We developed a fractional-order glucose–insulin regulatory model in the Caputo sense to encode memory effects in metabolic dynamics. The three-equation nonlinear system employed component-wise fractional orders to represent heterogeneous memory depths across plasma glucose, insulin action, and secretion. We established well-posedness (existence, uniqueness), positivity, and boundedness, and assess local stability; oscillatory regimes were further examined via discrete-time Hopf conditions for the discretized dynamics. For computation, we implement the successive approximation method (SAM) and a fractional Adams–Bashforth–Moulton (ABM) predictor–corrector scheme. In head-to-head tests, ABM achieved lower residuals, better stability, and higher efficiency than SAM, with validation against frequently sampled intravenous glucose tolerance test (FSIGT) data and a global sensitivity analysis highlighting insulin responsiveness and glucose-threshold parameters as most influential. Residual analysis indicated that increasing the fractional order(s) toward the integer case reduced numerical error—for example, the representative state error $ \lvert\Delta u\rvert $ decreased from $ 129.6 $ at $ \nu = 0.5 $ to $ 34.1 $ at $ \nu = 0.9 $. These results supported the clinical relevance of fractional-order modeling for improved diabetes management, parameter tuning, and control strategy design.
Citation: Muflih Alhazmi, Safa M. Mirgani, A. F. Aljohani, Sayed Saber. Numerical simulation of a fractional glucose-insulin model via successive approximation and ABM schemes[J]. AIMS Mathematics, 2025, 10(10): 22817-22849. doi: 10.3934/math.20251014
We developed a fractional-order glucose–insulin regulatory model in the Caputo sense to encode memory effects in metabolic dynamics. The three-equation nonlinear system employed component-wise fractional orders to represent heterogeneous memory depths across plasma glucose, insulin action, and secretion. We established well-posedness (existence, uniqueness), positivity, and boundedness, and assess local stability; oscillatory regimes were further examined via discrete-time Hopf conditions for the discretized dynamics. For computation, we implement the successive approximation method (SAM) and a fractional Adams–Bashforth–Moulton (ABM) predictor–corrector scheme. In head-to-head tests, ABM achieved lower residuals, better stability, and higher efficiency than SAM, with validation against frequently sampled intravenous glucose tolerance test (FSIGT) data and a global sensitivity analysis highlighting insulin responsiveness and glucose-threshold parameters as most influential. Residual analysis indicated that increasing the fractional order(s) toward the integer case reduced numerical error—for example, the representative state error $ \lvert\Delta u\rvert $ decreased from $ 129.6 $ at $ \nu = 0.5 $ to $ 34.1 $ at $ \nu = 0.9 $. These results supported the clinical relevance of fractional-order modeling for improved diabetes management, parameter tuning, and control strategy design.
| [1] |
E. Ackerman, J. W. Rosevear, W. F. McGuckin, A mathematical model of the Glucose-tolerance test, Phys. Med. Biol., 9 (1964), 203. https://doi.org/10.1088/0031-9155/9/2/307 doi: 10.1088/0031-9155/9/2/307
|
| [2] |
R. N. Bergman, Y. Z. Ider, C. R. Bowden, C. Cobelli, Quantitative estimation of insulin sensitivity, Am. J. Physiol. Endocrinol. Metab., 236 (1979), E667–E677. https://doi.org/10.1152/ajpendo.1979.236.6.E667 doi: 10.1152/ajpendo.1979.236.6.E667
|
| [3] |
R. N. Bergman, Toward physiological understanding of glucose tolerance: Minimal-model approach, Diabetes, 38 (1989), 1512–1527. https://doi.org/10.2337/diab.38.12.1512 doi: 10.2337/diab.38.12.1512
|
| [4] |
G. Pacini, R. N. Bergman, MINMOD: A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test, Comput. Meth. Prog. Bio., 23 (1986), 113–122. https://doi.org/10.1016/0169-2607(86)90106-9 doi: 10.1016/0169-2607(86)90106-9
|
| [5] |
R. L. Magin, fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
|
| [6] | I. Podlubny, fractional differential equations, San Diego: Academic Press, 1999. |
| [7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
| [8] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
|
| [9] |
M. Althubyani, H. D. S. Adam, A. Alalyani, N. E. Taha, K. O. Taha, R. A. Alharbi, et al., Understanding zoonotic disease spread with a fractional order epidemic model, Sci. Rep., 15 (2025), 13921. https://doi.org/10.1038/s41598-025-95943-6 doi: 10.1038/s41598-025-95943-6
|
| [10] |
H. D. S. Adam, M. Althubyani, S. M. Mirgani, S. Saber, An application of Newton's interpolation polynomials to the zoonotic disease transmission between humans and baboons system based on a time-fractal fractional derivative with a power-law kernel, AIP Adv., 15 (2025), 045217. https://doi.org/10.1063/5.0253869 doi: 10.1063/5.0253869
|
| [11] |
M. H. Alshehri, F. Z. Duraihem, A. Alalyani, S. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: Numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197
|
| [12] |
A. Chavada, N. Pathak, S. R. Khirsariya, A fractional mathematical model for assessing cancer risk due to smoking habits, Math. Model. Control, 4 (2024), 246–259. https://doi.org/10.3934/mmc.2024020 doi: 10.3934/mmc.2024020
|
| [13] |
P. A. Naik, B. M. Yeolekar, S. Qureshi, M. Yeolekar, A. Madzvamuse, Modeling and analysis of the fractional-order epidemic model to investigate mutual influence in HIV/HCV co-infection, Nonlinear Dyn., 112 (2024), 11679–11710. https://doi.org/10.1007/s11071-024-09653-1 doi: 10.1007/s11071-024-09653-1
|
| [14] |
M. Alhazmi, A. F. Aljohani, N. E. Taha, S. Abdel-Khalek, M. Bayram, S. Saber, Application of a fractal fractional operator to nonlinear glucose–insulin systems: Adomian decomposition solutions, Comput. Biol. Med., 196 (2025), 110453. https://doi.org/10.1016/j.compbiomed.2025.110453 doi: 10.1016/j.compbiomed.2025.110453
|
| [15] |
S. Saber, B. Dridi, A. Alahmari, M. Messaoudi, Application of Jumarie–Stancu collocation series method and multi-step generalized differential transform method to fractional glucose–insulin, Int. J. Optim. Control Theor. Appl., 15 (2025), 464–482. https://doi.org/10.36922/IJOCTA025120054 doi: 10.36922/IJOCTA025120054
|
| [16] | R. Caponetto, G. Dongola, L. Fortuna, I. Petras, fractional order systems: Modeling and control applications, Singapore: World Scientific, 2010. https://doi.org/10.1142/7709 |
| [17] |
J. E. Mahbuba, X. S. Wang, Stability analysis of biological systems under threshold conditions, Symmetry, 17 (2025), 1193. https://doi.org/10.3390/sym17081193 doi: 10.3390/sym17081193
|
| [18] |
M. Alhazmi, S. Saber, Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana–Baleanu fractal-fractional derivatives, Alex. Eng. J., 122 (2025), 77–90. https://doi.org/10.1016/j.aej.2025.02.066 doi: 10.1016/j.aej.2025.02.066
|
| [19] |
P. S. Shabestari, S. Panahi, B. Hatef, S. Jafari, J. C. Sprott, A new chaotic model for glucose-insulin regulatory system, Chaos Soliton Fract., 112 (2018), 44–51. https://doi.org/10.1016/j.chaos.2018.04.029 doi: 10.1016/j.chaos.2018.04.029
|
| [20] |
K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Applications of fractal-fractional derivatives in the sense of Atangana–Baleanu, Results Phys., 52 (2023), 106892. https://doi.org/10.1016/j.rinp.2023.106892 doi: 10.1016/j.rinp.2023.106892
|
| [21] |
K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Modified minimal model, Alex. Eng. J., 80 (2023), 74–87. https://doi.org/10.1016/j.aej.2023.07.050 doi: 10.1016/j.aej.2023.07.050
|
| [22] |
M. Alaroud, Application of Laplace residual power series method for approximate solutions of fractional IVP's, Alex. Eng. J., 61 (2022), 1585–1595. https://doi.org/10.1016/j.aej.2021.06.065 doi: 10.1016/j.aej.2021.06.065
|
| [23] |
K. I. A. Ahmed, H. D. S. Adam, N. Almutairi, S. Saber, Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients, Results Phys., 56 (2024), 107311. https://doi.org/10.1016/j.rinp.2023.107311 doi: 10.1016/j.rinp.2023.107311
|
| [24] |
M. Althubyani, N. E. Taha, K. O. Taha, R. A. Alharb, S. Saber, Epidemiological modeling of pneumococcal pneumonia: Insights from ABC fractal-fractional derivatives, CMES–Comput. Model. Eng. Sci., 143 (2025), 3491–3521. https://doi.org/10.32604/cmes.2025.061640 doi: 10.32604/cmes.2025.061640
|
| [25] |
Z. Zhou, G. Tigan, Z. Yu, Hopf bifurcations in an extended Lorenz system, Adv. Differ. Equ., 2017 (2017), 28. https://doi.org/10.1186/s13662-017-1083-8 doi: 10.1186/s13662-017-1083-8
|
| [26] |
C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341 (2004), 55–61. https://doi.org/10.1016/j.physa.2004.04.113 doi: 10.1016/j.physa.2004.04.113
|
| [27] |
Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 doi: 10.1115/1.3101682
|
| [28] |
F. A. Rihan, Numerical modeling of fractional-order biological systems, Abstr. Appl. Anal., 2013 (2013), 816803. https://doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803
|
| [29] |
S. R. Khirsariya, S. B. Rao, G. S. Hathiwala, Investigation of fractional diabetes model involving glucose–insulin alliance scheme, Int. J. Dynam. Control, 12 (2024), 1–14. https://doi.org/10.1007/s40435-023-01293-4 doi: 10.1007/s40435-023-01293-4
|
| [30] |
H. Singh, H. M. Srivastava, Z. Hammouch, K. S. Nisar, Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19, Results Phys., 20 (2021), 103722. https://doi.org/10.1016/j.rinp.2020.103722 doi: 10.1016/j.rinp.2020.103722
|
| [31] | M. F. Faraloya, S. Shafie, F. M. Siam, R. Mahmud, S. O. Ajadi, Numerical simulation and optimization of radiotherapy cancer treatments using the Caputo fractional derivative, Malaysian J. Math. Sci., 15 (2021), 161–187. |
| [32] |
T. Sun, Numerical smoothing of Runge–Kutta schemes, J. Comput. Appl. Math., 233 (2009), 1056–1062. https://doi.org/10.1016/j.cam.2009.08.118 doi: 10.1016/j.cam.2009.08.118
|
| [33] |
T. Sun, Numerical smoothing of Runge–Kutta schemes, J. Comput. Appl. Math., 233 (2009), 1056–1062. https://doi.org/10.1016/j.cam.2009.08.118 doi: 10.1016/j.cam.2009.08.118
|
| [34] | J. P. Lasalle, The stability of dynamical systems, Philadelphia: SIAM Publications, 1976. https://doi.org/10.1137/1.9781611970432 |
| [35] |
R. L. Magin, fractional calculus in bioengineering, Part 1, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
|
| [36] |
W. M. Abd-Elhameed, M. M. Alsuyuti, Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials, Fractal Fract., 7 (2023), 74. https://doi.org/10.3390/fractalfract7010074 doi: 10.3390/fractalfract7010074
|
| [37] |
S. Rezapour, S. Etemad, M. Sinan, J. Alzabut, A. Vinodkumar, A mathematical analysis on the new fractal-fractional model of second-hand smokers via the power law type kernel: Numerical solutions, equilibrium points, and sensitivity analysis, J. Funct. Spaces, 2022 (2022), 3553021. https://doi.org/10.1155/2022/3553021 doi: 10.1155/2022/3553021
|
| [38] |
J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Anal. Real World Appl., 26 (2015), 289–305. https://doi.org/10.1016/j.nonrwa.2015.05.014 doi: 10.1016/j.nonrwa.2015.05.014
|
| [39] |
W. Lin, Global existence theory and chaos control of fractional differential equations, J. Comput. Appl. Math., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
|
| [40] |
T. T. Hartley, C. F. Lorenzo, H. K. Qammer, Chaos in a fractional order Chua's system, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 42 (1995), 485–490. https://doi.org/10.1109/81.404062 doi: 10.1109/81.404062
|
| [41] |
H. Khan, J. Alzabut, O. Tunç, M. K. A. Kaabar, A fractal–fractional COVID-19 model with a negative impact of quarantine on the diabetic patients, Results Control Optim., 10 (2023), 100199. https://doi.org/10.1016/j.rico.2023.100199 doi: 10.1016/j.rico.2023.100199
|
| [42] |
K. I. A. Ahmed, S. M. Mirgani, A. Seadawy, S. Saber, A comprehensive investigation of fractional glucose-insulin dynamics: Existence, stability, and numerical comparisons using residual power series and generalized Runge-Kutta methods, J. Taibah Univ. Sci., 19 (2025), 2460280. https://doi.org/10.1080/16583655.2025.2460280 doi: 10.1080/16583655.2025.2460280
|
| [43] | I. Petras, fractional-order feedback control of a DC motor, J. Electr. Eng., 60 (2009), 117–128. |
| [44] |
M. Althubyani, S. Saber, Hyers–Ulam stability of fractal–fractional computer virus models with the Atangana–Baleanu operator, Fractal Fract., 9 (2025), 158. https://doi.org/10.3390/fractalfract9030158 doi: 10.3390/fractalfract9030158
|
| [45] |
R. P. Agarwal, A. M. A. El-Sayed, S. M. Salman, fractional-order Chua's system: Discretization, bifurcation and chaos, Adv. Differ. Equ., 2013 (2013), 320. https://doi.org/10.1186/1687-1847-2013-320 doi: 10.1186/1687-1847-2013-320
|
| [46] |
X. Y. Wang, J. M. Song, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 3351–3357. https://doi.org/10.1016/j.cnsns.2009.01.010 doi: 10.1016/j.cnsns.2009.01.010
|
| [47] |
A. De Gaetano, O. Arino, Mathematical modelling of the intravenous glucose tolerance test, J. Math. Biol., 40 (2000), 136–168. https://doi.org/10.1007/s002850050007 doi: 10.1007/s002850050007
|
| [48] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |