023.3337779
    [25] D. Ding, Z. Tang, J. H. Park, Z. Ji, Quasi-bipartite synchronization of derivatively coupled complex dynamic networks: Memory-based self-triggered approach, IEEE Trans. Syst. Man Cybern. Syst., 54 (2024), 1611–1621. https://doi.org/10.1109/TSMC.2023.3328426 doi: 10.1109/TSMC.2023.3328426
    [26] X. C. Shangguan, C. K. Zhang, Y. He, L. Jin, L. Jiang, J. W. Spencer, et al., Robust load frequency control for power system considering transmission delay and sampling period, IEEE Trans. Ind. Inform., 17 (2021), 5292–5303. https://doi.org/10.1109/TII.2020.3026336 doi: 10.1109/TII.2020.3026336
    [27] C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: Bounding inequalities and augmented lyapunov-krasovskii functionals, IEEE Trans. Automat. Cntrol, 62 (2016), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
    [28] Z. Lian, Y. He, C. K. Zhang, M. Wu, Further robust stability analysis for uncertain takagi–sugeno fuzzy systems with time-varying delay via relaxed integral inequality, Inf. Sci., 409 (2017), 139–150. https://doi.org/10.1016/j.ins.2017.05.017 doi: 10.1016/j.ins.2017.05.017
    [29] R. Abolpour, M. Dehghani, H. A. Talebi, Stability analysis of systems with time-varying delays using overlapped switching lyapunov krasovskii functional, J. Franklin Inst., 357 (2020), 10844–10860. https://doi.org/10.1016/j.jfranklin.2020.08.018 doi: 10.1016/j.jfranklin.2020.08.018
    [30] M. Rouamel, S. Gherbi, F. Bourahala, Robust stability and stabilization of networked control systems with stochastic time-varying network-induced delays, Trans. Inst. Meas. Control, 42 (2020), 1782–1796.
    [31] S. Wen, X. Yu, Z. Zeng, J. Wang, Event-triggering load frequency control for multiarea power systems with communication delays, IEEE Trans. Ind. Electron., 63 (2016), 1308–1317. https://doi.org/10.1109/TIE.2015.2399394 doi: 10.1109/TIE.2015.2399394
    [32] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [33] P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [34] Q. L. Han, Y. Liu, F. Yang, Optimal communication network-based ${H_\infty}$ quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 426–434. https://doi.org/10.1109/TNNLS.2015.2411290 doi: 10.1109/TNNLS.2015.2411290
    [35] A. Kazemy, J. Lam, X. M. Zhang, Event-triggered output feedback synchronization of master–slave neural networks under deception attacks, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 952–961. https://doi.org/10.1109/TNNLS.2020.3030638 doi: 10.1109/TNNLS.2020.3030638
    [36] L. Hu, P. Shi, B. Huang, $ {H_\infty}$ control for sampled-data linear systems with two markov processes, Optim. Control Appl. Meth., 26 (2005), 291–306. https://doi.org/10.1002/oca.761 doi: 10.1002/oca.761
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(352) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog