
This research paper is supplemented with a unique formation to design state-of-the-art S-boxes. The invented approach is simple but has the capability of creating confusion in our newly proposed algorithm. Our core planned work refined the method of already designed S-boxes to accomplish more compact ones. Various structures were merged here, namely affine transformation, fractional linear transformation, structure of Klein four-group, and the algebraic structures of the Galois fields, GF(24) and GF(28). These structures were utilized to synthesize newly 1600 robust S-boxes. Besides, we discussed encryption steps of AES with these newly generated S-boxes. We highlighted some specific characteristics, performance of parameter's improvement, and their utilization. Nonlinear properties were mainly set to inspect the behavior of I/O bits and could apply image encryption. Then, the performance of proposed S-boxes and newly structured AES was tested in comparison with other prevailing S-boxes.
Citation: Mohammad Mazyad Hazzazi, Amer Aljaedi, Zaid Bassfar, Misbah Rani, Tariq Shah. 8×8 S-boxes over Klein four-group and Galois field GF(24): AES redesign[J]. AIMS Mathematics, 2024, 9(5): 10977-10996. doi: 10.3934/math.2024537
[1] | Fozia Bashir Farooq . Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer. AIMS Mathematics, 2024, 9(6): 15119-15131. doi: 10.3934/math.2024733 |
[2] | Wei Gao, Zahid Iqbal, Shehnaz Akhter, Muhammad Ishaq, Adnan Aslam . On irregularity descriptors of derived graphs. AIMS Mathematics, 2020, 5(5): 4085-4107. doi: 10.3934/math.2020262 |
[3] | Jianwei Du, Xiaoling Sun . On symmetric division deg index of trees with given parameters. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384 |
[4] | Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107 |
[5] | Ali N. A. Koam, Ali Ahmad, Yasir Ahmad . Computation of reverse degree-based topological indices of hex-derived networks. AIMS Mathematics, 2021, 6(10): 11330-11345. doi: 10.3934/math.2021658 |
[6] | Ali Al Khabyah, Haseeb Ahmad, Ali Ahmad, Ali N. A. Koam . A uniform interval-valued intuitionistic fuzzy environment: topological descriptors and their application in neural networks. AIMS Mathematics, 2024, 9(10): 28792-28812. doi: 10.3934/math.20241397 |
[7] | Hakeem A. Othman, Mohammed M. Al-Shamiri, Amin Saif, Santanu Acharjee, Tarik Lamoudan, Rashad Ismail . Pathless directed topology in connection to the circulation of blood in the heart of human body. AIMS Mathematics, 2022, 7(10): 18158-18172. doi: 10.3934/math.2022999 |
[8] | R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably . Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379 |
[9] | R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta . Multiplicative topological indices: Analytical properties and application to random networks. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179 |
[10] | Ali Al Khabyah . Mathematical aspects and topological properties of two chemical networks. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230 |
This research paper is supplemented with a unique formation to design state-of-the-art S-boxes. The invented approach is simple but has the capability of creating confusion in our newly proposed algorithm. Our core planned work refined the method of already designed S-boxes to accomplish more compact ones. Various structures were merged here, namely affine transformation, fractional linear transformation, structure of Klein four-group, and the algebraic structures of the Galois fields, GF(24) and GF(28). These structures were utilized to synthesize newly 1600 robust S-boxes. Besides, we discussed encryption steps of AES with these newly generated S-boxes. We highlighted some specific characteristics, performance of parameter's improvement, and their utilization. Nonlinear properties were mainly set to inspect the behavior of I/O bits and could apply image encryption. Then, the performance of proposed S-boxes and newly structured AES was tested in comparison with other prevailing S-boxes.
Cancer is a dangerous disease and belongs to the family of genetic diseases. It is the uncontrolled magnification of abnormal blood cells in the body that stops normal functions and is prone to infection. The cancer that affects blood cells is known as blood cancer. Leukemia is an example of blood cancer and a mutation in the DNA of blood cells is its main cause, resulting in abnormal behavior of blood cells. This will not only prone to infection but also in some cases becomes chronic and creates tumors in bones. Throughout the world, nearly 1.24 million people are affected by blood cancer annually. Medicos and scientists are always probing for better ways to care for people fighting cancer. One way to do this is to develop and study incipient drugs. Drug revelation is not an easy task, as it is expensive, time consuming, and challenging in some cases. Numerous ways have been discovered to treat cancer. Drug therapy is one of them. Drug therapy is used to stop the growth of cancer cells and eliminate them from the body, as well as to restore healthy cells. Anticancer drugs are also used to kill and halt this malignant disease and many drugs test are accompanied to fight the fatal disease. This requires timely diagnosis, screening, and medication that benefits patients to control the deadly disease in the future. For further detail see [1,2,3,14].
Topological Indices (TIs) are termed as numeric descriptors that are obtained from molecular graphs to describe chemical system and are mostly used to investigate the physiochemical properties of several drugs. There are several kinds of polynomials and topological indices which are extensively calculated, represent chemical structure and have vital position in chemical graph theory. Among these classes, degree-based topological indices are of great importance and particularly in chemistry. The use of graph invariants (TIs) in QSPR and QSAR studies has been of key interest in recent years. Topological indices have application in various areas of biology, mathematics, bioinformatics, mathematics, informatics, biology etc., but their utmost significant use to date is in the non-empirical Quantitative Structure- Property Relationships (QSPR) and Quantitative Structure -Activity Relationships (QSAR) [5,18,26]. The ABC index, Wiener index and Randic index are helpful for predicting the bioactivity of drugs. The QSPR models help to determine the optimal relationship between the topological indices and psychochemical characteristic. These psychochemical qualities are being studied because they have a big impact on bioactivity and drug transit in the human body. In this paper, we compute degree-based TIs related to blood cancer drugs. In the same way, anticancer drugs represent chemical compounds on which given topological indices are well defined and discussed in QSPR analysis. The corresponding characteristic calculated in this way is highly correlated with characteristic of blood cancer drugs by the use of linear regression.
In drugs, structure elements denote vertices, and corresponding bonds connecting the atoms are termed edges. Graph G (V, E) is considered as simple, finite, and connected, whereas V and E represented in chemical graph are termed as vertex and edge sets, respectively. Degree of vertex in graph G is number of vertices adjacent to it and is denoted by du. Valence of a compound in chemistry and the degree of vertex in the graph are closely related concepts, for more details see [4,10,11,13]. Degree-based topological indices used are defined below:
Def. 2.1 The ABC index [13] of a molecular graph G is defined as
ABC(G)=∑uv∈E(G)√du+dv+2dudv |
Def. 2.2 The first-degree-based topological index is Randic index X(G) introduced by Milan Randic in 1975 [15]. Randic index is defined as:
RA(G)=∑uv∈E(G)√1dudv |
Def. 2.3 The sum connectivity index [16] of a molecular graph G is defined as
S(G)=∑uv∈E(G)√1du+dv |
Def. 2.4 The GA index [17] of a molecular graph G is defined as:
GA(G)=∑uv∈E(G)2√dudvdu+dv |
Def. 2.5 The first and second Zagreb indices [19] of a molecular graph G are defined as follows:
M1(G)=∑uv∈E(G)(du+dv) |
M2(G)=∑uv∈E(G)(dudv) |
Def. 2.6 The harmonic index [20] of a molecular graph G is defined as:
H(G)=∑uv∈E(G)2du+dv |
Def. 2.7 The hyper Zagreb index [21] of a molecular graph G is defined as:
HM(G)=∑uv∈E(G)(du+dv)2 |
Def. 2.8 The forgotten index [23] of a molecular graph G is defined as:
F(G)=∑uv∈E(G)[(du)2+(dv)2] |
The values of physical properties are taken from Chem Spider. It is observed from data Tables 2 and is found these data values are normally distributed. So, linear regression model is most adequate to test and adopt for said analysis. For more information on degree-based topological indices, we refer the reader to visit the following articles [4,5,6,7,8,9,22,27,28].
The molecular formula for bulasan is C8H14N6S2. Busulfan is an antineoplastic alkylating agent and is used for many kinds of cancer. Alkylating agents have the ability to add alkyl groups to several electronegative groups under conditions present in cells. They prohibit tumor development by crosslinking guanine bases in DNA double-helix strands, directly attacking DNA. The strands are unable to separate and uncoil. It is mandatory in DNA replication and cells are no longer divide. The molecular formula of clofarabine is C10H11ClF N5 O5. Clofarabine interfere in growth of cancer cells. Clofarabine prevents cells from making DNA and RNA by interfering with the synthesis of nucleic acids, thus stopping the growth of cancer cells. The chemical formula of azacitidine is C8H12N4O5. Azacytidine has been used as an antineoplastic agent. The molecular formula of meracptopurine is C5H4N4S. Mercaptopurine is one of a large series of purine analogues that interfere with nucleic acid biosynthesis and have been found active against human leukemias. The molecular formula of Tioguanine is C5H5N5S. Antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia.
The molecular formula of nelarabine is C11H15N5 S5. Nelarabine is a purine nucleoside analog and antineoplastic agent used for the treatment of acute T-cell lymphoblastic leukemia and T cell lymphoblastic lymphoma with inadequate clinical response to prior chemotherapeutic treatments. The molecular formula of cytarabine is C11H15N5 S5. Cytarabine is an antineoplastic antimetabolite used in the treatment of several forms of leukemia, including acute myelogenous leukemia and meningeal leukemia. The molecular formula of bosutinib is C26H29Cl2N5 O5. It is used to treat a certain type of chronic myeloid leukemia (a cancer of white blood cells). The molecular formula of dasatinib is C22H26ClN7S.Dasatinib is a tyrosine kinase inhibitor used for the treatment of lymphoblastic or chronic myeloid leukemia. The molecular formula of melphala is C13H18Cl2N2 O2. Melphalan is an antineoplastic in the class of alkylating agents and is used to treat various forms of cancer. Alkylating agents are so named because of their ability to add alkyl groups to many electronegative groups under conditions present in cells. They stop tumor growth by crosslinking guanine bases in DNA. The molecular formula of dexamethasone is C22H29FO5. Dexamethasone is a glucocorticoid available in various modes of administration that is used for the treatment of various inflammatory conditions, including bronchial asthma, as well as endocrine and rheumatic disorders. The molecular formula of doxorubicine is C27H29NO11. Doxorubicin is an antineoplastic in the anthracycline class. Anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. The molecular formula of carbopalatin is C6H12N2O4Pt. Carboplatin is a alkylating agent used to treat advanced ovarian cancer.
In this section, degree-based TIs are imposed on blood cancer drugs. The relation between QSPR analysis and topological indices depicts that they are highly correlated as regards physicochemical properties use to cure blood cancer. The thirteen medicines azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, cytarabine, clofarabine, bosutinib, dasatinib, melphala, dexamethasone, doxorubicine, carboplatin are used for this analysis of said disease. The chemical structure for given drugs is shown in Figure 1. In drugs, structure elements denote vertices, and corresponding bonds connecting the atoms are termed edges. Hence, the study used regression analysis for the calculation purpose.
In this article, quantitative structure analysis about nine topological indices is calculated for QSPR modeling purpose. Five physical properties, boiling point (BP), molar volume (MV), molar refractivity (R), complexity and flash point (FP), for 13 medicines arranged in Figure 1, are investigated. We execute the regression analysis for the drugs and tested linear regression model is tested with the help of equation as under:
P=A+b(TI) | (1) |
Here, P is the physicochemical property of the candidate drug. The TI, A, and b represent topological index, constant and regression coefficient, respectively. All data tables are calculated by the use of SPSS software version-26 to obtain accurate results. The nine TIs of candidate blood cancer drugs and their physical property are investigated with the help of linear QSPR model. By applying Eq 1, we calculate linear regression model for degree based TIs of candidate drugs given as under.
Theorem 1. Let G1 be the graph of Azacitidine, the various topological indices of G are given as follows.
i) ABC(G1)=22.04
ii) RA(G1)=13.12
iii) S(G1)=13.46
iv) GA(G1)=27.72
v) M1(G1)=162
vi) M2(G1)=209
vii) F(G1)=516
viii) H(G1)=11.95
ix) HM(G1)=934.00
Proof. Let G1 be the graph of Azacitidine with edge set E, Let Em,n represents the class of edges of G joining vertices of degrees m and n. With |E1,2|=3, |E1,3|=4, |E1,4|=6, |E2,3|=4, |E2,4|=5, |E3,3|=3, |E3,4|=1, |E4,4|=4.
i) By using definition 2.1 and above given edge partitions Em,n we get,
(G1)==3√1+2−21×2+4√1+3−21×3+6√1+4−21×4+4√2+3−22×35√2+4−22×4+3√3+3−23×3+1√3+4−23×4=22.04. |
ii) By using Definition 2.2 and above given edge partitions Em,n we get,
RA(GG1)==3√11×2+4√11×3+6√11×4+4√12×35√12×4+3√13×3+1√13×4+4√14×4=13.12. |
iii) By using Definition 2.3 and above given edge partitions Em,n we get,
S(G1)==3√11+2+4√11+3+6√11+4+4√12+35√12+4+3√13+3+1√13+4+4√14+4=13.46. |
iv) By using definition 2.4 and above given edge partitions Em,n we get,
GA(G1)==6√1×21+2+8√1×31+3+12√1×41+4+8√2×32+3+10√2×42+4+6√3×33+3+2√3×43+4+8√4×44+4=27.72 |
v) By using Definition 2.5 and above given edge partitions Em,n we get,
M1(G1)=∑uv∈E(G1)(su+sv)=3(1+2)+4(1+3)+6(1+4)+4(2+3)+5(2+4)+3(3+3)+1(3+4)+4(4+4)=162. |
vi) By using Definition 2.5 and above given edge partitions Em,n we get,
M2(G1)=3(1×2)+4(1×3)+6(1×4)+4(2×3)+5(2×4)+3(3×3)+1(3×4)+4(4×4)=209. |
vii) By using definition 2.6 and above given edge partitions Em,n we get,
H(G1)=6(11+2)+8(11+3)+12(11+4)+8(12+3)+10(12+4)+6(13+3)+2(13+4)+8(14+4)=11.95 |
viii) By using definition 2.7 and above given edge partitions Em,n we get,
HM(G1)=3(1+2)2+3(1+3)2+6(1+4)2+4(2+3)2+5(2+4)2+3(3+3)2+1(3+4)2+4(4+4)2=934 |
ix) By using definition 2.8 and above given edge partitions Em,n we get,
F(G1)=3(1+4)+4(1+9)+6(1+16)+4(4+9)+5(4+16)+3(9+9)+1(9+16)+4(16+16)=516. |
Theorem2. Let G2 be the graph of Buslfan, The various Topological indices of G2 are given as follows.
i) ABC(G2)=20.77
ii) RA(G2)=11.31
iii) S(G2)=11.04
iv) GA(G2)=22.23
v) M1(G2)=148
vi) M2(G2)=176
vii) F(G2)=526
viii) H(G2)=9.45
ix) HM(G2)=878.00
Proof. Let G2 be the graph of Buslfan with edge set E′, Let E′(m,n) represents the class of edges of G2 joining vertices of degrees m and n. With |E′(1,4)|=18, |E′(2,4)|=3, |E′(4,4)|=5.
i) By using definition 2.1 and edge partitions E′(m,n) we get,
(G2)==18√1+4−21×4+3√2+4−22×4+5√4+4−24×4=20.77. |
ii) By using def 2.2 and edge partition E′(m,n) we get,
RA(G2)=18√11×4+3√12×4+5√14×4=11.31 |
iii) Definition 2.3 and edge partition E′(m,n) gives
S(G2)=18√11+4+3√12+4+5√14+4=11.04. |
iv) Using def 2.4 and edge partition E′(m,n) we get,
GA(G2)=36√1×41+4+6√2×42+4+10√4×44+4=22.23 |
v) Using def 2.5 and edge partition E′(m,n) we get,
M1(G2)=18(1+4)+3(2+4)+5(4+4)=148 |
vi) Using def 2.5 and edge partition E′(m,n) we get,
M2(G2)=18(1×4)+3(2×4)+5(4×4)=176 |
vii) Using def 2.6 and edge partition E′(m,n) we get,
H(G2)=36(11+4)+6(12+4)+10(14+4)=9.45 |
viii) Using def 2.7 and edge partition E′(m,n) we get,
HM(G)=18(1+4)2+3(2+4)2+5(4+4)2=878 |
ix) By using def 2.8 and edge partition E′(m,n) we get,
F(G2)=18(1+16)+3(4+16)+5(16+16)=526 |
One can calculate the topological indices of the remaining drugs by adopting a similar procedure applied in Theorem 1, Theorem 2 and using definitions 2.1 to 2.8. Also, the calculated values of all drugs are listed in Table 2.
Using (1), we have calculated the following diverse linear models for all degree-based topological index, which are given as under:
1. Regression models for atom bond connectivity index ABC (G):
Boiling point = 395.921 + 5.802 [ABC (G)]
Refractive index = 6.034 + 2.468 [ABC (G)]
FP = 197.699 + 3.486 [ABC (G)]
MV = -10.083 + 7.258 [ABC (G)]
Complexity = -107.244 + 18.352 [ABC (G)]
2. Regression models for the atom-bond connectivity index RA (G)]:
Boiling point = 385.002+ 10.833[RA (G)]
Refractive index = 4.535 + 4.408 [RA (G)]
FP = 191.561+ 6.451[RA (G)]
MV = -14.889 + 12.947 [RA (G)]
Complexity = -125.985+ 33.119 [RA (G)]
3. Regression models for atom bond connectivity index S (G):
Boiling point = 384.612+ 10.664 [S (G)]
Refractive Index = 5.102 + 4.293 [S (G)]
FP = 191.365+ 6.348 [S (G)]
MV = -11.972 + 12.540 [S (G)]
Complexity = -125.538 + 32.402 [S (G)]
4. Regression models for atom bond connectivity index GA (G):
Boiling point = 386.718+ 5.013 [GA (G)]
Refractive Index = 6.258 + 2.010 [GA (G)]
FP = 192.642 + 2.985 [GA (G)]
MV = -7.333 + 5.841 [GA (G)]
Complexity = 121.577 + 15.270 [GA (G)]
5. Regression models for atom bond connectivity index M1 (G):
Boiling point = 405.004+.738 [M1 (G)]
Refractive Index = 9.310 +.318[M1 (G)]
FP = 202.599 + 0.448 [M1 (G)]
MV = 1.253 +.932 [M1 (G)]
Complexity = -97.937 + 2.432 [M1 (G)]
6. Regression models for atom bond connectivity index HM (G):
Boiling point = 419.068 +.115 [HM (G)]
Refractive index = 13.368 + 0.052 [HM (G)]
FP = 210.170 + 0.071 [HM (G)]
MV = 13.491 +.151 [HM (G)]
Complexity = -78.956 +.404 [HM (G)]
7. Regression models for atom bond connectivity index M2 (G):
Boiling point = 414.903+.535 [M2 (G)]
Refractive index = 13.461 +.233 [M2 (G)]
FP = 208.190 +.327 [M2 (G)]
MV = 15.185 +.677 [M2 (G)]
Complexity = -87.855 + 1.849 [M2 (G)]
8. Regression models for the atom-bond connectivity index F (G):
Boiling point = 422.835+.200 [F (G)]
Refractive Index = 13.494 +.092 [F (G)]
FP = 212.010 +.124 [F (G)]
MV = 13.736 +.273 [F (G)]
Complexity = -71.482 +.717 [F (G)]
9. Regression models for atom bond connectivity index H (G):
Boiling point = 377.349 + 12.647 [H (G)]
Refractive Index = 4.240 + 4.943 [H (G)]
FP = 187.144+ 7.500 [H (G)]
MV = -14.817 + 14.434 [H (G)]
Complexity = -136.607 + 37.543 [H (G)]
The physicochemical properties of 13 blood cancer drugs are presented in Table 2. Their TI values are listed in Table 1 and computed from their molecular structure. The correlation coefficient between five physicochemical properties and TIs is listed in Table 3. The graph between the correlation coefficient of the physicochemical properties of the drug and the topological index is drawn in Figure 2.
Name of drug | ABC(G) | RA(G) | S(G) | GA(G) | M1(G) | M2(G) | F(G) | H(G) | HM(G) |
Azacitidine | 22.04 | 13.12 | 13.46 | 27.72 | 162 | 209 | 516 | 11.95 | 934.00 |
Buslfan | 20.77 | 11.31 | 11.04 | 22.23 | 148 | 176 | 526 | 9.45 | 878.00 |
Mercaptopurine | 10.91 | 6.52 | 6.74 | 14.25 | 76 | 93 | 210 | 6.10 | 396.00 |
Tioguanine | 12.39 | 7.43 | 7.65 | 16.12 | 86 | 105 | 238 | 6.93 | 448.00 |
Nelarabine | 27.99 | 16.29 | 16.67 | 35.13 | 206 | 262 | 652 | 14.85 | 1176.00 |
Cytarabine | 22.77 | 13.55 | 13.68 | 28.62 | 168 | 218 | 536 | 12.32 | 972.00 |
Clofarabine | 24.24 | 14.04 | 14.43 | 30.59 | 180 | 233 | 570 | 12.82 | 1036.00 |
Bosutinib | 51.18 | 28.73 | 29.39 | 61.92 | 374 | 467 | 1198 | 25.39 | 2132.00 |
Dasatinib | 45.50 | 25.95 | 26.60 | 56.11 | 330 | 412 | 1028 | 23.43 | 1852.00 |
Melphala | 28.12 | 16.18 | 16.15 | 33.33 | 202 | 252 | 656 | 14.28 | 1160.00 |
Dexamethasone | 44.81 | 24.85 | 25.37 | 54.14 | 354 | 493 | 1242 | 21.86 | 2228.00 |
Doxorubicine | 52.32 | 30.01 | 30.76 | 65.33 | 396 | 522 | 1288 | 27.11 | 2332.00 |
Carboplatin | 19.82 | 10.76 | 10.95 | 23.16 | 152 | 202 | 532 | 9.34 | 936.00 |
Name of drug | Molar volume (cm3) | Boiling Point ℃ | Refractive Index (m3 mol−1) | Complexity | Flash Point ℃ |
Azacitidine | 117.10 | 534.21 | 54.10 | 384.00 | 277.00 |
Buslfan | 182.40 | 464.00 | 50.90 | 234.40 | |
Mercaptopurine | 94.20 | 491.00 | 41.00 | 19.00 | 250.50 |
Tioguanine | 80.20 | 460.70 | 46.89 | 225.00 | 232.00 |
Nelarabine | 149.90 | 721.00 | 65.80 | 377.00 | 389.90 |
Cytarabine | 128.40 | 547.70 | 52.60 | 383.00 | 283.80 |
Clofarabine | 143.10 | 550.00 | 63.60 | 370.00 | 286.40 |
Bosutinib | 388.30 | 649.70 | 142.12 | 734.00 | 346.70 |
Dasatinib | 366.40 | 133.08 | 642.00 | ||
Melphala | 231.20 | 473.00 | 78.23 | 265.00 | 239.00 |
Dexamethasone | 296.20 | 568.20 | 100.20 | 805.00 | 298.00 |
Doxorubicine | 336.60 | 216.00 | 134.59 | 977.00 | 443.80 |
Carboplatin | 366.40 | 60.04 | 177.00 |
Topological Index | Correlation coefficient of complexity | Correlation coefficient of refractive index | Correlation coefficient of flash point | Correlation coefficient of boiling point | Correlation coefficient of molar volume |
ABC(G) | 0.943 | 0.966 | 0.731 | 0.672 | 0.953 |
RA(G) | 0.947 | 0.965 | 0.751 | 0.7 | 0.946 |
S(G) | 0.949 | 0.966 | 0.759 | 0.708 | 0.942 |
GA(G) | 0.951 | 0.966 | 0.764 | 0.711 | 0.938 |
M1(G) | 0.953 | 0.952 | 0.728 | 0.66 | 0.939 |
M2(G) | 0.96 | 0.928 | 0.72 | 0.645 | 0.913 |
HM(G) | 0.954 | 0.927 | 0.705 | 0.625 | 0.822 |
F(G) | 0.949 | 0.925 | 0.692 | 0.609 | 0.927 |
H(G) | 0.95 | 0.965 | 0.772 | 0.725 | 0.936 |
In this section, QSPR modeling is done to find a relation between physicochemical properties of blood cancer drugs such as medicines azacitidine, buslfan, mercaptopurine, tioguanine, nelarabine, cytarabine, clofarabine, bosutinib, dasatinib, melphala, dexamethasone, doxorubicine, carboplatin and their calculated degree based TIs. whereas TIs, b, r, and N are independent variable, regression model constant, correlation coefficient and sample size respectively. We perceive the correlation coefficient come to be one the experimental and theoretical calculation are close that are marked bold in tables. This type of test can helpful to compare and decide the improvement of model. It is noted the value of r is greater than 0.6 and p value is less than 0.05. Hence, it decides all properties are significant. Tables 4–12 Represent the Statistical parameters used in QSPR models of TIs.
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 395.921 | 5.802 | .672 | .451 | 8.228 | .017 | Significant |
Refractive index | 13 | 6.034 | 2.468 | .966 | .933 | 154.093 | .000 | Significant |
Flash point | 11 | 197.699 | 3.486 | .731 | .535 | 10.343 | .011 | Significant |
Molar volume | 12 | −10.083 | 7.258 | .953 | .909 | 99.904 | .000 | Significant |
Complexity | 12 | −107.244 | 18.352 | .943 | .889 | 79.955 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 385.002 | 10.833 | .700 | .490 | 9.614 | .011 | Significant |
Refractive index | 13 | 4.535 | 4.408 | .965 | .932 | 150.523 | .000 | Significant |
Flash point | 11 | 191.561 | 6.451 | .751 | .564 | 11.648 | .008 | Significant |
Molar volume | 12 | −14.889 | 12.947 | .946 | .894 | 84.680 | .000 | Significant |
Complexity | 12 | −125.985 | 33.119 | .947 | .896 | 86.612 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 384.612 | 10.664 | .708 | .501 | 10.027 | .010 | Significant |
Refractive index | 13 | 5.102 | 4.293 | .966 | .934 | 155.042 | .000 | Significant |
Flash point | 11 | 191.365 | 6.348 | .759 | .576 | 12.232 | .007 | Significant |
Molar volume | 12 | −11.972 | 12.540 | .942 | .887 | 78.511 | .000 | Significant |
Complexity | 12 | −125.538 | 32.402 | .949 | .900 | 90.006 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 386.718 | 5.013 | .711 | .505 | 10.202 | .010 | Significant |
Refractive index | 13 | 6.258 | 2.010 | .966 | .933 | 152.002 | .000 | Significant |
Flash point | 11 | 192.642 | 2.985 | .764 | .583 | 12.597 | .006 | Significant |
Molar volume | 12 | −7.333 | 5.841 | .938 | .879 | 72.917 | .000 | Significant |
Complexity | 12 | −121.577 | 15.270 | .951 | .905 | 95.147 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 405.004 | .738 | .660 | .436 | 7.721 | .019 | Significant |
Refractive index | 13 | 9.310 | .318 | .952 | .907 | 106.874 | .000 | Significant |
Flash point | 11 | 202.599 | .448 | .728 | .530 | 10.153 | .011 | Significant |
Molar volume | 12 | 1.253 | .932 | .939 | .882 | 74.603 | .000 | Significant |
Complexity | 12 | −97.937 | 2.432 | .953 | .908 | 98.435 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 414.903 | .535 | .645 | .416 | 7.127 | .024 | Significant |
Refractive index | 13 | 13.461 | .233 | .928 | .861 | 67.942 | .000 | Significant |
Flash point | 11 | 208.190 | .327 | .720 | .518 | 9.666 | .013 | Significant |
Molar volume | 12 | 15.185 | .677 | .913 | .834 | 50.072 | .000 | Significant |
Complexity | 12 | −87.855 | 1.849 | .960 | .922 | 118.593 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 419.068 | .115 | .625 | .391 | 6.420 | .030 | Significant |
Refractive index | 13 | 13.368 | .052 | .927 | .859 | 67.002 | .000 | Significant |
Flash point | 11 | 210.170 | .071 | .705 | .497 | 8.876 | .015 | Significant |
Molar volume | 12 | 13.491 | .151 | .822 | .849 | 56.325 | .000 | Significant |
Complexity | 12 | −78.956 | .404 | .954 | .911 | 102.026 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 422.835 | .200 | .609 | .370 | 5.882 | .036 | Significant |
Refractive index | 13 | 13.494 | .092 | .925 | .855 | 64.869 | .000 | Significant |
Flash point | 11 | 212.010 | .124 | .692 | .478 | 8.256 | .018 | Significant |
Molar volume | 12 | 13.736 | .273 | .927 | .859 | 64.032 | .000 | Significant |
Complexity | 12 | −71.482 | .717 | .949 | .901 | 90.832 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 377.349 | 12.647 | .725 | .526 | 11.103 | .008 | Significant |
Refractive index | 13 | 4.240 | 4.943 | .965 | .930 | 147.100 | .000 | Significant |
Flash point | 11 | 187.144 | 7.500 | .772 | .596 | 13.299 | .005 | Significant |
Molar volume | 12 | −14.817 | 14.434 | .936 | .877 | 71.041 | .000 | Significant |
Complexity | 12 | −136.607 | 37.543 | .950 | .902 | 91.960 | .000 | Significant |
Measure of variation for an observation calculated around the computed regression line is said to be standard error estimate. It measures the amount of accuracy of predictions made around computed regression line and is mentioned in Table 13. We also compare the physicochemical properties of the experimental and theoretical calculated values of the models and are presented in Tables 14–18.
Topological Index | Std. Error of the estimate for boiling point | Std. Error of the estimate for refractive index | Std. Error of the estimate for flash point | Std. Error of the estimate for molar volume | Std. Error of the estimate for complexity |
ABC(G) | 125.47771 | 9.78297 | 49.28724 | 34.98955 | 99.29113 |
RA(G) | 135.48910 | 9.89048 | 47.70434 | 3.69784 | 95.80944 |
S(G) | 135.49670 | 9.75496 | 47.04354 | 38.98953 | 94.16957 |
GA(G) | 135.48311 | 9.84552 | 46.64458 | 40.28320 | 91.83836 |
M1(G) | 135.40209 | 11.57777 | 49.53170 | 39.877986 | 90.43550 |
M2(G) | 135.28260 | 14.14755 | 50.17335 | 47.32703 | 83.04506 |
HM(G) | 135.30024 | 14.23249 | 51.27036 | 45.04104 | 88.97405 |
F(G) | 135.31481 | 14.43119 | 52.18328 | 43.52285 | 93.78305 |
H(G) | 135.48656 | 9.99697 | 45.90422 | 40.74687 | 93.26266 |
Name of drug | Molar volume of drug | Molar volume from regression model for ABC(G) Index |
Molar volume from regression model for RA(G) Index |
Molar volume from regression model for SCI(G) Index |
Molar volume from regression model for GA(G) Index |
Molar volume from regression model for M1(G) Index |
Molar volume from regression model for M2(G)Index |
Molar volume from regression model for F(G)Index |
Molar volume from regression model for H(G) Index | Molar volume from regression model for HM(G)Index |
Azacitidine | 117.1 cm3 | 149.883 | 139.827 | 156.816 | 154.579 | 152.237 | 156.678 | 154.604 | 157.669 | 154.525 |
Buslfan | 182.4 cm3 | 140.665 | 107.460 | 126.469 | 122.512 | 139.189 | 134.337 | 157.334 | 121.584 | 146.069 |
Mercaptopurine | 94.2 cm3 | 69.1017 | 64.0877 | 72.5476 | 75.9012 | 72.085 | 78.146 | 71.066 | 73.2304 | 73.287 |
Tioguanine | 80.2 cm3 | 79.8436 | 74.8337 | 83.959 | 86.8239 | 81.405 | 86.27 | 78.71 | 85.2106 | 81.139 |
Nelarabine | 149.9 cm3 | 193.068 | 177.374 | 197.069 | 197.861 | 193.245 | 192.559 | 191.732 | 199.527 | 191.067 |
Cytarabine | 128.4 cm3 | 155.181 | 144.618 | 159.575 | 159.836 | 157.829 | 162.771 | 160.064 | 163.009 | 160.263 |
Clofarabine | 143.1 cm3 | 165.850 | 151.091 | 168.980 | 171.343 | 169.013 | 172.926 | 169.346 | 170.226 | 169.927 |
Bosutinib | 388.3 cm3 | 361.381 | 313.835 | 356.578 | 354.341 | 349.821 | 331.344 | 340.79 | 351.662 | 335.423 |
Dasatinib | 366.4 cm3 | 320.156 | 288.459 | 321.592 | 320.405 | 308.813 | 294.109 | 294.38 | 323.371 | 293.143 |
Melphala | 231.2 cm3 | 194.012 | 169.994 | 190.549 | 187.347 | 189.517 | 185.789 | 192.824 | 191.300 | 188.651 |
Dexamethasone | 296.2 cm3 | 315.148 | 268.132 | 306.167 | 308.898 | 331.181 | 348.946 | 352.802 | 300.710 | 349.919 |
Doxorubicine | 336.6 cm3 | 369.655 | 336.104 | 373.758 | 374.259 | 370.325 | 368.579 | 365.36 | 376.488 | 365.623 |
Carboplatin | 133.770 | 106.036 | 125.341 | 127.944 | 142.917 | 151.939 | 158.972 | 119.996 | 154.827 |
Name of drug | Flash point of drug | Flash point computed from regression model for ABC(G) Index | Flash point computed from regression model for RA(G) Index | Flash point computed from regression model for SCI(G) Index | Flash point computed from regression model for GA(G) Index | Flash point computed from regression model for M1(G) Index | Flash point computed from regression model for M2(G)Index | Flash point computed from regression model for F(G)Index | Flash point computed from regression model for H(G) Index | Flash point computed from regression model for HM(G)Index |
Azacitidine | 277 ℃ | 523.797 | 514.456 | 528.149 | 525.678 | 524.56 | 526.718 | 526.035 | 528.480 | 526.478 |
Buslfan | 234.4 ℃ | 516.428 | 487.373 | 502.342 | 498.157 | 514.228 | 509.063 | 528.035 | 496.863 | 520.038 |
Mercaptopurine | 250.5 ℃ | 459.220 | 451.083 | 456.487 | 458.153 | 461.092 | 464.658 | 464.835 | 454.495 | 464.608 |
Tioguanine | 232 ℃ | 467.807 | 460.074 | 466.191 | 467.527 | 468.472 | 471.078 | 470.435 | 464.992 | 470.588 |
Nelarabine | 389.9 ℃ | 558.319 | 545.872 | 562.380 | 562.824 | 557.032 | 555.073 | 553.235 | 565.157 | 554.308 |
Cytarabine | 283.8 ℃ | 528.032 | 518.464 | 530.495 | 530.190 | 528.988 | 531.533 | 530.035 | 533.16 | 530.848 |
Clofarabine | 286.4 ℃ | 536.561 | 523.881 | 538.493 | 540.065 | 537.844 | 539.558 | 536.835 | 539.483 | 538.208 |
Bosutinib | 346.7 ℃ | 692.867 | 660.051 | 698.027 | 697.123 | 681.016 | 664.748 | 662.435 | 698.456 | 664.248 |
Dasatinib | 659.912 | 638.819 | 668.274 | 667.997 | 648.544 | 635.323 | 628.435 | 673.668 | 632.048 | |
Melphala | 239 ℃ | 559.073 | 539.697 | 556.835 | 553.801 | 554.08 | 549.723 | 554.035 | 557.948 | 552.468 |
Dexamethasone | 298 ℃ | 655.908 | 621.811 | 655.157 | 658.12 | 666.256 | 678.658 | 671.235 | 653.812 | 675.288 |
Doxorubicine | 443.8 ℃ | 699.481 | 678.684 | 712.636 | 714.217 | 697.252 | 694.173 | 680.435 | 720.209 | 687.248 |
Carboplatin | 5109166 | 486.182 | 501.382 | 502.819 | 517.18 | 522.973 | 529.235 | 495.472 | 526.708 |
Name of drug | Refractive Index of drug | Refractive Index computed from regression model for ABC(G) Index |
Refractive Index computed from regression model for RA(G) Index |
Refractive Index computed from regression model for SCI(G) Index |
Refractive Index computed from regression model for GA(G) Index |
Refractive Index computed from regression model for M1(G) Index |
Refractive Index computed from regression model for M2(G) Index |
Refractive Index computed from regression model for F(G) Index |
Refractive Index computed from regression model for H(G) Index | Refractive Index computed from regression model for HM(G) Index |
Azacitidine | 54.1 (m3 mol−1) | 60.4287 | 57.2106 | 62.8857 | 61.9752 | 60.826 | 62.158 | 60.966 | 63.3088 | 61.936 |
Buslfan | 50.9 (m3 mol−1) | 57.2943 | 46.1906 | 52.4967 | 50.9403 | 56.374 | 54.469 | 61.886 | 50.9513 | 59.024 |
Mercaptopurine | 41 (m3 mol−1) | 32.9598 | 31.4238 | 34.0368 | 34.9005 | 33.478 | 35.13 | 32.814 | 34.3923 | 33.96 |
Tioguanine | 46.89 (m3 mol−1) | 36.6125 | 35.0824 | 37.9434 | 38.6592 | 36.658 | 37.926 | 35.39 | 38.4949 | 36.664 |
Nelarabine | 65.8 (m3 mol−1) | 75.1133 | 69.9938 | 76.6663 | 76.8693 | 74.818 | 74.507 | 73.478 | 77.6435 | 74.52 |
Cytarabine | 52.6 (m3 mol−1) | 62.2303 | 58.8415 | 63.8302 | 63.7842 | 62.734 | 64.255 | 62.806 | 65.1377 | 63.912 |
Clofarabine | 63.6 (m3 mol−1) | 65.8583 | 61.0455 | 67.0499 | 67.7439 | 66.55 | 67.75 | 65.934 | 67.6092 | 67.24 |
Bosutinib | 142.12 (m3 mol−1) | 132.346 | 116.454 | 131.273 | 130.717 | 128.242 | 122.272 | 123.71 | 129.742 | 124.232 |
Dasatinib | 133.08 (m3 mol−1) | 118.328 | 107.814 | 119.295 | 119.039 | 114.25 | 109.457 | 108.07 | 120.054 | 109.672 |
Melphala | 78.23 (m3 mol−1) | 75.4341 | 67.4812 | 74.4339 | 73.2513 | 73.546 | 72.177 | 73.846 | 74.8260 | 73.688 |
Dexamethasone | 100.2 (m3 mol−1) | 116.625 | 100.893 | 114.015 | 115.079 | 121.882 | 128.33 | 127.758 | 112.294 | 129.224 |
Doxorubicine | 134.59 (m3 mol−1) | 135.159 | 124.035 | 137.154 | 137.571 | 135.238 | 135.087 | 131.99 | 138.244 | 134.632 |
Carboplatin | 60.04 (m3 mol−1) | 54.9497 | 45.7057 | 52.1103 | 52.8096 | 57.646 | 60.527 | 62.438 | 50.4076 | 62.04 |
Name of drug | Complexity of drug | Complexity computed from regression model for ABC(G) Index | Complexity computed from regression model for RA(G) Index | Complexity computed from regression model for SCI(G) Index | Complexity computed from regression model for GA(G) Index | Complexity computed from regression model for M1(G) Index | Complexity computed from regression model for M2(G) Index | Complexity computed from regression model for F(G) Index | Complexity computed from regression model for H(G) Index | Complexity computed from regression model for HM(G)Index |
Azacitidine | 384 | 297.234 | 269.787 | 310.592 | 301.707 | 296.047 | 298.586 | 298.49 | 312.031 | 298.38 |
Buslfan | 273.927 | 186.989 | 232.180 | 217.875 | 261.999 | 237.569 | 305.66 | 218.174 | 275.756 | |
Mercaptopurine | 190 | 92.9763 | 76.0409 | 92.8514 | 96.0205 | 86.895 | 84.102 | 79.088 | 92.4053 | 81.028 |
Tioguanine | 225 | 120.137 | 103.529 | 122.337 | 124.575 | 111.215 | 106.29 | 99.164 | 123.566 | 102.036 |
Nelarabine | 377 | 406.428 | 365.832 | 414.603 | 414.858 | 403.055 | 396.583 | 396.002 | 420.906 | 396.148 |
Cytarabine | 383 | 310.631 | 282.041 | 317.721 | 315.450 | 310.639 | 315.227 | 312.83 | 325.922 | 313.732 |
Clofarabine | 370 | 337.608 | 298.600 | 342.022 | 345.532 | 339.823 | 342.962 | 337.208 | 344.694 | 339.588 |
Bosutinib | 734 | 832.011 | 714.906 | 826.756 | 823.941 | 811.631 | 775.628 | 787.484 | 816.609 | 782.372 |
Dasatinib | 642 | 727.772 | 649.993 | 736.355 | 735.222 | 704.623 | 673.933 | 665.594 | 743.025 | 669.252 |
Melphala | 265 | 408.814 | 346.954 | 397.754 | 387.372 | 393.327 | 378.093 | 398.87 | 399.507 | 389.684 |
Dexamethasone | 805 | 715.109 | 597.996 | 696.500 | 705.140 | 762.991 | 823.702 | 819.032 | 684.083 | 821.156 |
Doxorubicine | 977 | 852.932 | 771.871 | 871.147 | 876.012 | 865.135 | 877.323 | 852.014 | 881.183 | 863.172 |
Carboplatin | 177 | 256.492 | 183.346 | 229.263 | 232.076 | 271.727 | 285.643 | 309.962 | 214.044 | 299.188 |
Name of drug | Boiling Point of drug | Boiling Point computed from regression model for ABC(G) Index | Boiling Point computed from regression model for RA(G) Index | Boiling Point computed from regression model for SCI(G) Index | Boiling Point computed from regression model for GA(G) Index | Boiling Point computed from regression model for M1(G) Index | Boiling Point computed from regression model for M2(G)Index | Boiling Point computed from regression model for F(G)Index |
Boiling Point computed from regression model for H(G) Index | Boiling Point computed from regression model for HM(G)Index |
Azacitidine | 534.2 ± 60 ℃ at 760 mm Hg | 523.79 | 514.45 | 528.14 | 525.67 | 524.56 | 526.718 | 526.03 | 528.48 | 526.48 |
Buslfan | 464 ± 28 ℃ at 760 mm Hg | 516.42 | 487.37 | 502.34 | 498.15 | 514.22 | 509.063 | 528.03 | 496.86 | 520.04 |
Mercaptopurine | 491 ± 25 ℃ at 760 mm Hg | 459.22 | 451.08 | 456.48 | 458.15 | 461.09 | 464.658 | 464.83 | 454.49 | 464.61 |
Tioguanine | 460.7 ± 37 ℃ at 760 mm Hg | 467.80 | 460.07 | 466.19 | 467.52 | 468.47 | 471.078 | 470.43 | 464.99 | 470.59 |
Nelarabine | 721 ± 70 ℃ at 760 mm Hg | 558.31 | 545.87 | 562.38 | 562.82 | 557.0 | 555.073 | 553.23 | 565.15 | 554.31 |
Cytarabine | 547.7 ± 60 ℃ at 760 mm Hg | 528.03 | 518.46 | 530.49 | 530.19 | 528.98 | 531.533 | 530.03 | 533.16 | 530.85 |
Clofarabine | 550 ± 60 ℃ at 760 mm Hg | 536.56 | 523.88 | 538.49 | 540.06 | 537.84 | 539.558 | 536.83 | 539.48 | 538.21 |
Bosutinib | 649.7 ± 55 ℃ at 760 mm Hg | 692.86 | 660.05 | 698.02 | 697.12 | 681.01 | 664.748 | 662.43 | 698.45 | 664.25 |
Dasatinib | 659.91 | 638.81 | 668.27 | 667.99 | 648.54 | 635.323 | 628.43 | 673.66 | 632.05 | |
Melphala | 473 ± 45 ℃ at 760 mm Hg | 559.07 | 539.69 | 556.83 | 553.80 | 554.08 | 549.723 | 554.03 | 557.94 | 552.47 |
Dexamethasone | 568.2 ± 5 ℃ at 760 mm Hg | 655.90 | 621.81 | 655.15 | 658.12 | 666.25 | 678.658 | 671.23 | 653.81 | 675.29 |
Doxorubicine | 216 ± 65 ℃ at 760 mm Hg | 699.48 | 678.68 | 712.63 | 714.21 | 697.25 | 694.173 | 680.43 | 720.20 | 687.25 |
Carboplatin | 366.4 ± 60 ℃ at 760 mm Hg | 510.91 | 486.18 | 501.38 | 502.81 | 517.18 | 522.973 | 529.23 | 495.47 | 526.71 |
It is obvious from statistical parameters used in linear QSPR models and topological indices that: ABC (G) index provides high correlated value for molar volume r = 0.953. HM index offers maximum correlated value of complexity i.e. r = 0.954. GA index depicts utmost correlation coefficient of refractive index r = 0.966. Harmonic H (G) provides maximum correlated value of flash point r = 0.772.
In this paper, we have computed topological indices and relate it with linear QSPR model for the drugs used to cure blood cancer. The results obtained in this way will helpful for designing some new drugs to obtain preventive measure for the said disease in pharmaceutical industry. The correlation coefficient has significant contribution to the range of topological indices for these drugs. The results are an eye-opener for the researcher working on drugs science in pharmaceutical industry and provide a way to estimate physicochemical properties for novice discoveries of anticancer medicines to cure other specific cancer disease.
We declare no conflict of interest.
[1] | J. Daemen, V. Rijmen, The design of Rijndael: AES-the advanced encryption standard, Berlin: Springer Science & Business Media, 2002. https://doi.org/10.1007/978-3-662-60769-5 |
[2] | D. Canright, A very compact S-box for AES, In: Cryptographic hardware and embedded systems, Berlin: Springer, 2005,441–455. https://doi.org/10.1007/11545262_32 |
[3] |
J. Rosenthal, A polynomial description of the Rijndael advanced encryption standard, J. Algebra Appl., 2 (2003), 223–236. https://doi.org/10.1142/S0219498803000532 doi: 10.1142/S0219498803000532
![]() |
[4] | L. Cui, Y. Cao, A new S-box structure named affine-power-affine, Int. J. Innov. Comput. I., 3 (2007), 751–759. |
[5] |
M. Tran, D. Bui, A. Duong, Gray S-box for advanced encryption standard, Proceedings of International Conference on Computational Intelligence and Security, 2008,253–258. https://doi.org/10.1109/CIS.2008.205 doi: 10.1109/CIS.2008.205
![]() |
[6] | E. Abuelyman, A. Alsehibani, An optimized implementation of the S-Box using residue of prime numbers, Int. J. Comput. Sci. Net., 8 (2008), 304–309. |
[7] |
I. Hussain, T. Shah, H. Mahmood, M. Gondal, Construction of S8 Liu J S-boxes and their applications, Comput. Math. Appl., 64 (2012), 2450–2458. https://doi.org/10.1016/j.camwa.2012.05.017 doi: 10.1016/j.camwa.2012.05.017
![]() |
[8] | I. Hussain, T. Shah, H. Mahmood, M. Gondal, U. Bhatti, Some analysis of S-box based on residue of prime number, Proceedings of the Pakistan Academy of Sciences, 48 (2011), 111–115. |
[9] |
P. Kumar, S. Rana, Development of modified AES algorithm for data security, Optik, 127 (2016), 2341–2345. https://doi.org/10.1016/j.ijleo.2015.11.188 doi: 10.1016/j.ijleo.2015.11.188
![]() |
[10] | T. Shah, A. Qureshi, A novel approach for generating small 8×8-bit S4 S-boxes, U.P.B. Sci. Bull., Series C, 79 (2017), 153–162. |
[11] |
T. Shah, I. Hussain, M. Gondal, H. Mahmood, Statistical analysis of S-box in image encryption applications based on majority logic criterion, Int. J. Phys. Sci., 6 (2011), 4110–4127. https://doi.org/10.5897/IJPS11.531 doi: 10.5897/IJPS11.531
![]() |
[12] | K. Erdmann, Blocks whose defect groups are Klein four groups, J. Algebra, 59 (1979), 452–465. |
[13] | I. Hussain, T. Shah, H. Mahmood, A new algorithm to construct secure keys for AES, Int. J. Contemp. Math. Sci., 5 (2010), 1263–1270. |
[14] | D. Canright, A very compact S-box for AES, In: Cryptographic hardware and embedded systems, Berlin: Springer, 2005,441–455. https://doi.org/10.1007/11545262_32 |
[15] | O. Sahoo, D. Kole, H. Rahaman, An optimized S-box for advanced encryption standard (AES) design, Proceedings of International Conference on Advances in Computing and Communications, 2012,154–157. https://doi.org/1109/ICACC.2012.35 |
[16] | P. Mar, K. Latt, New analysis methods on strict avalanche criterion of S-boxes, World Academy of Science, Engineering and Technology, 48 (2008), 150–154. |
[17] |
I. Hussain, T. Shah, M. Gondal, W. Khan, H. Mahmood, A group theoretic approach to construct cryptographically strong substitution boxes, Neural Comput. Appl., 23 (2013), 97–104. https://doi.org/10.1007/s00521-012-0914-5 doi: 10.1007/s00521-012-0914-5
![]() |
[18] | T. Chandrasekharappa, Enhancement of confidentiality and integrity using cryptographic techniques, Ph.D, Manipal University, 2012. |
[19] |
A. Altaleb, M. Saeed, I. Hussain, M. Aslam, An algorithm for the construction of substitution box for block ciphers based on projective general linear group, AIP Adv., 7 (2017), 035116. https://doi.org/10.1063/1.4978264 doi: 10.1063/1.4978264
![]() |
[20] | J. Cui, L. Huang, H. Zhong, C. Chang, W. Yang, An improved AES S-box and its performance analysis, Int. J. Innov. Comput. I., 7 (2011), 2291–2302. |
[21] | I. Hussain, T. Shah, M. Gondal, Y. Wang, Analyses of SKIPJACK S-box, World Appl. Sci. J., 13 (2011), 2385–2388. |
1. | Zhi-hao Hui, Salma Kanwal, Adnan Aslam, Saadia Saeed, Nazeran Idrees, A mathematical investigation for appraisal of crystal structure lattices through eccentricity-based topological invariants, QSPR analysis, and MCDA, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03495-9 | |
2. | Lei Huang, Yong Wang, K. Pattabiraman, P. Danesh, Muhammad Kamran Siddiqui, Murat Cancan, Topological Indices and QSPR Modeling of New Antiviral Drugs for Cancer Treatment, 2022, 1040-6638, 1, 10.1080/10406638.2022.2145320 | |
3. | Saima Parveen, Nadeem Ul Hassan Awan, Fozia Bashir Farooq, Rakotondrajao Fanja, Qurat ul Ain Anjum, Nasimul Noman, Topological Indices of Novel Drugs Used in Autoimmune Disease Vitiligo Treatment and Its QSPR Modeling, 2022, 2022, 2314-6141, 1, 10.1155/2022/6045066 | |
4. | Saima Parveen, Fozia Bashir Farooq, Nadeem Ul Hassan Awan, Rakotondrajao Fanja, Muhammad Farooq Choudhary, Muhammad Kamran Jamil, Topological Indices of Drugs Used in Rheumatoid Arthritis Treatment and Its QSPR Modeling, 2022, 2022, 2314-4785, 1, 10.1155/2022/1562125 | |
5. | Fozia Bashir Farooq, Nadeem Ul Hassan Awan, Saima Parveen, Nazeran Idrees, Salma Kanwal, Tarig A. Abdelhaleem, Patricia E. Allegretti, Topological Indices of Novel Drugs Used in Cardiovascular Disease Treatment and Its QSPR Modeling, 2022, 2022, 2090-9071, 1, 10.1155/2022/9749575 | |
6. | Ali Ahmad, Kashif Elahi, Muhammad Azeem, Senesie Swaray, Muhammad Ahsan Asim, Gohar Ali, Topological Descriptors for the Metal Organic Network and Its Structural Properties, 2022, 2022, 2314-4785, 1, 10.1155/2022/9859957 | |
7. | Rongbing Huang, Abid Mahboob, Muhammad Waheed Rasheed, Sajid Mahboob Alam, Muhammad Kamran Siddiqui, On molecular modeling and QSPR analysis of lyme disease medicines via topological indices, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-03867-9 | |
8. | Saima Parveen, Nadeem Ul Hassan Awan, Fozia Bashir Farooq, Sajjad Hussain, Topological Descriptors and QSPR Models of Drugs used in Blood Cancer, 2023, 1016-2526, 27, 10.52280/pujm.2023.550103 | |
9. | Sobia Sultana, Mahmood Ahmed, Chemical Application of Topological Indices in Infertility Treatment Drugs and QSPR Analysis, 2023, 2023, 1687-8779, 1, 10.1155/2023/6928167 | |
10. | Alaa Altassan, Muhammad Imran, Bilal Ahmad Rather, On ABC energy and its application to anticancer drugs, 2023, 8, 2473-6988, 21668, 10.3934/math.20231105 | |
11. | Alaa Altassan, Muhammad Imran, General Randić Index of Unicyclic Graphs and Its Applications to Drugs, 2024, 16, 2073-8994, 113, 10.3390/sym16010113 | |
12. | Abdul Rauf Khan, Nadeem ul Hassan Awan, Muhammad Usman Ghani, Sayed M. Eldin, Hanen Karamti, Ahmed H. Jawhari, Yousef E. Mukhrish, Fundamental Aspects of Skin Cancer Drugs via Degree-Based Chemical Bonding Topological Descriptors, 2023, 28, 1420-3049, 3684, 10.3390/molecules28093684 | |
13. | Mohamad Nazri Husin, Abdul Rauf Khan, Nadeem Ul Hassan Awan, Francis Joseph H. Campena, Fairouz Tchier, Shahid Hussain, Van Thanh Tien Nguyen, Multicriteria decision making attributes and estimation of physicochemical properties of kidney cancer drugs via topological descriptors, 2024, 19, 1932-6203, e0302276, 10.1371/journal.pone.0302276 | |
14. | Muhammad Shoaib Sardar, Khalil Hadi Hakami, Vinod Kumar Tiwari, QSPR Analysis of Some Alzheimer’s Compounds via Topological Indices and Regression Models, 2024, 2024, 2090-9063, 10.1155/2024/5520607 | |
15. | K. Pattabiraman, Empowerments of blood cancer therapeutics via molecular descriptors, 2024, 252, 01697439, 105180, 10.1016/j.chemolab.2024.105180 | |
16. | Ali N.A. Koam, Muhammad Azeem, Ali Ahmad, Ibtisam Masmali, Connection number-based molecular descriptors of skin cancer drugs, 2024, 15, 20904479, 102750, 10.1016/j.asej.2024.102750 | |
17. | Sakander Hayat, Sunilkumar M. Hosamani, Asad Khan, Ravishankar L. Hutagi, Umesh S. Mujumdar, Mohammed J. F. Alenazi, A novel edge-weighted matrix of a graph and its spectral properties with potential applications, 2024, 9, 2473-6988, 24955, 10.3934/math.20241216 | |
18. | Fozia Bashir Farooq, Saima Parveen, Nadeem Ul Hassan Awan, Rakotondrajao Fanja, Cruz Vargas-De-León, Topological Descriptors and QSPR Modelling of HIV/AIDS Disease Treatment Drugs, 2023, 2023, 1607-887X, 1, 10.1155/2023/9963241 | |
19. | Deepa Balasubramaniyan, Natarajan Chidambaram, Vignesh Ravi, Estimating physico-chemical properties of drugs for prostate cancer using degree-based and neighbourhood degree-based topological descriptors, 2024, 99, 0031-8949, 065233, 10.1088/1402-4896/ad478c | |
20. | Nadeem ul Hassan Awan, Abdul Ghaffar, Ferdous M. Tawfiq, Ghulam Mustafa, Muhammad Bilal, Mustafa Inc, QSPR analysis for physiochemical properties of new potential antimalarial compounds involving topological indices, 2024, 124, 0020-7608, 10.1002/qua.27391 | |
21. | Abdul Rauf Khan, Nadeem Ul Hassan Awan, Fairouz Tchier, Saeed D. Alahmari, Ashjan F. Khalel, Shahid Hussain, An estimation of physiochemical properties of bladder cancer drugs via degree-based chemical bonding topological descriptors, 2023, 0739-1102, 1, 10.1080/07391102.2023.2292792 | |
22. | Shahid Zaman, Mahnoor Mushtaq, Muhammad Danish, Parvez Ali, Sadaf Rasheed, Topological Characterization of Some New Anti-Viral Drugs for Cancer Treatment, 2024, 2191-1630, 10.1007/s12668-024-01500-2 | |
23. | Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Comparative Analysis of Reverse Degree and Entropy Topological Indices for Drug Molecules in Blood Cancer Treatment through QSPR Regression Models, 2023, 1040-6638, 1, 10.1080/10406638.2023.2271648 | |
24. | Fozia Bashir Farooq, Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer, 2024, 9, 2473-6988, 15119, 10.3934/math.2024733 | |
25. | Xiujun Zhang, Zainab Saeed Bajwa, Shahid Zaman, Sidra Munawar, Dan Li, The study of curve fitting models to analyze some degree-based topological indices of certain anti-cancer treatment, 2024, 78, 0366-6352, 1055, 10.1007/s11696-023-03143-1 | |
26. | W. Tamilarasi, B. J. Balamurugan, New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs, 2024, 12, 2296-2646, 10.3389/fchem.2024.1486933 | |
27. | Hongyu Peng, Lin Hao, Junjie Feng, Wei Xu, Hongyuan Wei, Predictive Models for Sensitivities and Detonation Velocity of Energetic Materials Based on Nonlinear Kernel Machine and Heuristic Algorithms, 2024, 13, 2227-9717, 39, 10.3390/pr13010039 | |
28. | Puneeth S., Veena Mathad, Shalini K., Sultan Senan Mahde, Damião Pergentino de Sousa, Application of Eccentricity‐Based Topological Indices to the Design and Optimization of Blood Cancer Drugs, 2024, 2024, 2090-9063, 10.1155/joch/2414974 | |
29. | Nazeran Idrees, Esha Noor, Saima Rashid, Fekadu Tesgera Agama, Role of topological indices in predictive modeling and ranking of drugs treating eye disorders, 2025, 15, 2045-2322, 10.1038/s41598-024-81482-z | |
30. | Nadeem Ul Hassan Awan, Muhammad Usman Ghani, Sakeena Bibi, Syed Ajaz K. Kirmani, Manal Elzain Mohamed Abdalla, A paradigmatic approach to the topological measure of babesiosis drugs and estimating physical properties via QSPR analysis, 2025, 11, 24058440, e41615, 10.1016/j.heliyon.2024.e41615 | |
31. | Fozia Bashir Farooq, Sobia Sultana, Nouf Abdulrahman Alqahtani, Muhammad Imran, Niravkumar Joshi, Optimization of HIV drugs through MCDM technique Analytic Hierarchy Process(AHP), 2025, 20, 1932-6203, e0316617, 10.1371/journal.pone.0316617 | |
32. | Micheal Arockiaraj, J. J. Jeni Godlin, S. Radha, Tariq Aziz, Mitub Al-harbi, Comparative study of degree, neighborhood and reverse degree based indices for drugs used in lung cancer treatment through QSPR analysis, 2025, 15, 2045-2322, 10.1038/s41598-025-88044-x | |
33. | Sezer Sorgun, Kahraman Birgin, Vertex-Edge-Weighted Molecular Graphs: A Study on Topological Indices and Their Relevance to Physicochemical Properties of Drugs Used in Cancer Treatment, 2025, 1549-9596, 10.1021/acs.jcim.4c02013 | |
34. | Tamilarasi William, Balamurugan Bommahalli Jayaraman, 2025, Chapter 7, 978-981-97-6956-8, 69, 10.1007/978-981-97-6957-5_7 | |
35. | Sumiya Nasir, Mahmood Ahmed, Topological Descriptors of Colorectal Cancer Drugs and Characterizing Physical Properties Via QSPR Analysis, 2025, 2025, 1687-8760, 10.1155/ianc/5512172 | |
36. | A. Berin Greeni, Micheal Arockiaraj, S. Gajavalli, Tariq Aziz, Metab Alharbi, Structural analysis of anti-cancer drug compounds using distance-based molecular descriptors and regression models, 2025, 48, 1292-8941, 10.1140/epje/s10189-025-00481-8 | |
37. | Abdul Rauf Khan, Ifra Naeem, Fairouz Tchier, Fikadu Tesgera Tolasa, Shahid Hussain, Mathematical modeling and estimation of physicochemical characteristics of pneumonia treatment drugs through a novel approach K-Banhatti topological descriptors, 2025, 13, 2296-2646, 10.3389/fchem.2025.1564809 | |
38. | Muhammad Shoaib Sardar, Muhammad Shahid Iqbal, Muhammad Mudassar Hassan, Changjiang Bu, Sharafat Hussain, Improved QSAR methods for predicting drug properties utilizing topological indices and machine learning models, 2025, 48, 1292-8941, 10.1140/epje/s10189-025-00491-6 |
Name of drug | ABC(G) | RA(G) | S(G) | GA(G) | M1(G) | M2(G) | F(G) | H(G) | HM(G) |
Azacitidine | 22.04 | 13.12 | 13.46 | 27.72 | 162 | 209 | 516 | 11.95 | 934.00 |
Buslfan | 20.77 | 11.31 | 11.04 | 22.23 | 148 | 176 | 526 | 9.45 | 878.00 |
Mercaptopurine | 10.91 | 6.52 | 6.74 | 14.25 | 76 | 93 | 210 | 6.10 | 396.00 |
Tioguanine | 12.39 | 7.43 | 7.65 | 16.12 | 86 | 105 | 238 | 6.93 | 448.00 |
Nelarabine | 27.99 | 16.29 | 16.67 | 35.13 | 206 | 262 | 652 | 14.85 | 1176.00 |
Cytarabine | 22.77 | 13.55 | 13.68 | 28.62 | 168 | 218 | 536 | 12.32 | 972.00 |
Clofarabine | 24.24 | 14.04 | 14.43 | 30.59 | 180 | 233 | 570 | 12.82 | 1036.00 |
Bosutinib | 51.18 | 28.73 | 29.39 | 61.92 | 374 | 467 | 1198 | 25.39 | 2132.00 |
Dasatinib | 45.50 | 25.95 | 26.60 | 56.11 | 330 | 412 | 1028 | 23.43 | 1852.00 |
Melphala | 28.12 | 16.18 | 16.15 | 33.33 | 202 | 252 | 656 | 14.28 | 1160.00 |
Dexamethasone | 44.81 | 24.85 | 25.37 | 54.14 | 354 | 493 | 1242 | 21.86 | 2228.00 |
Doxorubicine | 52.32 | 30.01 | 30.76 | 65.33 | 396 | 522 | 1288 | 27.11 | 2332.00 |
Carboplatin | 19.82 | 10.76 | 10.95 | 23.16 | 152 | 202 | 532 | 9.34 | 936.00 |
Name of drug | Molar volume (cm3) | Boiling Point ℃ | Refractive Index (m3 mol−1) | Complexity | Flash Point ℃ |
Azacitidine | 117.10 | 534.21 | 54.10 | 384.00 | 277.00 |
Buslfan | 182.40 | 464.00 | 50.90 | 234.40 | |
Mercaptopurine | 94.20 | 491.00 | 41.00 | 19.00 | 250.50 |
Tioguanine | 80.20 | 460.70 | 46.89 | 225.00 | 232.00 |
Nelarabine | 149.90 | 721.00 | 65.80 | 377.00 | 389.90 |
Cytarabine | 128.40 | 547.70 | 52.60 | 383.00 | 283.80 |
Clofarabine | 143.10 | 550.00 | 63.60 | 370.00 | 286.40 |
Bosutinib | 388.30 | 649.70 | 142.12 | 734.00 | 346.70 |
Dasatinib | 366.40 | 133.08 | 642.00 | ||
Melphala | 231.20 | 473.00 | 78.23 | 265.00 | 239.00 |
Dexamethasone | 296.20 | 568.20 | 100.20 | 805.00 | 298.00 |
Doxorubicine | 336.60 | 216.00 | 134.59 | 977.00 | 443.80 |
Carboplatin | 366.40 | 60.04 | 177.00 |
Topological Index | Correlation coefficient of complexity | Correlation coefficient of refractive index | Correlation coefficient of flash point | Correlation coefficient of boiling point | Correlation coefficient of molar volume |
ABC(G) | 0.943 | 0.966 | 0.731 | 0.672 | 0.953 |
RA(G) | 0.947 | 0.965 | 0.751 | 0.7 | 0.946 |
S(G) | 0.949 | 0.966 | 0.759 | 0.708 | 0.942 |
GA(G) | 0.951 | 0.966 | 0.764 | 0.711 | 0.938 |
M1(G) | 0.953 | 0.952 | 0.728 | 0.66 | 0.939 |
M2(G) | 0.96 | 0.928 | 0.72 | 0.645 | 0.913 |
HM(G) | 0.954 | 0.927 | 0.705 | 0.625 | 0.822 |
F(G) | 0.949 | 0.925 | 0.692 | 0.609 | 0.927 |
H(G) | 0.95 | 0.965 | 0.772 | 0.725 | 0.936 |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 395.921 | 5.802 | .672 | .451 | 8.228 | .017 | Significant |
Refractive index | 13 | 6.034 | 2.468 | .966 | .933 | 154.093 | .000 | Significant |
Flash point | 11 | 197.699 | 3.486 | .731 | .535 | 10.343 | .011 | Significant |
Molar volume | 12 | −10.083 | 7.258 | .953 | .909 | 99.904 | .000 | Significant |
Complexity | 12 | −107.244 | 18.352 | .943 | .889 | 79.955 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 385.002 | 10.833 | .700 | .490 | 9.614 | .011 | Significant |
Refractive index | 13 | 4.535 | 4.408 | .965 | .932 | 150.523 | .000 | Significant |
Flash point | 11 | 191.561 | 6.451 | .751 | .564 | 11.648 | .008 | Significant |
Molar volume | 12 | −14.889 | 12.947 | .946 | .894 | 84.680 | .000 | Significant |
Complexity | 12 | −125.985 | 33.119 | .947 | .896 | 86.612 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 384.612 | 10.664 | .708 | .501 | 10.027 | .010 | Significant |
Refractive index | 13 | 5.102 | 4.293 | .966 | .934 | 155.042 | .000 | Significant |
Flash point | 11 | 191.365 | 6.348 | .759 | .576 | 12.232 | .007 | Significant |
Molar volume | 12 | −11.972 | 12.540 | .942 | .887 | 78.511 | .000 | Significant |
Complexity | 12 | −125.538 | 32.402 | .949 | .900 | 90.006 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 386.718 | 5.013 | .711 | .505 | 10.202 | .010 | Significant |
Refractive index | 13 | 6.258 | 2.010 | .966 | .933 | 152.002 | .000 | Significant |
Flash point | 11 | 192.642 | 2.985 | .764 | .583 | 12.597 | .006 | Significant |
Molar volume | 12 | −7.333 | 5.841 | .938 | .879 | 72.917 | .000 | Significant |
Complexity | 12 | −121.577 | 15.270 | .951 | .905 | 95.147 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 405.004 | .738 | .660 | .436 | 7.721 | .019 | Significant |
Refractive index | 13 | 9.310 | .318 | .952 | .907 | 106.874 | .000 | Significant |
Flash point | 11 | 202.599 | .448 | .728 | .530 | 10.153 | .011 | Significant |
Molar volume | 12 | 1.253 | .932 | .939 | .882 | 74.603 | .000 | Significant |
Complexity | 12 | −97.937 | 2.432 | .953 | .908 | 98.435 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 414.903 | .535 | .645 | .416 | 7.127 | .024 | Significant |
Refractive index | 13 | 13.461 | .233 | .928 | .861 | 67.942 | .000 | Significant |
Flash point | 11 | 208.190 | .327 | .720 | .518 | 9.666 | .013 | Significant |
Molar volume | 12 | 15.185 | .677 | .913 | .834 | 50.072 | .000 | Significant |
Complexity | 12 | −87.855 | 1.849 | .960 | .922 | 118.593 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 419.068 | .115 | .625 | .391 | 6.420 | .030 | Significant |
Refractive index | 13 | 13.368 | .052 | .927 | .859 | 67.002 | .000 | Significant |
Flash point | 11 | 210.170 | .071 | .705 | .497 | 8.876 | .015 | Significant |
Molar volume | 12 | 13.491 | .151 | .822 | .849 | 56.325 | .000 | Significant |
Complexity | 12 | −78.956 | .404 | .954 | .911 | 102.026 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 422.835 | .200 | .609 | .370 | 5.882 | .036 | Significant |
Refractive index | 13 | 13.494 | .092 | .925 | .855 | 64.869 | .000 | Significant |
Flash point | 11 | 212.010 | .124 | .692 | .478 | 8.256 | .018 | Significant |
Molar volume | 12 | 13.736 | .273 | .927 | .859 | 64.032 | .000 | Significant |
Complexity | 12 | −71.482 | .717 | .949 | .901 | 90.832 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 377.349 | 12.647 | .725 | .526 | 11.103 | .008 | Significant |
Refractive index | 13 | 4.240 | 4.943 | .965 | .930 | 147.100 | .000 | Significant |
Flash point | 11 | 187.144 | 7.500 | .772 | .596 | 13.299 | .005 | Significant |
Molar volume | 12 | −14.817 | 14.434 | .936 | .877 | 71.041 | .000 | Significant |
Complexity | 12 | −136.607 | 37.543 | .950 | .902 | 91.960 | .000 | Significant |
Topological Index | Std. Error of the estimate for boiling point | Std. Error of the estimate for refractive index | Std. Error of the estimate for flash point | Std. Error of the estimate for molar volume | Std. Error of the estimate for complexity |
ABC(G) | 125.47771 | 9.78297 | 49.28724 | 34.98955 | 99.29113 |
RA(G) | 135.48910 | 9.89048 | 47.70434 | 3.69784 | 95.80944 |
S(G) | 135.49670 | 9.75496 | 47.04354 | 38.98953 | 94.16957 |
GA(G) | 135.48311 | 9.84552 | 46.64458 | 40.28320 | 91.83836 |
M1(G) | 135.40209 | 11.57777 | 49.53170 | 39.877986 | 90.43550 |
M2(G) | 135.28260 | 14.14755 | 50.17335 | 47.32703 | 83.04506 |
HM(G) | 135.30024 | 14.23249 | 51.27036 | 45.04104 | 88.97405 |
F(G) | 135.31481 | 14.43119 | 52.18328 | 43.52285 | 93.78305 |
H(G) | 135.48656 | 9.99697 | 45.90422 | 40.74687 | 93.26266 |
Name of drug | Molar volume of drug | Molar volume from regression model for ABC(G) Index |
Molar volume from regression model for RA(G) Index |
Molar volume from regression model for SCI(G) Index |
Molar volume from regression model for GA(G) Index |
Molar volume from regression model for M1(G) Index |
Molar volume from regression model for M2(G)Index |
Molar volume from regression model for F(G)Index |
Molar volume from regression model for H(G) Index | Molar volume from regression model for HM(G)Index |
Azacitidine | 117.1 cm3 | 149.883 | 139.827 | 156.816 | 154.579 | 152.237 | 156.678 | 154.604 | 157.669 | 154.525 |
Buslfan | 182.4 cm3 | 140.665 | 107.460 | 126.469 | 122.512 | 139.189 | 134.337 | 157.334 | 121.584 | 146.069 |
Mercaptopurine | 94.2 cm3 | 69.1017 | 64.0877 | 72.5476 | 75.9012 | 72.085 | 78.146 | 71.066 | 73.2304 | 73.287 |
Tioguanine | 80.2 cm3 | 79.8436 | 74.8337 | 83.959 | 86.8239 | 81.405 | 86.27 | 78.71 | 85.2106 | 81.139 |
Nelarabine | 149.9 cm3 | 193.068 | 177.374 | 197.069 | 197.861 | 193.245 | 192.559 | 191.732 | 199.527 | 191.067 |
Cytarabine | 128.4 cm3 | 155.181 | 144.618 | 159.575 | 159.836 | 157.829 | 162.771 | 160.064 | 163.009 | 160.263 |
Clofarabine | 143.1 cm3 | 165.850 | 151.091 | 168.980 | 171.343 | 169.013 | 172.926 | 169.346 | 170.226 | 169.927 |
Bosutinib | 388.3 cm3 | 361.381 | 313.835 | 356.578 | 354.341 | 349.821 | 331.344 | 340.79 | 351.662 | 335.423 |
Dasatinib | 366.4 cm3 | 320.156 | 288.459 | 321.592 | 320.405 | 308.813 | 294.109 | 294.38 | 323.371 | 293.143 |
Melphala | 231.2 cm3 | 194.012 | 169.994 | 190.549 | 187.347 | 189.517 | 185.789 | 192.824 | 191.300 | 188.651 |
Dexamethasone | 296.2 cm3 | 315.148 | 268.132 | 306.167 | 308.898 | 331.181 | 348.946 | 352.802 | 300.710 | 349.919 |
Doxorubicine | 336.6 cm3 | 369.655 | 336.104 | 373.758 | 374.259 | 370.325 | 368.579 | 365.36 | 376.488 | 365.623 |
Carboplatin | 133.770 | 106.036 | 125.341 | 127.944 | 142.917 | 151.939 | 158.972 | 119.996 | 154.827 |
Name of drug | Flash point of drug | Flash point computed from regression model for ABC(G) Index | Flash point computed from regression model for RA(G) Index | Flash point computed from regression model for SCI(G) Index | Flash point computed from regression model for GA(G) Index | Flash point computed from regression model for M1(G) Index | Flash point computed from regression model for M2(G)Index | Flash point computed from regression model for F(G)Index | Flash point computed from regression model for H(G) Index | Flash point computed from regression model for HM(G)Index |
Azacitidine | 277 ℃ | 523.797 | 514.456 | 528.149 | 525.678 | 524.56 | 526.718 | 526.035 | 528.480 | 526.478 |
Buslfan | 234.4 ℃ | 516.428 | 487.373 | 502.342 | 498.157 | 514.228 | 509.063 | 528.035 | 496.863 | 520.038 |
Mercaptopurine | 250.5 ℃ | 459.220 | 451.083 | 456.487 | 458.153 | 461.092 | 464.658 | 464.835 | 454.495 | 464.608 |
Tioguanine | 232 ℃ | 467.807 | 460.074 | 466.191 | 467.527 | 468.472 | 471.078 | 470.435 | 464.992 | 470.588 |
Nelarabine | 389.9 ℃ | 558.319 | 545.872 | 562.380 | 562.824 | 557.032 | 555.073 | 553.235 | 565.157 | 554.308 |
Cytarabine | 283.8 ℃ | 528.032 | 518.464 | 530.495 | 530.190 | 528.988 | 531.533 | 530.035 | 533.16 | 530.848 |
Clofarabine | 286.4 ℃ | 536.561 | 523.881 | 538.493 | 540.065 | 537.844 | 539.558 | 536.835 | 539.483 | 538.208 |
Bosutinib | 346.7 ℃ | 692.867 | 660.051 | 698.027 | 697.123 | 681.016 | 664.748 | 662.435 | 698.456 | 664.248 |
Dasatinib | 659.912 | 638.819 | 668.274 | 667.997 | 648.544 | 635.323 | 628.435 | 673.668 | 632.048 | |
Melphala | 239 ℃ | 559.073 | 539.697 | 556.835 | 553.801 | 554.08 | 549.723 | 554.035 | 557.948 | 552.468 |
Dexamethasone | 298 ℃ | 655.908 | 621.811 | 655.157 | 658.12 | 666.256 | 678.658 | 671.235 | 653.812 | 675.288 |
Doxorubicine | 443.8 ℃ | 699.481 | 678.684 | 712.636 | 714.217 | 697.252 | 694.173 | 680.435 | 720.209 | 687.248 |
Carboplatin | 5109166 | 486.182 | 501.382 | 502.819 | 517.18 | 522.973 | 529.235 | 495.472 | 526.708 |
Name of drug | Refractive Index of drug | Refractive Index computed from regression model for ABC(G) Index |
Refractive Index computed from regression model for RA(G) Index |
Refractive Index computed from regression model for SCI(G) Index |
Refractive Index computed from regression model for GA(G) Index |
Refractive Index computed from regression model for M1(G) Index |
Refractive Index computed from regression model for M2(G) Index |
Refractive Index computed from regression model for F(G) Index |
Refractive Index computed from regression model for H(G) Index | Refractive Index computed from regression model for HM(G) Index |
Azacitidine | 54.1 (m3 mol−1) | 60.4287 | 57.2106 | 62.8857 | 61.9752 | 60.826 | 62.158 | 60.966 | 63.3088 | 61.936 |
Buslfan | 50.9 (m3 mol−1) | 57.2943 | 46.1906 | 52.4967 | 50.9403 | 56.374 | 54.469 | 61.886 | 50.9513 | 59.024 |
Mercaptopurine | 41 (m3 mol−1) | 32.9598 | 31.4238 | 34.0368 | 34.9005 | 33.478 | 35.13 | 32.814 | 34.3923 | 33.96 |
Tioguanine | 46.89 (m3 mol−1) | 36.6125 | 35.0824 | 37.9434 | 38.6592 | 36.658 | 37.926 | 35.39 | 38.4949 | 36.664 |
Nelarabine | 65.8 (m3 mol−1) | 75.1133 | 69.9938 | 76.6663 | 76.8693 | 74.818 | 74.507 | 73.478 | 77.6435 | 74.52 |
Cytarabine | 52.6 (m3 mol−1) | 62.2303 | 58.8415 | 63.8302 | 63.7842 | 62.734 | 64.255 | 62.806 | 65.1377 | 63.912 |
Clofarabine | 63.6 (m3 mol−1) | 65.8583 | 61.0455 | 67.0499 | 67.7439 | 66.55 | 67.75 | 65.934 | 67.6092 | 67.24 |
Bosutinib | 142.12 (m3 mol−1) | 132.346 | 116.454 | 131.273 | 130.717 | 128.242 | 122.272 | 123.71 | 129.742 | 124.232 |
Dasatinib | 133.08 (m3 mol−1) | 118.328 | 107.814 | 119.295 | 119.039 | 114.25 | 109.457 | 108.07 | 120.054 | 109.672 |
Melphala | 78.23 (m3 mol−1) | 75.4341 | 67.4812 | 74.4339 | 73.2513 | 73.546 | 72.177 | 73.846 | 74.8260 | 73.688 |
Dexamethasone | 100.2 (m3 mol−1) | 116.625 | 100.893 | 114.015 | 115.079 | 121.882 | 128.33 | 127.758 | 112.294 | 129.224 |
Doxorubicine | 134.59 (m3 mol−1) | 135.159 | 124.035 | 137.154 | 137.571 | 135.238 | 135.087 | 131.99 | 138.244 | 134.632 |
Carboplatin | 60.04 (m3 mol−1) | 54.9497 | 45.7057 | 52.1103 | 52.8096 | 57.646 | 60.527 | 62.438 | 50.4076 | 62.04 |
Name of drug | Complexity of drug | Complexity computed from regression model for ABC(G) Index | Complexity computed from regression model for RA(G) Index | Complexity computed from regression model for SCI(G) Index | Complexity computed from regression model for GA(G) Index | Complexity computed from regression model for M1(G) Index | Complexity computed from regression model for M2(G) Index | Complexity computed from regression model for F(G) Index | Complexity computed from regression model for H(G) Index | Complexity computed from regression model for HM(G)Index |
Azacitidine | 384 | 297.234 | 269.787 | 310.592 | 301.707 | 296.047 | 298.586 | 298.49 | 312.031 | 298.38 |
Buslfan | 273.927 | 186.989 | 232.180 | 217.875 | 261.999 | 237.569 | 305.66 | 218.174 | 275.756 | |
Mercaptopurine | 190 | 92.9763 | 76.0409 | 92.8514 | 96.0205 | 86.895 | 84.102 | 79.088 | 92.4053 | 81.028 |
Tioguanine | 225 | 120.137 | 103.529 | 122.337 | 124.575 | 111.215 | 106.29 | 99.164 | 123.566 | 102.036 |
Nelarabine | 377 | 406.428 | 365.832 | 414.603 | 414.858 | 403.055 | 396.583 | 396.002 | 420.906 | 396.148 |
Cytarabine | 383 | 310.631 | 282.041 | 317.721 | 315.450 | 310.639 | 315.227 | 312.83 | 325.922 | 313.732 |
Clofarabine | 370 | 337.608 | 298.600 | 342.022 | 345.532 | 339.823 | 342.962 | 337.208 | 344.694 | 339.588 |
Bosutinib | 734 | 832.011 | 714.906 | 826.756 | 823.941 | 811.631 | 775.628 | 787.484 | 816.609 | 782.372 |
Dasatinib | 642 | 727.772 | 649.993 | 736.355 | 735.222 | 704.623 | 673.933 | 665.594 | 743.025 | 669.252 |
Melphala | 265 | 408.814 | 346.954 | 397.754 | 387.372 | 393.327 | 378.093 | 398.87 | 399.507 | 389.684 |
Dexamethasone | 805 | 715.109 | 597.996 | 696.500 | 705.140 | 762.991 | 823.702 | 819.032 | 684.083 | 821.156 |
Doxorubicine | 977 | 852.932 | 771.871 | 871.147 | 876.012 | 865.135 | 877.323 | 852.014 | 881.183 | 863.172 |
Carboplatin | 177 | 256.492 | 183.346 | 229.263 | 232.076 | 271.727 | 285.643 | 309.962 | 214.044 | 299.188 |
Name of drug | Boiling Point of drug | Boiling Point computed from regression model for ABC(G) Index | Boiling Point computed from regression model for RA(G) Index | Boiling Point computed from regression model for SCI(G) Index | Boiling Point computed from regression model for GA(G) Index | Boiling Point computed from regression model for M1(G) Index | Boiling Point computed from regression model for M2(G)Index | Boiling Point computed from regression model for F(G)Index |
Boiling Point computed from regression model for H(G) Index | Boiling Point computed from regression model for HM(G)Index |
Azacitidine | 534.2 ± 60 ℃ at 760 mm Hg | 523.79 | 514.45 | 528.14 | 525.67 | 524.56 | 526.718 | 526.03 | 528.48 | 526.48 |
Buslfan | 464 ± 28 ℃ at 760 mm Hg | 516.42 | 487.37 | 502.34 | 498.15 | 514.22 | 509.063 | 528.03 | 496.86 | 520.04 |
Mercaptopurine | 491 ± 25 ℃ at 760 mm Hg | 459.22 | 451.08 | 456.48 | 458.15 | 461.09 | 464.658 | 464.83 | 454.49 | 464.61 |
Tioguanine | 460.7 ± 37 ℃ at 760 mm Hg | 467.80 | 460.07 | 466.19 | 467.52 | 468.47 | 471.078 | 470.43 | 464.99 | 470.59 |
Nelarabine | 721 ± 70 ℃ at 760 mm Hg | 558.31 | 545.87 | 562.38 | 562.82 | 557.0 | 555.073 | 553.23 | 565.15 | 554.31 |
Cytarabine | 547.7 ± 60 ℃ at 760 mm Hg | 528.03 | 518.46 | 530.49 | 530.19 | 528.98 | 531.533 | 530.03 | 533.16 | 530.85 |
Clofarabine | 550 ± 60 ℃ at 760 mm Hg | 536.56 | 523.88 | 538.49 | 540.06 | 537.84 | 539.558 | 536.83 | 539.48 | 538.21 |
Bosutinib | 649.7 ± 55 ℃ at 760 mm Hg | 692.86 | 660.05 | 698.02 | 697.12 | 681.01 | 664.748 | 662.43 | 698.45 | 664.25 |
Dasatinib | 659.91 | 638.81 | 668.27 | 667.99 | 648.54 | 635.323 | 628.43 | 673.66 | 632.05 | |
Melphala | 473 ± 45 ℃ at 760 mm Hg | 559.07 | 539.69 | 556.83 | 553.80 | 554.08 | 549.723 | 554.03 | 557.94 | 552.47 |
Dexamethasone | 568.2 ± 5 ℃ at 760 mm Hg | 655.90 | 621.81 | 655.15 | 658.12 | 666.25 | 678.658 | 671.23 | 653.81 | 675.29 |
Doxorubicine | 216 ± 65 ℃ at 760 mm Hg | 699.48 | 678.68 | 712.63 | 714.21 | 697.25 | 694.173 | 680.43 | 720.20 | 687.25 |
Carboplatin | 366.4 ± 60 ℃ at 760 mm Hg | 510.91 | 486.18 | 501.38 | 502.81 | 517.18 | 522.973 | 529.23 | 495.47 | 526.71 |
Name of drug | ABC(G) | RA(G) | S(G) | GA(G) | M1(G) | M2(G) | F(G) | H(G) | HM(G) |
Azacitidine | 22.04 | 13.12 | 13.46 | 27.72 | 162 | 209 | 516 | 11.95 | 934.00 |
Buslfan | 20.77 | 11.31 | 11.04 | 22.23 | 148 | 176 | 526 | 9.45 | 878.00 |
Mercaptopurine | 10.91 | 6.52 | 6.74 | 14.25 | 76 | 93 | 210 | 6.10 | 396.00 |
Tioguanine | 12.39 | 7.43 | 7.65 | 16.12 | 86 | 105 | 238 | 6.93 | 448.00 |
Nelarabine | 27.99 | 16.29 | 16.67 | 35.13 | 206 | 262 | 652 | 14.85 | 1176.00 |
Cytarabine | 22.77 | 13.55 | 13.68 | 28.62 | 168 | 218 | 536 | 12.32 | 972.00 |
Clofarabine | 24.24 | 14.04 | 14.43 | 30.59 | 180 | 233 | 570 | 12.82 | 1036.00 |
Bosutinib | 51.18 | 28.73 | 29.39 | 61.92 | 374 | 467 | 1198 | 25.39 | 2132.00 |
Dasatinib | 45.50 | 25.95 | 26.60 | 56.11 | 330 | 412 | 1028 | 23.43 | 1852.00 |
Melphala | 28.12 | 16.18 | 16.15 | 33.33 | 202 | 252 | 656 | 14.28 | 1160.00 |
Dexamethasone | 44.81 | 24.85 | 25.37 | 54.14 | 354 | 493 | 1242 | 21.86 | 2228.00 |
Doxorubicine | 52.32 | 30.01 | 30.76 | 65.33 | 396 | 522 | 1288 | 27.11 | 2332.00 |
Carboplatin | 19.82 | 10.76 | 10.95 | 23.16 | 152 | 202 | 532 | 9.34 | 936.00 |
Name of drug | Molar volume (cm3) | Boiling Point ℃ | Refractive Index (m3 mol−1) | Complexity | Flash Point ℃ |
Azacitidine | 117.10 | 534.21 | 54.10 | 384.00 | 277.00 |
Buslfan | 182.40 | 464.00 | 50.90 | 234.40 | |
Mercaptopurine | 94.20 | 491.00 | 41.00 | 19.00 | 250.50 |
Tioguanine | 80.20 | 460.70 | 46.89 | 225.00 | 232.00 |
Nelarabine | 149.90 | 721.00 | 65.80 | 377.00 | 389.90 |
Cytarabine | 128.40 | 547.70 | 52.60 | 383.00 | 283.80 |
Clofarabine | 143.10 | 550.00 | 63.60 | 370.00 | 286.40 |
Bosutinib | 388.30 | 649.70 | 142.12 | 734.00 | 346.70 |
Dasatinib | 366.40 | 133.08 | 642.00 | ||
Melphala | 231.20 | 473.00 | 78.23 | 265.00 | 239.00 |
Dexamethasone | 296.20 | 568.20 | 100.20 | 805.00 | 298.00 |
Doxorubicine | 336.60 | 216.00 | 134.59 | 977.00 | 443.80 |
Carboplatin | 366.40 | 60.04 | 177.00 |
Topological Index | Correlation coefficient of complexity | Correlation coefficient of refractive index | Correlation coefficient of flash point | Correlation coefficient of boiling point | Correlation coefficient of molar volume |
ABC(G) | 0.943 | 0.966 | 0.731 | 0.672 | 0.953 |
RA(G) | 0.947 | 0.965 | 0.751 | 0.7 | 0.946 |
S(G) | 0.949 | 0.966 | 0.759 | 0.708 | 0.942 |
GA(G) | 0.951 | 0.966 | 0.764 | 0.711 | 0.938 |
M1(G) | 0.953 | 0.952 | 0.728 | 0.66 | 0.939 |
M2(G) | 0.96 | 0.928 | 0.72 | 0.645 | 0.913 |
HM(G) | 0.954 | 0.927 | 0.705 | 0.625 | 0.822 |
F(G) | 0.949 | 0.925 | 0.692 | 0.609 | 0.927 |
H(G) | 0.95 | 0.965 | 0.772 | 0.725 | 0.936 |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 395.921 | 5.802 | .672 | .451 | 8.228 | .017 | Significant |
Refractive index | 13 | 6.034 | 2.468 | .966 | .933 | 154.093 | .000 | Significant |
Flash point | 11 | 197.699 | 3.486 | .731 | .535 | 10.343 | .011 | Significant |
Molar volume | 12 | −10.083 | 7.258 | .953 | .909 | 99.904 | .000 | Significant |
Complexity | 12 | −107.244 | 18.352 | .943 | .889 | 79.955 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 385.002 | 10.833 | .700 | .490 | 9.614 | .011 | Significant |
Refractive index | 13 | 4.535 | 4.408 | .965 | .932 | 150.523 | .000 | Significant |
Flash point | 11 | 191.561 | 6.451 | .751 | .564 | 11.648 | .008 | Significant |
Molar volume | 12 | −14.889 | 12.947 | .946 | .894 | 84.680 | .000 | Significant |
Complexity | 12 | −125.985 | 33.119 | .947 | .896 | 86.612 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 384.612 | 10.664 | .708 | .501 | 10.027 | .010 | Significant |
Refractive index | 13 | 5.102 | 4.293 | .966 | .934 | 155.042 | .000 | Significant |
Flash point | 11 | 191.365 | 6.348 | .759 | .576 | 12.232 | .007 | Significant |
Molar volume | 12 | −11.972 | 12.540 | .942 | .887 | 78.511 | .000 | Significant |
Complexity | 12 | −125.538 | 32.402 | .949 | .900 | 90.006 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 386.718 | 5.013 | .711 | .505 | 10.202 | .010 | Significant |
Refractive index | 13 | 6.258 | 2.010 | .966 | .933 | 152.002 | .000 | Significant |
Flash point | 11 | 192.642 | 2.985 | .764 | .583 | 12.597 | .006 | Significant |
Molar volume | 12 | −7.333 | 5.841 | .938 | .879 | 72.917 | .000 | Significant |
Complexity | 12 | −121.577 | 15.270 | .951 | .905 | 95.147 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 405.004 | .738 | .660 | .436 | 7.721 | .019 | Significant |
Refractive index | 13 | 9.310 | .318 | .952 | .907 | 106.874 | .000 | Significant |
Flash point | 11 | 202.599 | .448 | .728 | .530 | 10.153 | .011 | Significant |
Molar volume | 12 | 1.253 | .932 | .939 | .882 | 74.603 | .000 | Significant |
Complexity | 12 | −97.937 | 2.432 | .953 | .908 | 98.435 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 414.903 | .535 | .645 | .416 | 7.127 | .024 | Significant |
Refractive index | 13 | 13.461 | .233 | .928 | .861 | 67.942 | .000 | Significant |
Flash point | 11 | 208.190 | .327 | .720 | .518 | 9.666 | .013 | Significant |
Molar volume | 12 | 15.185 | .677 | .913 | .834 | 50.072 | .000 | Significant |
Complexity | 12 | −87.855 | 1.849 | .960 | .922 | 118.593 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 419.068 | .115 | .625 | .391 | 6.420 | .030 | Significant |
Refractive index | 13 | 13.368 | .052 | .927 | .859 | 67.002 | .000 | Significant |
Flash point | 11 | 210.170 | .071 | .705 | .497 | 8.876 | .015 | Significant |
Molar volume | 12 | 13.491 | .151 | .822 | .849 | 56.325 | .000 | Significant |
Complexity | 12 | −78.956 | .404 | .954 | .911 | 102.026 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 422.835 | .200 | .609 | .370 | 5.882 | .036 | Significant |
Refractive index | 13 | 13.494 | .092 | .925 | .855 | 64.869 | .000 | Significant |
Flash point | 11 | 212.010 | .124 | .692 | .478 | 8.256 | .018 | Significant |
Molar volume | 12 | 13.736 | .273 | .927 | .859 | 64.032 | .000 | Significant |
Complexity | 12 | −71.482 | .717 | .949 | .901 | 90.832 | .000 | Significant |
Physiochemical Property | N | A | b | r | r2 | F | p | Indicator |
Boiling Point | 12 | 377.349 | 12.647 | .725 | .526 | 11.103 | .008 | Significant |
Refractive index | 13 | 4.240 | 4.943 | .965 | .930 | 147.100 | .000 | Significant |
Flash point | 11 | 187.144 | 7.500 | .772 | .596 | 13.299 | .005 | Significant |
Molar volume | 12 | −14.817 | 14.434 | .936 | .877 | 71.041 | .000 | Significant |
Complexity | 12 | −136.607 | 37.543 | .950 | .902 | 91.960 | .000 | Significant |
Topological Index | Std. Error of the estimate for boiling point | Std. Error of the estimate for refractive index | Std. Error of the estimate for flash point | Std. Error of the estimate for molar volume | Std. Error of the estimate for complexity |
ABC(G) | 125.47771 | 9.78297 | 49.28724 | 34.98955 | 99.29113 |
RA(G) | 135.48910 | 9.89048 | 47.70434 | 3.69784 | 95.80944 |
S(G) | 135.49670 | 9.75496 | 47.04354 | 38.98953 | 94.16957 |
GA(G) | 135.48311 | 9.84552 | 46.64458 | 40.28320 | 91.83836 |
M1(G) | 135.40209 | 11.57777 | 49.53170 | 39.877986 | 90.43550 |
M2(G) | 135.28260 | 14.14755 | 50.17335 | 47.32703 | 83.04506 |
HM(G) | 135.30024 | 14.23249 | 51.27036 | 45.04104 | 88.97405 |
F(G) | 135.31481 | 14.43119 | 52.18328 | 43.52285 | 93.78305 |
H(G) | 135.48656 | 9.99697 | 45.90422 | 40.74687 | 93.26266 |
Name of drug | Molar volume of drug | Molar volume from regression model for ABC(G) Index |
Molar volume from regression model for RA(G) Index |
Molar volume from regression model for SCI(G) Index |
Molar volume from regression model for GA(G) Index |
Molar volume from regression model for M1(G) Index |
Molar volume from regression model for M2(G)Index |
Molar volume from regression model for F(G)Index |
Molar volume from regression model for H(G) Index | Molar volume from regression model for HM(G)Index |
Azacitidine | 117.1 cm3 | 149.883 | 139.827 | 156.816 | 154.579 | 152.237 | 156.678 | 154.604 | 157.669 | 154.525 |
Buslfan | 182.4 cm3 | 140.665 | 107.460 | 126.469 | 122.512 | 139.189 | 134.337 | 157.334 | 121.584 | 146.069 |
Mercaptopurine | 94.2 cm3 | 69.1017 | 64.0877 | 72.5476 | 75.9012 | 72.085 | 78.146 | 71.066 | 73.2304 | 73.287 |
Tioguanine | 80.2 cm3 | 79.8436 | 74.8337 | 83.959 | 86.8239 | 81.405 | 86.27 | 78.71 | 85.2106 | 81.139 |
Nelarabine | 149.9 cm3 | 193.068 | 177.374 | 197.069 | 197.861 | 193.245 | 192.559 | 191.732 | 199.527 | 191.067 |
Cytarabine | 128.4 cm3 | 155.181 | 144.618 | 159.575 | 159.836 | 157.829 | 162.771 | 160.064 | 163.009 | 160.263 |
Clofarabine | 143.1 cm3 | 165.850 | 151.091 | 168.980 | 171.343 | 169.013 | 172.926 | 169.346 | 170.226 | 169.927 |
Bosutinib | 388.3 cm3 | 361.381 | 313.835 | 356.578 | 354.341 | 349.821 | 331.344 | 340.79 | 351.662 | 335.423 |
Dasatinib | 366.4 cm3 | 320.156 | 288.459 | 321.592 | 320.405 | 308.813 | 294.109 | 294.38 | 323.371 | 293.143 |
Melphala | 231.2 cm3 | 194.012 | 169.994 | 190.549 | 187.347 | 189.517 | 185.789 | 192.824 | 191.300 | 188.651 |
Dexamethasone | 296.2 cm3 | 315.148 | 268.132 | 306.167 | 308.898 | 331.181 | 348.946 | 352.802 | 300.710 | 349.919 |
Doxorubicine | 336.6 cm3 | 369.655 | 336.104 | 373.758 | 374.259 | 370.325 | 368.579 | 365.36 | 376.488 | 365.623 |
Carboplatin | 133.770 | 106.036 | 125.341 | 127.944 | 142.917 | 151.939 | 158.972 | 119.996 | 154.827 |
Name of drug | Flash point of drug | Flash point computed from regression model for ABC(G) Index | Flash point computed from regression model for RA(G) Index | Flash point computed from regression model for SCI(G) Index | Flash point computed from regression model for GA(G) Index | Flash point computed from regression model for M1(G) Index | Flash point computed from regression model for M2(G)Index | Flash point computed from regression model for F(G)Index | Flash point computed from regression model for H(G) Index | Flash point computed from regression model for HM(G)Index |
Azacitidine | 277 ℃ | 523.797 | 514.456 | 528.149 | 525.678 | 524.56 | 526.718 | 526.035 | 528.480 | 526.478 |
Buslfan | 234.4 ℃ | 516.428 | 487.373 | 502.342 | 498.157 | 514.228 | 509.063 | 528.035 | 496.863 | 520.038 |
Mercaptopurine | 250.5 ℃ | 459.220 | 451.083 | 456.487 | 458.153 | 461.092 | 464.658 | 464.835 | 454.495 | 464.608 |
Tioguanine | 232 ℃ | 467.807 | 460.074 | 466.191 | 467.527 | 468.472 | 471.078 | 470.435 | 464.992 | 470.588 |
Nelarabine | 389.9 ℃ | 558.319 | 545.872 | 562.380 | 562.824 | 557.032 | 555.073 | 553.235 | 565.157 | 554.308 |
Cytarabine | 283.8 ℃ | 528.032 | 518.464 | 530.495 | 530.190 | 528.988 | 531.533 | 530.035 | 533.16 | 530.848 |
Clofarabine | 286.4 ℃ | 536.561 | 523.881 | 538.493 | 540.065 | 537.844 | 539.558 | 536.835 | 539.483 | 538.208 |
Bosutinib | 346.7 ℃ | 692.867 | 660.051 | 698.027 | 697.123 | 681.016 | 664.748 | 662.435 | 698.456 | 664.248 |
Dasatinib | 659.912 | 638.819 | 668.274 | 667.997 | 648.544 | 635.323 | 628.435 | 673.668 | 632.048 | |
Melphala | 239 ℃ | 559.073 | 539.697 | 556.835 | 553.801 | 554.08 | 549.723 | 554.035 | 557.948 | 552.468 |
Dexamethasone | 298 ℃ | 655.908 | 621.811 | 655.157 | 658.12 | 666.256 | 678.658 | 671.235 | 653.812 | 675.288 |
Doxorubicine | 443.8 ℃ | 699.481 | 678.684 | 712.636 | 714.217 | 697.252 | 694.173 | 680.435 | 720.209 | 687.248 |
Carboplatin | 5109166 | 486.182 | 501.382 | 502.819 | 517.18 | 522.973 | 529.235 | 495.472 | 526.708 |
Name of drug | Refractive Index of drug | Refractive Index computed from regression model for ABC(G) Index |
Refractive Index computed from regression model for RA(G) Index |
Refractive Index computed from regression model for SCI(G) Index |
Refractive Index computed from regression model for GA(G) Index |
Refractive Index computed from regression model for M1(G) Index |
Refractive Index computed from regression model for M2(G) Index |
Refractive Index computed from regression model for F(G) Index |
Refractive Index computed from regression model for H(G) Index | Refractive Index computed from regression model for HM(G) Index |
Azacitidine | 54.1 (m3 mol−1) | 60.4287 | 57.2106 | 62.8857 | 61.9752 | 60.826 | 62.158 | 60.966 | 63.3088 | 61.936 |
Buslfan | 50.9 (m3 mol−1) | 57.2943 | 46.1906 | 52.4967 | 50.9403 | 56.374 | 54.469 | 61.886 | 50.9513 | 59.024 |
Mercaptopurine | 41 (m3 mol−1) | 32.9598 | 31.4238 | 34.0368 | 34.9005 | 33.478 | 35.13 | 32.814 | 34.3923 | 33.96 |
Tioguanine | 46.89 (m3 mol−1) | 36.6125 | 35.0824 | 37.9434 | 38.6592 | 36.658 | 37.926 | 35.39 | 38.4949 | 36.664 |
Nelarabine | 65.8 (m3 mol−1) | 75.1133 | 69.9938 | 76.6663 | 76.8693 | 74.818 | 74.507 | 73.478 | 77.6435 | 74.52 |
Cytarabine | 52.6 (m3 mol−1) | 62.2303 | 58.8415 | 63.8302 | 63.7842 | 62.734 | 64.255 | 62.806 | 65.1377 | 63.912 |
Clofarabine | 63.6 (m3 mol−1) | 65.8583 | 61.0455 | 67.0499 | 67.7439 | 66.55 | 67.75 | 65.934 | 67.6092 | 67.24 |
Bosutinib | 142.12 (m3 mol−1) | 132.346 | 116.454 | 131.273 | 130.717 | 128.242 | 122.272 | 123.71 | 129.742 | 124.232 |
Dasatinib | 133.08 (m3 mol−1) | 118.328 | 107.814 | 119.295 | 119.039 | 114.25 | 109.457 | 108.07 | 120.054 | 109.672 |
Melphala | 78.23 (m3 mol−1) | 75.4341 | 67.4812 | 74.4339 | 73.2513 | 73.546 | 72.177 | 73.846 | 74.8260 | 73.688 |
Dexamethasone | 100.2 (m3 mol−1) | 116.625 | 100.893 | 114.015 | 115.079 | 121.882 | 128.33 | 127.758 | 112.294 | 129.224 |
Doxorubicine | 134.59 (m3 mol−1) | 135.159 | 124.035 | 137.154 | 137.571 | 135.238 | 135.087 | 131.99 | 138.244 | 134.632 |
Carboplatin | 60.04 (m3 mol−1) | 54.9497 | 45.7057 | 52.1103 | 52.8096 | 57.646 | 60.527 | 62.438 | 50.4076 | 62.04 |
Name of drug | Complexity of drug | Complexity computed from regression model for ABC(G) Index | Complexity computed from regression model for RA(G) Index | Complexity computed from regression model for SCI(G) Index | Complexity computed from regression model for GA(G) Index | Complexity computed from regression model for M1(G) Index | Complexity computed from regression model for M2(G) Index | Complexity computed from regression model for F(G) Index | Complexity computed from regression model for H(G) Index | Complexity computed from regression model for HM(G)Index |
Azacitidine | 384 | 297.234 | 269.787 | 310.592 | 301.707 | 296.047 | 298.586 | 298.49 | 312.031 | 298.38 |
Buslfan | 273.927 | 186.989 | 232.180 | 217.875 | 261.999 | 237.569 | 305.66 | 218.174 | 275.756 | |
Mercaptopurine | 190 | 92.9763 | 76.0409 | 92.8514 | 96.0205 | 86.895 | 84.102 | 79.088 | 92.4053 | 81.028 |
Tioguanine | 225 | 120.137 | 103.529 | 122.337 | 124.575 | 111.215 | 106.29 | 99.164 | 123.566 | 102.036 |
Nelarabine | 377 | 406.428 | 365.832 | 414.603 | 414.858 | 403.055 | 396.583 | 396.002 | 420.906 | 396.148 |
Cytarabine | 383 | 310.631 | 282.041 | 317.721 | 315.450 | 310.639 | 315.227 | 312.83 | 325.922 | 313.732 |
Clofarabine | 370 | 337.608 | 298.600 | 342.022 | 345.532 | 339.823 | 342.962 | 337.208 | 344.694 | 339.588 |
Bosutinib | 734 | 832.011 | 714.906 | 826.756 | 823.941 | 811.631 | 775.628 | 787.484 | 816.609 | 782.372 |
Dasatinib | 642 | 727.772 | 649.993 | 736.355 | 735.222 | 704.623 | 673.933 | 665.594 | 743.025 | 669.252 |
Melphala | 265 | 408.814 | 346.954 | 397.754 | 387.372 | 393.327 | 378.093 | 398.87 | 399.507 | 389.684 |
Dexamethasone | 805 | 715.109 | 597.996 | 696.500 | 705.140 | 762.991 | 823.702 | 819.032 | 684.083 | 821.156 |
Doxorubicine | 977 | 852.932 | 771.871 | 871.147 | 876.012 | 865.135 | 877.323 | 852.014 | 881.183 | 863.172 |
Carboplatin | 177 | 256.492 | 183.346 | 229.263 | 232.076 | 271.727 | 285.643 | 309.962 | 214.044 | 299.188 |
Name of drug | Boiling Point of drug | Boiling Point computed from regression model for ABC(G) Index | Boiling Point computed from regression model for RA(G) Index | Boiling Point computed from regression model for SCI(G) Index | Boiling Point computed from regression model for GA(G) Index | Boiling Point computed from regression model for M1(G) Index | Boiling Point computed from regression model for M2(G)Index | Boiling Point computed from regression model for F(G)Index |
Boiling Point computed from regression model for H(G) Index | Boiling Point computed from regression model for HM(G)Index |
Azacitidine | 534.2 ± 60 ℃ at 760 mm Hg | 523.79 | 514.45 | 528.14 | 525.67 | 524.56 | 526.718 | 526.03 | 528.48 | 526.48 |
Buslfan | 464 ± 28 ℃ at 760 mm Hg | 516.42 | 487.37 | 502.34 | 498.15 | 514.22 | 509.063 | 528.03 | 496.86 | 520.04 |
Mercaptopurine | 491 ± 25 ℃ at 760 mm Hg | 459.22 | 451.08 | 456.48 | 458.15 | 461.09 | 464.658 | 464.83 | 454.49 | 464.61 |
Tioguanine | 460.7 ± 37 ℃ at 760 mm Hg | 467.80 | 460.07 | 466.19 | 467.52 | 468.47 | 471.078 | 470.43 | 464.99 | 470.59 |
Nelarabine | 721 ± 70 ℃ at 760 mm Hg | 558.31 | 545.87 | 562.38 | 562.82 | 557.0 | 555.073 | 553.23 | 565.15 | 554.31 |
Cytarabine | 547.7 ± 60 ℃ at 760 mm Hg | 528.03 | 518.46 | 530.49 | 530.19 | 528.98 | 531.533 | 530.03 | 533.16 | 530.85 |
Clofarabine | 550 ± 60 ℃ at 760 mm Hg | 536.56 | 523.88 | 538.49 | 540.06 | 537.84 | 539.558 | 536.83 | 539.48 | 538.21 |
Bosutinib | 649.7 ± 55 ℃ at 760 mm Hg | 692.86 | 660.05 | 698.02 | 697.12 | 681.01 | 664.748 | 662.43 | 698.45 | 664.25 |
Dasatinib | 659.91 | 638.81 | 668.27 | 667.99 | 648.54 | 635.323 | 628.43 | 673.66 | 632.05 | |
Melphala | 473 ± 45 ℃ at 760 mm Hg | 559.07 | 539.69 | 556.83 | 553.80 | 554.08 | 549.723 | 554.03 | 557.94 | 552.47 |
Dexamethasone | 568.2 ± 5 ℃ at 760 mm Hg | 655.90 | 621.81 | 655.15 | 658.12 | 666.25 | 678.658 | 671.23 | 653.81 | 675.29 |
Doxorubicine | 216 ± 65 ℃ at 760 mm Hg | 699.48 | 678.68 | 712.63 | 714.21 | 697.25 | 694.173 | 680.43 | 720.20 | 687.25 |
Carboplatin | 366.4 ± 60 ℃ at 760 mm Hg | 510.91 | 486.18 | 501.38 | 502.81 | 517.18 | 522.973 | 529.23 | 495.47 | 526.71 |