Research article Special Issues

Regularity and uniqueness of 3D compressible magneto-micropolar fluids

  • Received: 23 February 2024 Revised: 27 March 2024 Accepted: 16 April 2024 Published: 23 April 2024
  • MSC : 35B65, 35Q35, 76N10

  • This article established the global existence and uniqueness of solutions for the 3D compressible magneto-micropolar fluid system with vacuum. The remarkable thing is that in the context of small initial energy, we got a new result with a lower regularity than we ever have before.

    Citation: Mingyu Zhang. Regularity and uniqueness of 3D compressible magneto-micropolar fluids[J]. AIMS Mathematics, 2024, 9(6): 14658-14680. doi: 10.3934/math.2024713

    Related Papers:

  • This article established the global existence and uniqueness of solutions for the 3D compressible magneto-micropolar fluid system with vacuum. The remarkable thing is that in the context of small initial energy, we got a new result with a lower regularity than we ever have before.



    加载中


    [1] J. T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., 94 (1984), 61–66. https://doi.org/10.1007/BF01212349 doi: 10.1007/BF01212349
    [2] Y. Cho, H. J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243–275. https://doi.org/10.1016/j.matpur.2003.11.004 doi: 10.1016/j.matpur.2003.11.004
    [3] H. Chen, Y. M. Sun, X. Zhong, Global classical solutions to the 3D Cauchy problem of compressible magneto-micropolar fluid equations with far field vacuum, Discrete Cont Dyn Sys. B, 29 (2024), 282–318. https://doi.org/10.3934/dcdsb.2023096 doi: 10.3934/dcdsb.2023096
    [4] G. Q. Chen, D. H. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data, J. Differ. Equ., 182 (2002), 344–376. https://doi.org/10.1006/jdeq.2001.4111 doi: 10.1006/jdeq.2001.4111
    [5] G. Q. Chen, D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 54 (2003), 608–632. https://doi.org/10.1007/s00033-003-1017-z doi: 10.1007/s00033-003-1017-z
    [6] M. T. Chen, X. Y. Xu, J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225–247. https://doi.org/10.4310/CMS.2015.v13.n1.a11 doi: 10.4310/CMS.2015.v13.n1.a11
    [7] M. T. Chen, Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlin. Anal. RWA, 13 (2012), 850–859. https://doi.org/10.1016/j.nonrwa.2011.08.021 doi: 10.1016/j.nonrwa.2011.08.021
    [8] M. T. Chen, Unique solvability of compressible micropolar viscous fluids, Bound. Value Probl., 2012 (2012), 232. https://doi.org/10.1186/1687-2770-2012-32 doi: 10.1186/1687-2770-2012-32
    [9] B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 266 (2006), 595–629. https://doi.org/10.1007/s00220-006-0052-y doi: 10.1007/s00220-006-0052-y
    [10] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18.
    [11] J. S. Fan, S. Jiang, G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Commun. Math. Phys., 270 (2007), 691–708. https://doi.org/10.1007/s00220-006-0167-1 doi: 10.1007/s00220-006-0167-1
    [12] J. S. Fan, W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637–3600. https://doi.org/10.1016/j.na.2007.10.005 doi: 10.1016/j.na.2007.10.005
    [13] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equ., 120 (1995), 215–254. https://doi.org/10.1006/jdeq.1995.1111 doi: 10.1006/jdeq.1995.1111
    [14] X. D. Huang, J. Li, Z. P. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872–1886. https://doi.org/10.1137/100814639 doi: 10.1137/100814639
    [15] X. D. Huang, J. Li, Z. P. Xin, Global well-posedness of classical solutions with large oscil-lations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Commun. Pure Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
    [16] G. Lukaszewicz, Micropolar Fluids: Theory and Applications Modeling and Simulation in Science, Engineering and Technology, Boston: Brikhäuser, 1999. https://doi.org/10.1007/978-1-4612-0614-5
    [17] L. L. Tong, Z. Tan, Optimal decay rates of the compressible magneto-micropolar fluids system in $\mathbb{R}^3$, Commun. Math. Sci., 17 (2019), 1109–1134. https://doi.org/10.4310/CMS.2019.v17.n4.a13 doi: 10.4310/CMS.2019.v17.n4.a13
    [18] R. Y. Wei, B. L. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equ., 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002
    [19] H. Xu, J. W. Zhang, Regularity and uniqueness for the compressible full Navier-Stokes equations, J. Differ. Equ., 272 (2021), 46–73. https://doi.org/10.1016/j.jde.2020.09.036 doi: 10.1016/j.jde.2020.09.036
    [20] Q. Xu, X. Zhong, Strong solutions to the three-dimensional barotropic compressible magneto-micropolar fluid equations with vacuum, Z. Angew. Math. Phys., 73 (2022), 14. https://doi.org/10.1007/s00033-021-01642-3 doi: 10.1007/s00033-021-01642-3
    [21] Q. J. Xu, Z. Tan, H. Q. Wang, Global existence and asymptotic behavior for the 3D compressible magneto-micropolar fluids in a bounded domain, J. Math. Phys., 61 (2020), 011506. https://doi.org/10.1063/1.5121247 doi: 10.1063/1.5121247
    [22] Q. J. Xu, Z. Tan, H. Q. Wang, L. L. Tong, Global low-energy weak solutions of the compressible magneto-micropolar fluids in the half-space, Z. Angew. Math. Phys., 73 (2022), 223. https://doi.org/10.1007/s00033-022-01860-3 doi: 10.1007/s00033-022-01860-3
    [23] P. X. Zhang, Decay of the compressible magneto-micropolar fluids, J. Math. Phys., 59 (2018), 023102. https://doi.org/10.1063/1.5024795 doi: 10.1063/1.5024795
    [24] X. L. Zhang, H. Cai, Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain, Z. Angew. Math. Phys., 71 (2020), 184. https://doi.org/10.1007/s00033-020-01409-2 doi: 10.1007/s00033-020-01409-2
    [25] J. W. Zhang, S. Jiang, F. Xie, Global weak solutions pf an initial boundary value problem for screw pinches in plasma physics, Math. Model. Meth. Appl. Sci., 19 (2009), 833–875. https://doi.org/10.1142/S0218202509003644 doi: 10.1142/S0218202509003644
    [26] J. W. Zhang, J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8 (2010), 835–850. https://projecteuclid.org/euclid.cms/1288725260
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(348) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog