Research article Special Issues

An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture

  • Received: 21 January 2024 Revised: 29 February 2024 Accepted: 06 March 2024 Published: 14 March 2024
  • MSC : 11Y40

  • Smart agricultural techniques employ current information and communication technologies, leveraging artificial intelligence (AI) for effectually managing the crop. Recognizing rice seedlings, which is crucial for harvest estimation, traditionally depends on human supervision but can be expedited and enhanced via computer vision (CV). Unmanned aerial vehicles (UAVs) equipped with high-resolution cameras bestow a swift and precise option for crop condition surveillance, specifically in cloudy states, giving valuable insights into crop management and breeding programs. Therefore, we improved an enhanced tunicate swarm algorithm with deep learning-based rice seedling classification (ETSADL-RSC). The presented ETSADL-RSC technique examined the UAV images to classify them into two classes: Rice seedlings and arable land. Initially, the quality of the pictures could be enhanced by a contrast limited adaptive histogram equalization (CLAHE) approach. Next, the ETSADL-RSC technique used the neural architectural search network (NASNet) method for the feature extraction process and its hyperparameters could be tuned by the ETSA model. For rice seedling classification, the ETSADL-RSC technique used a sparse autoencoder (SAE) model. The experimental outcome study of the ETSADL-RSC system was verified for the UAV Rice Seedling Classification dataset. Wide simulation analysis of the ETSADL-RSC model stated the greater accuracy performance of 97.79% over other DL classifiers.

    Citation: Manal Abdullah Alohali, Fuad Al-Mutiri, Kamal M. Othman, Ayman Yafoz, Raed Alsini, Ahmed S. Salama. An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture[J]. AIMS Mathematics, 2024, 9(4): 10185-10207. doi: 10.3934/math.2024498

    Related Papers:

    [1] Abigail Wiafe, Pasi Fränti . Affective algorithmic composition of music: A systematic review. Applied Computing and Intelligence, 2023, 3(1): 27-43. doi: 10.3934/aci.2023003
    [2] Abrhalei Tela, Abraham Woubie, Ville Hautamäki . Transferring monolingual model to low-resource language: the case of Tigrinya. Applied Computing and Intelligence, 2024, 4(2): 184-194. doi: 10.3934/aci.2024011
    [3] Pasi Fränti, Sami Sieranoja . Clustering accuracy. Applied Computing and Intelligence, 2024, 4(1): 24-44. doi: 10.3934/aci.2024003
    [4] Tinja Pitkämäki, Tapio Pahikkala, Ileana Montoya Perez, Parisa Movahedi, Valtteri Nieminen, Tom Southerington, Juho Vaiste, Mojtaba Jafaritadi, Muhammad Irfan Khan, Elina Kontio, Pertti Ranttila, Juha Pajula, Harri Pölönen, Aysen Degerli, Johan Plomp, Antti Airola . Finnish perspective on using synthetic health data to protect privacy: the PRIVASA project. Applied Computing and Intelligence, 2024, 4(2): 138-163. doi: 10.3934/aci.2024009
    [5] Francis Nweke, Abm Adnan Azmee, Md Abdullah Al Hafiz Khan, Yong Pei, Dominic Thomas, Monica Nandan . A transformer-driven framework for multi-label behavioral health classification in police narratives. Applied Computing and Intelligence, 2024, 4(2): 234-252. doi: 10.3934/aci.2024014
    [6] Hong Cao, Rong Ma, Yanlong Zhai, Jun Shen . LLM-Collab: a framework for enhancing task planning via chain-of-thought and multi-agent collaboration. Applied Computing and Intelligence, 2024, 4(2): 328-348. doi: 10.3934/aci.2024019
    [7] Elizaveta Zimina, Kalervo Järvelin, Jaakko Peltonen, Aarne Ranta, Kostas Stefanidis, Jyrki Nummenmaa . Linguistic summarisation of multiple entities in RDF graphs. Applied Computing and Intelligence, 2024, 4(1): 1-18. doi: 10.3934/aci.2024001
    [8] Yang Wang, Hassan A. Karimi . Exploring large language models for climate forecasting. Applied Computing and Intelligence, 2025, 5(1): 1-13. doi: 10.3934/aci.2025001
    [9] Marko Niemelä, Mikaela von Bonsdorff, Sami Äyrämö, Tommi Kärkkäinen . Classification of dementia from spoken speech using feature selection and the bag of acoustic words model. Applied Computing and Intelligence, 2024, 4(1): 45-65. doi: 10.3934/aci.2024004
    [10] Libero Nigro, Franco Cicirelli . Property assessment of Peterson's mutual exclusion algorithms. Applied Computing and Intelligence, 2024, 4(1): 66-92. doi: 10.3934/aci.2024005
  • Smart agricultural techniques employ current information and communication technologies, leveraging artificial intelligence (AI) for effectually managing the crop. Recognizing rice seedlings, which is crucial for harvest estimation, traditionally depends on human supervision but can be expedited and enhanced via computer vision (CV). Unmanned aerial vehicles (UAVs) equipped with high-resolution cameras bestow a swift and precise option for crop condition surveillance, specifically in cloudy states, giving valuable insights into crop management and breeding programs. Therefore, we improved an enhanced tunicate swarm algorithm with deep learning-based rice seedling classification (ETSADL-RSC). The presented ETSADL-RSC technique examined the UAV images to classify them into two classes: Rice seedlings and arable land. Initially, the quality of the pictures could be enhanced by a contrast limited adaptive histogram equalization (CLAHE) approach. Next, the ETSADL-RSC technique used the neural architectural search network (NASNet) method for the feature extraction process and its hyperparameters could be tuned by the ETSA model. For rice seedling classification, the ETSADL-RSC technique used a sparse autoencoder (SAE) model. The experimental outcome study of the ETSADL-RSC system was verified for the UAV Rice Seedling Classification dataset. Wide simulation analysis of the ETSADL-RSC model stated the greater accuracy performance of 97.79% over other DL classifiers.



    The study of integral inequality is an interesting area for research in mathematical analysis [1,2]. The fundamental integral inequalities can be instrumental in cultivating the subjective properties of convexity. The existence of massive literature surrounding integral inequalities for convex functions [3-7] depicts the importance of this topic. The most beautiful fact about convex function is that, it has a very elegant representation based on an inequality presented when the functional value of a linear combination of two points in its domain does not exceed the linear combination of the functional values at those two points. Fractional calculus owes its starting point to whether or not the importance of a derivative to an integer order could be generalized to a fractional order which is not an integer. Following this unique conversation between L'Hopital and Leibniz, the concept of fractional calculus grabbed the eye of some extraordinary researchers like Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. Over time, fractional operators have been differentiated with their singularity, locality and having general forms with the improvements made in their kernel structures. In this sense, based on the basic concepts of fractional analysis, Riemann-Liouville(R-L) and Caputo operators, various new trends have been successful. Fractional integral inequalities are marvelous tools for building up the qualitative and quantitative properties of preinvex functions. There has been a ceaseless development of intrigue in such a region of research so as to address the issues of different utilizations of these variants. In 1938, Ostrowski inequality established the following useful and interesting integral inequality, (see [12] and [13]). This review assumed a vital part in growing and getting varieties of well-known integral inequalities with the assistance of fractional integral operators. Then again, by characterizing various forms of Riemann-Liouville(R-L) fractional operator somewhat recently, new forms and refinements of integral inequalities involving differentiable functions have been presented. Studies in the field of fractional calculus have carried another point of view and direction in different fields of applied sciences. It has revealed insight into numerous real-life issues with the utilizations of recently characterized fractional operators.

    For recent result and their related some generalizations, variants and extensions concerning Ostrowski inequality (see [9,10,14-17]).

    The aim of this paper is to establish some integral inequalities for functions whose derivatives in absolute value are preinvex. Now we recall some notions in invexity analysis which will be used through the paper (see [20,21,24,26,28]) and references therein.

    Let g:K and η:K×K, where K is a nonempty set in n, be continuous functions.

    Definition [19] A function g:K=(,) is said to be convex, if we have

    g(vc+(1v)e)vg(c)+(1v)g(e).

    for all c,eK and v[0,1].

    Definition [25] The set Kn is said to be invex with respect to η(.,.), if for every c,eK and v[0,1]

    c+vη(e,c)K.

    The above set K is also called η-connected set.

    It is obvious that every convex set is invex with respect to η(e,c)=ec but there exist invex sets which are not convex [20].

    Definition The function g on the invex set K is said to be preinvex with respect to η if

    g(c+vη(e,c))  (1v) g(c) + v g(e) ,       c , eK ,  v[0,1].

    The function g is said to be preconcave if and only if g is preinvex .

    The important note that every convex function is a preinvex function but the converse is not true [21]. For example g(v)=|v|,   v, is not convex function but it is preinvex function with respect to

    η(e,c)={ec        if  ce0,ce        if  ce<0.

    We also want the following hypothesis regarding the function η which is due to Mohan et al. [22]. Condition-C: Let Kn be an open invex subset with respect to η:K×K. For any c,eK and v[0,1]

    η(e,e+v η(c,e))=  vη(c,e),η(c,e+v η(c,e))=  (1v)η(c,e). (1.1)

    For any c,eK and v1,v2[0,1] from condition C, we have

    η(e+v2 η(c,e) , e+v1 η(c,e))=  (v2v1)η(c,e).

    If g is a preinvex function on [c,c+η(e,c)] and the mapping η satisfies condition C, then for every v[0,1], from Eq (1.1), it yields that

    |g(c+vη(e,c))|= |g(c+η(e,c))+(1v)η(c,c+η(e,c))|             v |g(c+η(e,c))|+(1v)|g(c)|,                      

    and

    |g(c+(1v)η(e,c))|= |g(c+η(e,c))+vη(c,c+η(e,c))|      (1v) |g(c+η(e,c))|+v|g(c)|.

    There are many vector functions that satisfy the condition C in [25], which trivial case η(c,e)=ce. For example suppose K={0} and

    η(e,c)={ec        if  c>0,e>0ec        if  c<0,e<0e,                  otherwise

    The set K is invex set and η satisfies the condition C.

    Noor et al. [23], proved the following Hermite-Hadamard type inequalities.

    Theorem 1.1. Let g:K=[c,c+η(e,c)](0,) be a preinvex function on the interval of real numbers K0 with η(e,c)>0, then the following inequalities hold:

    g(2c+η(e,c)2)1η(e,c)c+η(e,c)cg(x) dxg(c) + g(e)2.

    Then Riemann-Liouville(R-L) fractional integrals of order ε>0 with c0 are defined as follows:

    Jεc+g(z)= 1Γ(ε)zc(zv)ε1 g(v) dv ,    z>c, 

    and

    Jεeg(z)= 1Γ(ε)ez(vz)ε1 g(v) dv ,    z<e.

    In [30], Sarikaya et al. also described the inequality in fractional integral version. In this study, considering the above mentioned theoretical framework, firstly, an integral identity which is candidate to produce Ostrowski type inequalities has been proved. With the help of such identity like Hölder, Power mean, Young's inequalities, Hölder-İşcan, Improved power means inequality and convexity, a new type of inequality, Ostrowski type inequalities, has been obtained.

    In this section, we give Ostrowski inequalities for Riemann-Liouville(R-L) fractional integrals operator are obtained for a differentiable functions on (c,c+η(e,c)). For this purpose, we give a new identity that involve Riemann-Liouville(R-L) fractional integrals operator whose second derivatives are preinvex functions.

    Lemma 2.1. Suppose that a mapping g:[c,c+η(e,c)] istwice differentiable with c<c+η(e,c). If gL1[c,c+η(e,c)], then for all z[c,c+η(e,c)] and ε>0, the following equality

    ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}=ηε+2(z,c)(ε+1)η(e,c) 10vε+1g(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1g(e+vη(z,e))dv, (2.1)

    satisfies for v[0,1] .

    Proof. Let us assume that

    ηε+2(z,c)(ε+1)η(e,c) 10vε+1g(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1g(e+vη(z,e))dv,I=ηε+2(z,c)(ε+1)η(e,c) I1+ηε+2(e,z)(ε+1)η(e,c) I2, (2.2)

    where

    I1=10vε+1g(c+vη(z,c))dv =vε+1g(c+vη(z,c))η(z,c)g|1010(ε+1)vε g(c+vη(z,c))η(z,c)dv=g(z)η(z,c)ε+1η(z,c)10vε g(c+vη(z,c))dv=g(z)η(z,c)ε+1η2(z,c)g(z)+ε(ε+1)η2(z,c)10vε1 g(c+vη(z,c))dv=g(z)η(z,c)ε+1η2(z,c)g(z) +Γ(ε+2)ηε+2(z,c) Jε[c+η(z,c)]g(c),

    and similarly

    I2= 10vε+1g(e+vη(z,e))dv=vε+1g(e+vη(z,e))η(z,e)g|1010(ε+1)vε g(e+vη(z,e))η(z,e)dv=g(z)η(z,e)ε+1η(z,c)10vε g(c+vη(z,c))dv=g(z)η(e,z)ε+1η2(z,e)g(z)+ε(ε+1)η2(z,e)10vε1 g(e+vη(z,e))dv=g(z)η(e,z)ε+1η2(e,z)g(z) +Γ(ε+2)ηε+2(e,z) Jε[e+η(z,e)]+g(e),

    Combining I1 and I2 with (2.2), we get (2.3).

    Remark 2.1. If we set ε=1 and η(c,e)=ce in Lemma 2.1, we get (Lemma 1 in [11]).

    Theorem 2.1. Assume that all the assumptions as defined in Lemma 2.1 and |g| is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|ηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(e)|1ε+2g}. (2.3)

    satisfies for v[0,1].

    Proof. From Lemma 2.1 and since |g| is preinvex function on [c,c+η(e,c)], we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv ηε+2(z,c)(ε+1)η(e,c)  10vε+1g{v|g(z)|+(1v)|g(c)|g}dv+ηε+2(e,z)(ε+1)η(e,c)10vε+1g{v|g(z)|+(1v)|g(e)|g}dvηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(e)|1ε+2g}.

    This completes the proof.

    Remark 2.2. If we set ε=1 and η(c,e)=ce, then from Theorem 2.1, we get (Theorem 4 in [11]) with s=1.

    Corollary 2.1. By using Theorem 2.1 with |g|M, we get the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M(1(ε+1)(ε+2)η(e,c)) g[ηε+2(z,c)+ ηε+2(e,z)g].

    Remark 2.3. If we set ε=1 and η(c,e)=ce, then from Corollary 2.1, we recapture (Theorem 2.1, [32]).

    Corollary 2.2. If we set η(c,e)=ce and z=c+e2, in Corollary 2.1, we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|M(ec)ε+12ε+1g(1(ε+1)(ε+2)g).

    Theorem 2.2. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|q+|g(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|q+|g(e)|q2)1qg], (2.4)

    satisfies for v[0,1], where q1+p1=1.

    Proof. Suppose that p>1. From Lemma 2.1, by using the well-known Hölder integral inequality and the preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (2.5)
     ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv (2.6)
     ηε+2(z,c)(ε+1)η(e,c)  (10v(ε+1)pdv)1p(10|g(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(10v(ε+1)pdv)1p(10|g(e+vη(z,e))|qdv)1q. (2.7)

    Since |g|q is preinvexity on [c,c+η(e,c)], we obtain

    10|g(c+vη(z,c))|qdv10g{v|g(z)|q+(1v)|g(c)|qg}dv= |g(z)|q+|g(c)|q2, (2.8)

    and

    10|g(e+vη(z,e))|qdv10g{v|g(z)|q+(1v)|g(e)|qg}dv= |g(z)|q+|g(e)|q2. (2.9)

    By using (2.8) and (2.9) with (2.7), we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|q+|g(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|q+|g(e)|q2)1qg].

    This completes the proof.

    Remark 2.4. If we set ε=1 and η(c,e)=ce, then from Theorem 2.2, we get ( Theorem 5, [11]) with s=1.

    Corollary 2.3. Using Theorem 2.2 with |g|M, we get

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M(1(ε+1)p+1)1p g[ ηε+2(z,c)(ε+1)η(e,c)+ ηε+2(e,z)(ε+1)η(e,c)g].

    Corollary 2.4. If in Corollary 2.3, we set η(c,e)=ce and z=c+e2, then we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|M(ec)ε+1(ε+1)2ε+1 (1(ε+1)p+1)1p.

    Theorem 2.3. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1ε+2)11qg[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|qε+3+|g(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|qε+3+|g(e)|q(ε+2)(ε+3))1qg], (2.10)

    satisfies for v[0,1].

    Proof. Suppose that q1. From Lemma 2.1, by using the power-mean integral inequality and preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv
     ηε+2(z,c)(ε+1)η(e,c)  (10vε+1dv)11q(10|g(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(10vε+1dv)11q(10|g(e+vη(z,e))|qdv)1q. (2.11)

    Since |g|q is preinvexity on [c,c+η(e,c)], we obtain

    10vε+1|g(c+vη(z,c))|qdv10vε+1g{v|g(z)|q+(1v)|g(c)|qg}dv= |g(z)|qε+3+|g(c)|q(ε+2)(ε+3) (2.12)

    and

    10vε+1|g(e+vη(z,e))|qdv10vε+1g{v|g(z)|q+(1v)|g(e)|qg}dv= |g(z)|qε+3+|g(e)|q(ε+2)(ε+3). (2.13)

    By using (2.12) and (2.13) with (2.11), we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1ε+2)11qg[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|qε+3+|g(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|qε+3+|g(e)|q(ε+2)(ε+3))1qg].

    This completes the proof.

    Remark 2.5. If we set ε=1 and η(c,e)=ce, then from Theorem 2.3, we get (Theorem 6, [11])with s=1.

    Corollary 2.5. Under the same assumptions in Theorem 2.3 with |g|M, we get the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M(1(ε+1)(ε+2)η(e,c)) g[ ηε+2(z,c)+ ηε+2(e,z)g].

    Corollary 2.6. If in Corollary 2.5, we set η(c,e)=ce and z=c+e2, then we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|M(ec)ε+1(ε+1)(ε+2)2ε+1.

    Theorem 2.4. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(e)|q2qg}, (2.14)

    satisfies for v[0,1].

    Proof. From Lemma 2.1, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv.

    By using the Young's inequality as

    xy < 1pxp+1qyq.
    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c)g{1p10v(ε+1)pdv+1q10|g(c+vη(z,c))|qdvg}+ ηε+2(e,z)(ε+1)η(e,c)g{1p10v(ε+1)pdv+1q10|g(e+vη(z,e))|qdvg} ηε+2(z,c)(ε+1)η(e,c)g{1p10v(ε+1)pdv+1q10g{v|g(z)|q+(1v)|g(c)|qg}g}+ ηε+2(e,z)(ε+1)η(e,c) g{1p10v(ε+1)pdv+1q10g{v|g(z)|q+(1v)|g(e)|qg}g} ηε+2(z,c)(α+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(e)|q2qg}.

    This completes the proof.

    Corollary 2.7. If we set η(c,e)=ce and ε=1 in Theorem 2.4, we get

    |1 ececg(u)dug(z)+(zc+e2)g(z)|(zc)32(ec)g[1(2p+1)p+|g(z)|q+|g(c)|q2qg]+(ez)32(ec)g[1(2p+1)p+|g(z)|q+|g(e)|q2qg].

    Corollary 2.8. If in Theorem 2.4, we set η(c,e)=ce and z=c+e2, then we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|(ec)ε+12ε+2(ε+1)g{2((ε+1)p+1)p+|g(c+e2)|q+|g(c)|q2q+|g(c+e2)|q+|g(e)|q2qg}.

    Theorem 2.5. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (2.15)
     ηε+2(z,c)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g(z)|q+13|g(c)|q)1q+(1(ε+1)p+2)1p(13|g(z)|q+16|g(c)|q)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g(z)|q+13|g(e)|q)1q+(1(ε+1)p+2)1p(13|g(z)|q+16|g(e)|q)1qg],

    satisfies for v[0,1], where q1+p1=1.

    Proof. From Lemma 2.1, by using the Hölder-İşcan integral inequality (see in [33]) and the preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv
     ηε+2(z,c)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v)|g(c+vη(z,c))|qdv)1q+(10v(ε+1)p+1dv)1p(10v|g(c+vη(z,c))|qdv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v)|g(e+vη(z,e))|qdv)1q
    +(10v(ε+1)p+1dv)1p(10v|g(e+vη(z,e))|qdv)1qg] ηα+2(z,c)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v){v|g(z)|q+(1v)|g(c)|q}dv)1q
    +(10v(ε+1)p+1dv)1p(10v{v|g(z)|q+(1v)|g(c)|q}dv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v){v|g(z)|q+(1v)|g(e)|q}dv)1q+(10v(ε+1)p+1dv)1p(10v{v|g(z)|q+(1v)|g(e)|q}dv)1qg].

    After simplification, we get (2.15). This completes the proof.

    Corollary 2.9. Using the same assumptions in Theorem 2.5 with |g|M, we get

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M 21q(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p+(1(ε+1)p+2)1pg]×g[ηε+2(z,c)+ηε+2(e,z)g].

    Theorem 2.6. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(c)|q(ε+2)(ε+3)(ε+4))1q (2.16)
    +(1ε+3)11q(|g(z)|qε+4+|g(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)11q(|g(z)|qε+4+|g(e)|q(ε+3)(ε+4))1qg],

    satisfies for v[0,1], where q1+p1=1.

    Proof. From Lemma 2.1, improved power-mean integral inequality(see in [33]) and the preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv ηε+2(z,c)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q(10(1v)vε+1|g(c+vη(z,c))|qdv)1q+ (10vε+2dv)11q(10vε+2|g(c+vη(z,c))|qdv)1qg]
    +ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q(10(1v)vε+1|g(e+vη(z,e))|qdv)1q+ (10vε+2dv)11q(10vε+2|g(e+vη(z,e))|qdv)1qg] ηε+2(z,c)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q×(10(1v)vε+1{v|g(z)|q+(1v)|g(c)|q}dv)1q+ (10vε+2dv)11q(10vε+2{v|g(z)|q+(1v)|g(c)|q}dv)1qg]+ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q(10(1v)vε+1{v|g(z)|q+(1v)|g(e)|q}dv)1q+ (10vε+2dv)11q(10vε+2{v|g(z)|q+(1v)|g(e)|q}dv)1qg]
     ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(a)|q(ε+2)(ε+3)(ε+4))1q
    +(1ε+3)11q(|g(z)|qε+4+|g(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)11q(|g(z)|qε+4+|g(e)|q(ε+3)(ε+4))1qg].

    This completes the proof.

    Corollary 2.10. Using the same assumption of Theorem 2.6 with |g|M, we get

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M (ε+1)(ε+2)η(e,c)g[ηε+2(z,c)+ηε+2(e,z)g].

    We recall the first kind modified Bessel function m, which has the series representation (see [42], p.77)

    m(ζ)=Σn0(ζ2)m+2nn!Γ(m+n+1).

    where ζ and m>1, while the second kind modified Bessel function gm (see [42], p.78) is usually defined as

    gm(ζ)=π2 m(ζ)m(ζ)sinmπ.

    Consider the function Ωm(ζ):[1,) defined by

    Ωm(ζ)=2mΓ(m+1)ζmm(ζ),

    where Γ is the gamma function.

    The first order derivative formula of Ωm(ζ) is given by [42]:

    Ωm(ζ)=ζ2(m+1)Ωm+1(ζ) (3.1)

    and the second derivative can be easily calculated from (3.1) as

    Ωm(ζ)=ζ24(m+1)(m+2) Ωm+2(ζ) +  12(m+1)Ωm+1(ζ). (3.2)

    and the third derivative can be easily calculated from (3.2) as

    Ωm(ζ)=ζ34(m+1)(m+2)(m+3)Ωm+3(ζ)+3ζ4(m+1)(m+2)Ωm+2(ζ). (3.3)

    Proposition 3.1. Suppose that m>1 and 0<c<e. Then we get the inequality

    g|Ωm(e)Ωm(c)ecz2(m+1)Ωm+1(z)+(zc+e2)×g{z24(m+1)(m+2)Ωm+2(z)+12(m+1)Ωm+1(z)g}g|(zc)32(ec)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(c38(m+1)(m+2)(m+3)Ωm+3(z)+3c4(m+1)(m+2)Ωm+2(c))qg}g]+(ez)32(ec)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(e38(m+1)(m+2)(m+3)Ωm+3(z)+3e4(m+1)(m+2)Ωm+2(e))qg}g].

    Proof. The assertion follows immediately from Corollary 2.7 using g(ζ)=Ωm(ζ), ζ>0 and the identities (3.2) and (3.3).

    In this paper, we have defined an idea of fractional integral inequalities whose second derivatives are preinvex functions. We also investigated and proved a new lemma for the second derivatives of Riemann-Liouville fractional integral operator. Some new special cases are discovered in the form of corollaries. We hope that the strategies of this paper will motivate the researchers working in functional analysis, information theory and statistical theory. It is quite open to think about Ostrowski variants for generalized integral operators having Atangana-Baleanu operator etc. by applying generalized preinvexity. The results, which we have presented in this article, will potentially motivate researchers to study analogous and more general integral inequalities for various other kinds of fractional integral operators.

    All authors have no conflict of interest.



    [1] M. D. Yang, H. H. Tseng, Y. C. Hsu, C. Y. Yang, M. H. Lai, D. H. Wu, A UAV open dataset of rice paddies for deep learning practice, Remote Sens., 13 (2021), 1358. https://doi.org/10.3390/rs13071358 doi: 10.3390/rs13071358
    [2] Q. Yang, L. Shi, J. Han, J. Yu, K. Huang, A near real-time deep learning approach for detecting rice phenology based on UAV images, Agr. Forest Meteorol., 287 (2020), 107938. https://doi.org/10.1016/j.agrformet.2020.107938 doi: 10.1016/j.agrformet.2020.107938
    [3] V. Margapuri, N. Penumajji, M. Neilsen, Seed classification using synthetic image datasets generated from low-altitude UAV imagery, In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 2021,116–121. https://doi.org/10.1109/ICMLA52953.2021.00026
    [4] K. Dilmurat, V. Sagan, M. Maimaitijiang, S. Moose, F. B. Fritschi, Estimating crop seed composition using machine learning from multisensory UAV data, Remote Sens., 14 (2022), 4786. https://doi.org/10.3390/rs14194786 doi: 10.3390/rs14194786
    [5] M. M. Anuar, A. A. Halin, T. Perumal, B. Kalantar, Aerial imagery paddy seedlings inspection using deep learning, Remote Sens., 14 (2022), 274. https://doi.org/10.3390/rs14020274 doi: 10.3390/rs14020274
    [6] A. O. Conrad, W. Li, D. Y. Lee, G. L. Wang, L. Rodriguez-Saona, P. Bonello, Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles, Plant Phenomics, 2020 (2020), 8954085. https://doi.org/10.34133/2020/8954085 doi: 10.34133/2020/8954085
    [7] S. Tan, J. Liu, H. Lu, M. Lan, J. Yu, G. Liao, et al., Machine learning approaches for rice seedling growth stages detection, Front. Plant Sci., 13 (2022), 914771. https://doi.org/10.3389/fpls.2022.914771 doi: 10.3389/fpls.2022.914771
    [8] F. Liao, X. Feng, Z. Li, D. Wang, C. Xu, G. Chu, et al., A spatio-temporal convolutional neural network model for rice nutrient level diagnosis at rice panicle initiation stage, http://doi.org/10.2139/ssrn.4272680
    [9] F. M. Muharam, K. Nurulhuda, Z. Zulkafli, M. A. Tarmizi, A. N. H. Abdullah, M. F. Che Hashim, et al., UAV-and Random-Forest-AdaBoost (RFA)-based estimation of rice plant traits, Agronomy, 11 (2021), 915. https://doi.org/10.3390/agronomy11050915 doi: 10.3390/agronomy11050915
    [10] T. Yamaguchi, Y. Tanaka, Y. Imachi, M. Yamashita, K. Katsura, Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice, Remote Sens., 13 (2021), 84. https://doi.org/10.3390/rs13010084 doi: 10.3390/rs13010084
    [11] H. H. Tseng, M. D. Yang, R. Saminathan, Y. C. Hsu, C. Y. Yang, D. H. Wu, Rice seedling detection in UAV images using transfer learning and machine learning, Remote Sens., 14 (2022), 2837. https://doi.org/10.3390/rs14122837 doi: 10.3390/rs14122837
    [12] T. Liu, R. Li, X. Zhong, M. Jiang, X. Jin, P. Zhou, et al., Estimates of rice lodging using indices derived from UAV visible and thermal infrared images, Agr. Forest Meteorol., 252 (2018), 144–154. https://doi.org/10.1016/j.agrformet.2018.01.021 doi: 10.1016/j.agrformet.2018.01.021
    [13] X. Ma, X. Deng, L. Qi, Y. Jiang, H. Li, Y. Wang, et al., Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields, PloS One, 14 (2019), e0215676. https://doi.org/10.1371/journal.pone.0215676 doi: 10.1371/journal.pone.0215676
    [14] H. Liu, Y. Qi, W. Xiao, H. Tian, D. Zhao, K. Zhang, et al., Identification of male and female parents for hybrid rice seed production using UAV-based multispectral imagery, Agriculture, 12 (2022), 1005. https://doi.org/10.3390/agriculture12071005 doi: 10.3390/agriculture12071005
    [15] S. V. Desai, V. N. Balasubramanian, T. Fukatsu, S. Ninomiya, W. Guo, Automatic estimation of heading date of paddy rice using deep learning, Plant Methods, 15 (2019), 76. https://doi.org/10.1186/s13007-019-0457-1 doi: 10.1186/s13007-019-0457-1
    [16] J. Wu, G. Yang, X. Yang, B. Xu, L. Han, Y. Zhu, Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network, Remote Sens., 11 (2019), 691. https://doi.org/10.3390/rs11060691 doi: 10.3390/rs11060691
    [17] H. Ge, F. Ma, Z. Li, Z. Tan, C. Du, Improved accuracy of phenological detection in rice breeding by using ensemble models of machine learning based on UAV-RGB imagery, Remote Sens., 13 (2021), 2678. https://doi.org/10.3390/rs13142678 doi: 10.3390/rs13142678
    [18] G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, Z. A. Kazimi, Deep learning utilization in agriculture: Detection of rice plant diseases using an improved CNN model, Plants, 11 (2022), 2230. https://doi.org/10.3390/plants11172230 doi: 10.3390/plants11172230
    [19] N. Krishnamoorthy, L. V. N. Prasad, C. S. P. Kumar, B. Subedi, H. B. Abraha, V. E. Sathishkumar, Rice leaf diseases prediction using deep neural networks with transfer learning, Environm. Res., 198 (2021), 111275. https://doi.org/10.1016/j.envres.2021.111275 doi: 10.1016/j.envres.2021.111275
    [20] B. S. Reddy, A. K. Maurya, V. E. Sathishkumar, P. L. Narayana, M. H. Reddy, A. Baazeem, et al., Prediction of batch sorption of barium and strontium from saline water, Environ. Res., 197 (2021), 111107. https://doi.org/10.1016/j.envres.2021.111107 doi: 10.1016/j.envres.2021.111107
    [21] M. C. Michelini, A. Gazquez, M. L. Checovich, A. S. Tamayo, S. J. Maiale, A. B. Menéndez, et al., Determination of low‐temperature stress during the vegetative stage as a tool to predict plant yield in rice genotypes with contrasting tolerance levels, J. Agron. Crop Sci., 210 (2024), e12670. https://doi.org/10.1111/jac.12670 doi: 10.1111/jac.12670
    [22] P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, J. Andrew, DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes, Artif. Intell. Agric., 11 (2024), 34–49. https://doi.org/10.1016/j.aiia.2023.11.001 doi: 10.1016/j.aiia.2023.11.001
    [23] N. M. U. Din, A. Assad, R. A. Dar, M. Rasool, S. U. Sabha, T. Majeed, et al., RiceNet: A deep convolutional neural network approach for classification of rice varieties, Expert Syst. Appl., 235 (2024), 121214. https://doi.org/10.1016/j.eswa.2023.121214 doi: 10.1016/j.eswa.2023.121214
    [24] G. Çınarer, N. Erbaş, A. Ö cal, Rice classification and quality detection success with artificial intelligence technologies, Braz. Arch. Biol. Technol., 67 (2024), e24220754. https://doi.org/10.1590/1678-4324-2024220754 doi: 10.1590/1678-4324-2024220754
    [25] P. Kulkarni, S. Shastri. Rice leaf diseases detection using machine learning, J. Sci. Res. Technol., 2 (2024), 17–22. https://doi.org/10.61808/jsrt81 doi: 10.61808/jsrt81
    [26] H. M. Qassim, N. M. Basheer, M. N. Farhan, Brightness preserving enhancement for dental digital X-ray images based on entropy and histogram analysis, J. Appl. Sci. Eng., 22 (2019), 187–194. https://doi.org/10.6180/jase.201903_22(1).0019 doi: 10.6180/jase.201903_22(1).0019
    [27] S. Nalluri, R. Sasikala, A deep neural architecture for SOTA pneumonia detection from chest X-rays, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 489–502. https://doi.org/10.1007/s13198-022-01788-x doi: 10.1007/s13198-022-01788-x
    [28] Y. Zhang, Q. He, L. Yang, C. Liu, An improved tunicate swarm algorithm for solving the multiObjective optimisation problem of airport gate assignments, Appl. Sci., 12 (2022), 8203. https://doi.org/10.3390/app12168203 doi: 10.3390/app12168203
    [29] T. Fetouh, A. M. Elsayed, Optimal control and operation of fully automated distribution networks using improved tunicate swarm intelligent algorithm, IEEE Access, 8 (2020), 129689–129708. https://doi.org/10.1109/ACCESS.2020.3009113 doi: 10.1109/ACCESS.2020.3009113
    [30] B. Yan, G. Han, Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system, IEEE Access, 6 (2018), 41238–41248. https://doi.org/10.1109/ACCESS.2018.2858277 doi: 10.1109/ACCESS.2018.2858277
    [31] Rice Seedling Dataset, Available from: https://github.com/aipal-chu/RiceSeedlingDataset.
  • This article has been cited by:

    1. Mahyar Abbasian, Elahe Khatibi, Iman Azimi, David Oniani, Zahra Shakeri Hossein Abad, Alexander Thieme, Ram Sriram, Zhongqi Yang, Yanshan Wang, Bryant Lin, Olivier Gevaert, Li-Jia Li, Ramesh Jain, Amir M. Rahmani, Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative AI, 2024, 7, 2398-6352, 10.1038/s41746-024-01074-z
    2. Muhammad Asif, Monica Palmirani, 2024, Chapter 4, 978-3-031-68210-0, 34, 10.1007/978-3-031-68211-7_4
    3. Andrea Zielinski, Simon Hirzel, Sonja Arnold-Keifer, 2024, Enhancing Digital Libraries with Automated Definition Generation, 9798400710933, 1, 10.1145/3677389.3702536
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1372) PDF downloads(52) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog