Research article Special Issues

Backstepping-sliding-mode-based prescribed-time control for a class of nonlinear systems with disturbances

  • Published: 09 October 2025
  • MSC : 93C10, 93D05

  • This article addresses the prescribed-time stability (PTS) problem for a class of nonlinear strict-feedback systems subject to unknown disturbances. Herein, a novel backstepping-sliding-mode (BSM) composite control structure is proposed: a dynamic time-varying sliding-mode surface is integrated into the final step of the backstepping design, effectively suppressing matched disturbances and simplifying the implementation complexity. Specifically speaking, 1) for systems with known nonlinear terms, time-varying gains are directly embedded within the backstepping virtual control laws to achieve PTS; 2) for the case of unknown nonlinear terms, by combining adaptive laws with the BSM framework, the controlled system is guaranteed to converge within the prescribed-time and maintain globally stability thereafter. Moreover, the prescribed time $ {T}_{p} $ is designer-prespecified and does not depend on initial conditions or controller gains. Finally, two numerical simulation examples validate the convergence performance and robustness of the proposed approaches.

    Citation: Litong Zhou, Lichao Feng, Nan Ji, Ruicheng Zhang. Backstepping-sliding-mode-based prescribed-time control for a class of nonlinear systems with disturbances[J]. AIMS Mathematics, 2025, 10(10): 22791-22816. doi: 10.3934/math.20251013

    Related Papers:

  • This article addresses the prescribed-time stability (PTS) problem for a class of nonlinear strict-feedback systems subject to unknown disturbances. Herein, a novel backstepping-sliding-mode (BSM) composite control structure is proposed: a dynamic time-varying sliding-mode surface is integrated into the final step of the backstepping design, effectively suppressing matched disturbances and simplifying the implementation complexity. Specifically speaking, 1) for systems with known nonlinear terms, time-varying gains are directly embedded within the backstepping virtual control laws to achieve PTS; 2) for the case of unknown nonlinear terms, by combining adaptive laws with the BSM framework, the controlled system is guaranteed to converge within the prescribed-time and maintain globally stability thereafter. Moreover, the prescribed time $ {T}_{p} $ is designer-prespecified and does not depend on initial conditions or controller gains. Finally, two numerical simulation examples validate the convergence performance and robustness of the proposed approaches.



    加载中


    [1] H. K. Khalil, Nonlinear systems, New Jersey: Prentice Hall, 2002.
    [2] J. Song, Y. Niu, Y. Zou, Finite-time stabilization via sliding mode control, IEEE T. Automat. Contr. , 62 (2017), 1478-1483. https://doi.org/10.1109/TAC.2016.2578300 doi: 10.1109/TAC.2016.2578300
    [3] W. Wang, C. Wen, Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance, Automatica, 46 (2010), 2082-2091. https://doi.org/10.1016/j.automatica.2010.09.006 doi: 10.1016/j.automatica.2010.09.006
    [4] Z. Vukic, Nonlinear control systems, CRC Press, 2003.https://doi.org/10.1201/9780203912652
    [5] W. M. Haddad, A. L'Afflitto, Finite-time stabilization and optimal feedback control, IEEE T. Automat. Contr. , 61 (2016), 1069-1074. https://doi.org/10.1109/TAC.2015.2454891 doi: 10.1109/TAC.2015.2454891
    [6] S. P. Bhat, D. S. Bernstein, Lyapunov analysis of finite-time differential equations, In: Proceedings of 1995 American Control Conference-ACC'95, 1995, 1831-1832.https://doi.org/10.1109/ACC.1995.531201
    [7] S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358
    [8] Y. Hong, Y. Xu, J. Huang, Finite-time control for robot manipulators, Syst. Control Lett. , 46 (2002), 243-253. https://doi.org/10.1016/S0167-6911(02)00130-5 doi: 10.1016/S0167-6911(02)00130-5
    [9] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE T. Automat. Contr. , 57 (2012), 2106-2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [10] H. Yang, D. Ye, Fixed-time stabilization of uncertain strict-feedback nonlinear systems via a bi-limit-like strategy, Int. J. Robust Nonlin. , 28 (2018), 5531-5544. https://doi.org/10.1002/rnc.4328 doi: 10.1002/rnc.4328
    [11] D. Gómez-Gutiérrez, On the design of nonautonomous fixed-time controllers with a predefined upper bound of the settling time, Int. J. Robust Nonlin. , 30 (2020), 3871-3885. https://doi.org/10.1002/rnc.4976 doi: 10.1002/rnc.4976
    [12] R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, A. G. Loukianov, On predefined-time consensus protocols for dynamic networks, J. Franklin I. , 357 (2020), 11880-11899. https://doi.org/10.1016/J.JFRANKLIN.2019.11.058 doi: 10.1016/J.JFRANKLIN.2019.11.058
    [13] Y. Song, Y. Wang, J. Holloway, M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243-251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008
    [14] J. Holloway, M. Krstic, Prescribed-time observers for linear systems in observer canonical form, IEEE T. Automat. Contr. , 64 (2019), 3905-3912. https://doi.org/10.1109/TAC.2018.2890751 doi: 10.1109/TAC.2018.2890751
    [15] Z. Liu, C. Lin, Y. Shang, Prescribed-time adaptive neural feedback control for a class of nonlinear systems, Neurocomputing, 511 (2022), 155-162. https://doi.org/10.1016/j.neucom.2022.09.072 doi: 10.1016/j.neucom.2022.09.072
    [16] Y. Xiao, X. Xu, S. Dubljevic, Prescribed-time constrained tracking control of a class of 2×2 hyperbolic PDE systems with actuator dynamics, Int. J. Robust Nonlin. , 34 (2024), 6118-6141. https://doi.org/10.1002/rnc.7311 doi: 10.1002/rnc.7311
    [17] W. Li, M. Krstic, Stochastic nonlinear prescribed-time stabilization and inverse optimality, IEEE T. Automat. Contr. , 67 (2022), 1179-1193. https://doi.org/10.1109/TAC.2021.3061646 doi: 10.1109/TAC.2021.3061646
    [18] B. Zhou, Y. Shi, Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback, IEEE T. Automat. Contr. , 66 (2021), 6123-6130. https://doi.org/10.1109/TAC.2021.3061645 doi: 10.1109/TAC.2021.3061645
    [19] P. Ning, C. Hua, K. Li, R. Meng, Event-triggered control for nonlinear uncertain systems via a prescribed-time approach, IEEE T. Automat. Contr. , 68 (2023), 6975-6981. https://doi.org/10.1109/TAC.2023.3243863 doi: 10.1109/TAC.2023.3243863
    [20] C. Hua, P. Ning, K. Li, Adaptive prescribed-time control for a class of uncertain nonlinear systems, IEEE T. Automat. Contr. , 67 (2022), 6159-6166. https://doi.org/10.1109/TAC.2021.3130883 doi: 10.1109/TAC.2021.3130883
    [21] J. J. E. Slotine, W. Li, Applied nonlinear control, Englewood Cliffs: Prentice Hall, 1991.
    [22] I. S. Khalil, J. C. Doyle, K. Glover, Robust and optimal control, Prentice Hall, 1995.
    [23] V. I. Utkin, Sliding modes in control and optimization, Berlin: Springer, 2013.https://doi.org/10.1007/978-3-642-84379-2
    [24] Z. Chen, X. Ju, Z. Wang, Q. Li, The prescribed time sliding mode control for attitude tracking of spacecraft, Asian J. Control, 24 (2022), 1650-1662. https://doi.org/10.1002/asjc.2569 doi: 10.1002/asjc.2569
    [25] H. Shen, J. Iorio, N. Li, Sliding mode control in backstepping framework for a class of nonlinear systems, J. Mar. Sci. Eng. , 7 (2019), 452. https://doi.org/10.3390/jmse7120452 doi: 10.3390/jmse7120452
    [26] S. Ullah, Q. Khan, A. Mehmood, A. I. Bhatti, Robust backstepping sliding mode control design for a class of underactuated electro-mechanical nonlinear systems, J. Electr. Eng. Technol. , 15 (2020), 1821-1828. https://doi.org/10.1007/s42835-020-00436-3 doi: 10.1007/s42835-020-00436-3
    [27] S. Ullah, Q. Khan, A. Mehmood, R. Akmeliawati, Integral backstepping integral sliding mode control of underactuated nonlinear electromechanical systems, Control Eng. Appl. Inf. , 21 (2019), 42-50.
    [28] E. Ahmad, A. Khan, S. Ullah, I. Youn, Pitch and yaw moment control of self-balancing two-wheeled electric vehicle via backstepping, In: Proceedings of the 13th International Symposium on Mechanics, Aerospace and Informatics Engineering 2018, 2018.
    [29] G. Bartolini, A. Ferrara, L. Giacomini, E. Usai, A combined backstepping/second-order sliding mode approach to control a class of nonlinear systems, In: Proceedings. 1996 IEEE International Workshop on Variable Structure Systems. -VSS'96-, 1996,205-210.https://doi.org/10.1109/VSS.1996.578620
    [30] G. Bartolini, A. Ferrara, L. Giacomini, A. Usai, Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems, IEEE T. Automat. Contr. , 45 (2000), 1334-1341. https://doi.org/10.1109/9.867041 doi: 10.1109/9.867041
    [31] M. Defoort, A. Polyakov, G. Demesure, M. Djemai, K. Veluvolu, Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics, IET Control Theory A. , 9 (2015), 2165-2170. https://doi.org/10.1049/iet-cta.2014.1301 doi: 10.1049/iet-cta.2014.1301
    [32] R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, M. Defoort, Enhancing the settling time estimation of a class of fixed-time stable systems, Int. J. Robust Nonlin. , 29 (2019), 4135-4148. https://doi.org/10.1002/rnc.4600 doi: 10.1002/rnc.4600
    [33] J. D. Sánchez-Torres, D. Gómez-Gutiérrez, E. López, A. G. Loukianov, A class of predefined-time stable dynamical systems, IMA J. Math. Control I. , 35 (2018), i1-i29. https://doi.org/10.1093/imamci/dnx004 doi: 10.1093/imamci/dnx004
    [34] E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, A. G. Loukianov, A Lyapunov-like characterization of predefined-time stability, IEEE T. Automat. Contr. , 65 (2020), 4922-4927. https://doi.org/10.1109/TAC.2020.2967555 doi: 10.1109/TAC.2020.2967555
    [35] A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, Predefined-time control of cooperative manipulators, Int. J. Robust Nonlin. , 30 (2020), 7295-7306. https://doi.org/10.1002/rnc.5171 doi: 10.1002/rnc.5171
    [36] R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, Generating new classes of fixed-time stable systems with predefined upper bound for the settling time, Int. J. Control, 95 (2022), 2802-2814. https://doi.org/10.1080/00207179.2021.1936190 doi: 10.1080/00207179.2021.1936190
    [37] S. V. Drakunov, D. B. Izosimov, A. G. Luk'yanov, V. A. Utkin, V. I. Utkin, The block control principle. I, Avtomatika i Telemekhanika, 5 (1990), 38-47.
    [38] A. G. Luk'yanov, Method of reducing equations for dynamics systems to a regular form, Automat. Rem. Contr. , 43 (1981), 413-420.
    [39] V. I. Utkin, S. V. Drakunov, D. E. Izosimov, A. G. Lukyanov, V. A. Utkin, A hierarchical principle of the control system decomposition based on motion separation, IFAC Proc. Vol. , 17 (1984), 1553-1558. https://doi.org/10.1016/S1474-6670(17)61197-2 doi: 10.1016/S1474-6670(17)61197-2
    [40] Y. Song, H. Ye, F. L. Lewis, Prescribed-time control and its latest developments, IEEE T. Syst. Man Cy. Syst. , 53 (2023), 4102-4116. https://doi.org/10.1109/TSMC.2023.3240751 doi: 10.1109/TSMC.2023.3240751
    [41] R. Seeber, Generalized Filippov solutions for systems with prescribed-time convergence, Automatica, 157 (2023), 111249. https://doi.org/10.1016/j.automatica.2023.111249 doi: 10.1016/j.automatica.2023.111249
    [42] R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, M. Defoort, Enhancing the settling time estimation of a class of fixed-time stable systems, Int. J. Robust Nonlin. , 29 (2019), 4135-4148. https://doi.org/10.1002/rnc.4600 doi: 10.1002/rnc.4600
    [43] L. Feng, C. Zhang, M. Abdel-Aty, J. Cao, F. E. Alsaadi, Prescribed-time trajectory tracking control for a class of nonlinear system, Electron. Res. Arch. , 32 (2024), 6535-6552. https://doi.org/10.3934/era.2024305 doi: 10.3934/era.2024305
    [44] R. Aldana-López, R. Seeber, D. Gómez-Gutiérrez, M. T. Angulo, M. Defoort, A redesign methodology generating predefined-time differentiators with bounded time-varying gains, Int. J. Robust Nonlin. , 33 (2023), 9050-9065. https://doi.org/10.1002/rnc.6315 doi: 10.1002/rnc.6315
    [45] D. Gómez-Gutiérrez, R. Aldana-López, R. Seeber, M. T. Angulo, L. Fridman, An arbitrary-order exact differentiator with predefined convergence time bound for signals with exponential growth bound, Automatica, 153 (2023), 110995. https://doi.org/10.1016/j.automatica.2023.110995 doi: 10.1016/j.automatica.2023.110995
    [46] R. Aldana-López, R. Seeber, H. Haimovich, D. Gomez-Gutierrez, On inherent limitations in robustness and performance for a class of prescribed-time algorithms, Automatica, 158 (2023), 111284. https://doi.org/10.1016/j.automatica.2023.111284 doi: 10.1016/j.automatica.2023.111284
    [47] V. Parra-Vega, Second order sliding mode control for robot arms with time base generators for finite-time tracking, Dyn. Control, 11 (2001), 175-186. https://doi.org/10.1023/A:1012535929651 doi: 10.1023/A:1012535929651
    [48] V. Parra-Vega, G. Hirzinger, TBG sliding surfaces for perfect tracking of robot manipulators, In: Advances in variable structure systems: Analysis, integration and applications, 2000,115-124.https://doi.org/10.1142/9789812792082_0010
    [49] T. Tsuji, P. G. Morasso, M. Kaneko, Feedback control of nonholonomic mobile robots using time base generator, In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, 1995, 1385-1390.https://doi.org/10.1109/ROBOT.1995.525471
    [50] T. Sun, L. Cheng, Z. Hou, M. Tan, Novel sliding-mode disturbance observer-based tracking control with applications to robot manipulators, Sci. China Inf. Sci. , 64 (2021), 172205. https://doi.org/10.1007/s11432-020-3043-y doi: 10.1007/s11432-020-3043-y
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(597) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog