
The use of synthetic data could facilitate data-driven innovation across industries and applications. Synthetic data can be generated using a range of methods, from statistical modeling to machine learning and generative AI, resulting in datasets of different formats and utility. In the health sector, the use of synthetic data is often motivated by privacy concerns. As generative AI is becoming an everyday tool, there is a need for practice-oriented insights into the prospects and limitations of synthetic data, especially in the privacy sensitive domains. We present an interdisciplinary outlook on the topic, focusing on, but not limited to, the Finnish regulatory context. First, we emphasize the need for working definitions to avoid misplaced assumptions. Second, we consider use cases for synthetic data, viewing it as a helpful tool for experimentation, decision-making, and building data literacy. Yet the complementary uses of synthetic datasets should not diminish the continued efforts to collect and share high-quality real-world data. Third, we discuss how privacy-preserving synthetic datasets fall into the existing data protection frameworks. Neither the process of synthetic data generation nor synthetic datasets are automatically exempt from the regulatory obligations concerning personal data. Finally, we explore the future research directions for generating synthetic data and conclude by discussing potential future developments at the societal level.
Citation: Tinja Pitkämäki, Tapio Pahikkala, Ileana Montoya Perez, Parisa Movahedi, Valtteri Nieminen, Tom Southerington, Juho Vaiste, Mojtaba Jafaritadi, Muhammad Irfan Khan, Elina Kontio, Pertti Ranttila, Juha Pajula, Harri Pölönen, Aysen Degerli, Johan Plomp, Antti Airola. Finnish perspective on using synthetic health data to protect privacy: the PRIVASA project[J]. Applied Computing and Intelligence, 2024, 4(2): 138-163. doi: 10.3934/aci.2024009
[1] | Junhong Li, Ning Cui . A hyperchaos generated from Rabinovich system. AIMS Mathematics, 2023, 8(1): 1410-1426. doi: 10.3934/math.2023071 |
[2] | Junhong Li, Ning Cui . Dynamical behavior and control of a new hyperchaotic Hamiltonian system. AIMS Mathematics, 2022, 7(4): 5117-5132. doi: 10.3934/math.2022285 |
[3] | Figen Kangalgil, Seval Isșık . Effect of immigration in a predator-prey system: Stability, bifurcation and chaos. AIMS Mathematics, 2022, 7(8): 14354-14375. doi: 10.3934/math.2022791 |
[4] | Sukono, Siti Hadiaty Yuningsih, Endang Rusyaman, Sundarapandian Vaidyanathan, Aceng Sambas . Investigation of chaos behavior and integral sliding mode control on financial risk model. AIMS Mathematics, 2022, 7(10): 18377-18392. doi: 10.3934/math.20221012 |
[5] | A. E. Matouk . Chaos and hidden chaos in a 4D dynamical system using the fractal-fractional operators. AIMS Mathematics, 2025, 10(3): 6233-6257. doi: 10.3934/math.2025284 |
[6] | A. M. Alqahtani, Shivani Sharma, Arun Chaudhary, Aditya Sharma . Application of Caputo-Fabrizio derivative in circuit realization. AIMS Mathematics, 2025, 10(2): 2415-2443. doi: 10.3934/math.2025113 |
[7] | Asharani J. Rangappa, Chandrali Baishya, Reny George, Sina Etemad, Zaher Mundher Yaseen . On the existence, stability and chaos analysis of a novel 4D atmospheric dynamical system in the context of the Caputo fractional derivatives. AIMS Mathematics, 2024, 9(10): 28560-28588. doi: 10.3934/math.20241386 |
[8] | Minghung Lin, Yiyou Hou, Maryam A. Al-Towailb, Hassan Saberi-Nik . The global attractive sets and synchronization of a fractional-order complex dynamical system. AIMS Mathematics, 2023, 8(2): 3523-3541. doi: 10.3934/math.2023179 |
[9] | M. M. El-Dessoky, Nehad Almohammadi, Ebraheem Alzahrani . Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems. AIMS Mathematics, 2023, 8(10): 23621-23634. doi: 10.3934/math.20231201 |
[10] | Binhao Hong, Chunrui Zhang . Bifurcations and chaotic behavior of a predator-prey model with discrete time. AIMS Mathematics, 2023, 8(6): 13390-13410. doi: 10.3934/math.2023678 |
The use of synthetic data could facilitate data-driven innovation across industries and applications. Synthetic data can be generated using a range of methods, from statistical modeling to machine learning and generative AI, resulting in datasets of different formats and utility. In the health sector, the use of synthetic data is often motivated by privacy concerns. As generative AI is becoming an everyday tool, there is a need for practice-oriented insights into the prospects and limitations of synthetic data, especially in the privacy sensitive domains. We present an interdisciplinary outlook on the topic, focusing on, but not limited to, the Finnish regulatory context. First, we emphasize the need for working definitions to avoid misplaced assumptions. Second, we consider use cases for synthetic data, viewing it as a helpful tool for experimentation, decision-making, and building data literacy. Yet the complementary uses of synthetic datasets should not diminish the continued efforts to collect and share high-quality real-world data. Third, we discuss how privacy-preserving synthetic datasets fall into the existing data protection frameworks. Neither the process of synthetic data generation nor synthetic datasets are automatically exempt from the regulatory obligations concerning personal data. Finally, we explore the future research directions for generating synthetic data and conclude by discussing potential future developments at the societal level.
Hyperchaotic system is characterized as a chaotic system with at least two Lyapunov exponents [1] and the minimal dimension of the phase space that embeds the hyperchaotic attractor should be more than three. These imply that hyperchaos has more complex, dynamical phenomena than chaos. Compared to chaos, hyperchaos has greater potential applications due to its higher dimensions, stronger randomness and unpredictability such as secure communications [2,3], nonlinear circuits [4,5], lasers [6,7], et al. In addition, as far as we know, the complexity of the hyperchaotic system dynamics has not been completely mastered by researchers until now. There are few studies on rich dynamical behaviors of hyperchaotic systems. Furthermore, it is difficult to find effective ways to analysis and study the complex dynamical phenomena of the high-dimensional hyperchaotic systems. Thus, it is necessary to formulate new high-dimensional hyperchaotic systems and to further investigate the properties of hyperchaos. Meanwhile, there have been many hyperchaotic systems presented. By adding a controlled variable to the Lorenz system, a hyperchaotic system was obtained in [8,9]. [10] presented a 4D generalised Lorenz hyperchaotic system by introducing a linear state feedback control to the first state equation of a generalised Lorenz system. [11] constructed a memristive hyperchaotic system by adding the flux-controlled memristor to an extended jerk system. Based on Chua's electrical circuit, [12] constructed a hyperchaotic system by introducing an additional inductor and [13] designed a hyperchaotic circuit system by replacing the non-linear element with an experimentally realizable memristor. Furthermore, there are also some scholars who constructed their own hyperchaotic systems [14,15].
In [16], a chaotic system was introduced
{˙u=a(v−u)+evw,˙v=cu+dv−uw,˙w=−bw+uv, | (1.1) |
where (u,v,w)T∈R3 is the state vector. a,b,c are positive real parameters and c∈R. When (a,b,c,d,e)=(14,43,−1,16,4), system (1.1) has four-wing chaotic attractor. The chaotic system was different from the Lorenz system family and some scholars have investigated the system including mechanical analysis, chaos control, energy cycle, bound and constructing 4D hyperchaotic systems [17,18,19,20,21,22]. In this work, we introduce a new 4D hyperchaotic system by adding a linear controller to system (1.1) as:
{˙u=a(v−u)+evw,˙v=cu+dv−uw+mp,˙w=−bw+uv,˙p=−ku−kv, | (1.2) |
where a,b,c,d,e,m,k are positive real parameters and c∈R.
The rest of this paper is organized as follows: in the second section, dissipativity and invariance, equilibria and their stability of system (1.2) are discussed. In addition, the complex dynamical behaviors such as quasi-periodicity, chaos and hyperchaos are numerically verified by Lyapunov exponents, bifurcation and Poincaré maps. In the third section, the Hopf bifurcation at the zero equilibrium point of system (1.2) is investigated. In addition, two examples are given to test and verify the theoretical results. The new system always has two unstable nonzero equilibrium points and has rich dynamical behaviors under different system parameters. Thus, the new 4D system may be more useful in some fields such as image encryption, secure communication. In the fourth section, the hyperchaos control is studied. The results show that the linear feedback control method can achieve a good control effect by selecting appropriate feedback coefficients. In the last section, the conclusions are summarized.
We can see that system (1.2) is invariant for the coordinate transformation
(u,v,w,p)→(−u,−v,w,−p). |
Then, the nonzero equilibria of (1.2) is symmetric with respect to w axis. The divergence of (1.2) is
∇W=∂˙u∂u+∂˙v∂v+∂˙w∂w+∂˙p∂p=−(a+b−d). |
By Liouville's theorem, we get
dV(t)dt=∫Σ(t)(d−a−b)dudvdwdp=−(a+b−d)V(t), |
where Σ(t) is any region in R4 with smooth boundary and Σ(t)=Σ0(t), Σ0(t) denotes the flow of W and the hypervolume of Σ(t) is V(t). For initial volume V(0), by integrating the equation, we have
V(t)=exp(−(a+b−d)t)V(0),(∀t≥0). |
Hence, system (1.2) is dissipative if and only if a+b−d>0. It shows that each volume containing the system trajectories shrinks to zero as t→∞ at an exponential rate −(a+b−d). There exists an attractor in system (1.2).
By computations, system (1.2) has three equilibrium points
E0=(0,0,0,0) |
and
E1=(√2abe,−√2abe,−2ae,√2eab(de−ce−2ad)e2m), |
E2=(−√2abe,√2abe,−2ae,−√2eab(de−ce−2ad)e2m). |
The characteristic equation of Jacobian matrix at E0 is
(λ+b)[λ3+(a−d)λ2+(km−ac−da)λ+2akm]. | (2.1) |
According to Routh-Hurwitz criterion [23], the real parts of eigenvalues are negative if and only if
a>d,ad2+(ac−a2−km)d>a2c+akm. |
The Jacobian matrices at E1 and E2 have the same characteristic equation, i.e.,
λ4+e(a+b−d)λ3+a2λ2+a1λ−4abkm, |
where
a2=km−ab+ac−ad−bd+2a2d+2abde,a1=(3ac+ad+km)b+10dba2e. |
Note 4abkm>0, then the two nonzero equilibrium points are unstable.
In this subsection, some properties of the system (1.2) are discussed and the simulation results are further obtained by using numerical methods. Firstly, fix a=15,b=43,c=1,d=16,e=5,m=5 and varies k. Figure 1 indicates the Lyapunov exponent spectrum of system (1.2) with respect to k∈[1.5,5.5] and the corresponding bifurcation diagram is given in Figure 2. From Figures 1 and 2, the complex dynamical behaviors of system (1.2) can be clearly observed. Figure 1 indicates that system (1.2) has hyperchaotic attractors with two positive Lyapunov exponents when k varies in [1.5,5.5]. When (a,b,c,d,e,m,k)=(15,43,1,16,5,5,2), system (1.2) has three unstable equilibrium points
E0=(0,0,0,0),E1=(−16.062,16.062,−6,260.210),E2=(16.062,−16.062,−6,−260.210). |
The first and the second Lyapunov exponents are 4.273 and 0.092, these imply that system (1.2) is hyperchaotic. Figure 3 shows the (u,v,w,p) 4D surface of section and the location of the consequents is given in the (u,v,w) subspace and are colored according to their p value. Figure 4 shows the Poincaré maps on u−p plane and w−p plane, respectively.
Assume b=43,a=15,c=1,e=5,k=5,d=16, the different Lyapunov exponents and dynamical properties with different values of parameter m are given in Table 1. As we can see in Table 1, system (1.2) is hyperchaotic with different m values. When b=43, a=15, c=1, e=5, k=5, d=16, m=0.5, the hyperchaotic attractor on (v,u,w,p) space is depicted in Figure 5, the location of the consequents is given in the (v,u,w) subspace and are colored according to their p value. Figure 6 shows the Poincaré map on v−w plane. It shows that system (1.2) has different hyperchaotic phenomena under different parameter values.
m | LE1 | LE2 | LE3 | LE4 | Dynamics |
0.5 | 3.827 | 0.036 | −0.000 | −45.862 | Hyperchaos |
1 | 3.901 | 0.052 | 0.000 | −45.953 | Hyperchaos |
1.5 | 3.943 | 0.081 | −0.000 | −46.022 | Hyperchaos |
2 | 4.277 | 0.091 | −0.000 | −46.364 | Hyperchaos |
2.5 | 4.221 | 0.106 | −0.000 | −46.325 | Hyperchaos |
3 | 3.976 | 0.075 | −0.000 | −46.040 | Hyperchaos |
When (b,a,c,d,e,m,k)=(45,15,2,15.9,5,0.1,0.1), (1.2) has three unstable equilibrium points
E0=(0,0,0,0), |
E1=(−16.431,16.431,−6,13391.816), |
E2=(16.431,−16.431,−6,−13391.816). |
The Lyapunov exponents are LE1=1.979, LE2=0.000, LE3=−0.002, LE4=−46.077, system (1.2) is chaotic. Figure 7 shows the (v,u,w,p) 4D surface of section and the location of the consequents is given in the (v,u,w) subspace and are colored according to their p value. When (b,a,c,d,e,m,k)=(45,15,2,15.01,5,0.1,0.1), system (1.2) has three unstable equilibrium points
O=(0,0,0,0), |
E1=(−16.431,16.431,−6,12660.606), |
E2=(16.431,−16.431,−6,−12660.606). |
The Lyapunov exponents are LE1=−0.000, LE2=−0.000, LE3=−0.020, LE4=−44.963, system (1.2) has quasi-periodic orbit. The (v,u,w,p) 4D surface of section is depicted in Figure 8, the location of the consequents is given in the (v,u,w) subspace and are colored according to their p value.
When (b,a,c,d,e,m,k)=(45,15,2,15.1,5,0.1,0.1), system (1.2) has three unstable equilibrium points
E0=(0,0,0,0), |
E1=(−16.431,16.431,−6,12734.549), |
E2=(16.431,−16.431,−6,−12734.549). |
The Lyapunov exponents are LE1=0.066, LE2=0.000, LE3=−0.005, LE4=−44.961, system (1.2) is chaotic. When (b,a,c,d,e,m,k)=(45,15,2,15.04,5,0.1,0.1), system (1.2) has three unstable equilibrium points
E0=(0,0,0,0), |
E1=(−16.431,16.431,−6,12685.254), |
E2=(16.431,−16.431,−6,−12685.254). |
The Lyapunov exponents are LE1=0.000, LE2=−0.000, LE3=−0.010, LE4=−44.948, system (1.2) is quasi-periodic. Similar to Figures 7 and 8, the corresponding chaotic attractor and quasi-periodic orbit on (v,u,w,p) space are given in Figures 9 and 10, respectively. Overall, the results indicate that system (1.2) has rich and complex dynamical behaviors including hyperchaos, chaos and quasi-periodicity with different parameters.
Theorem 3.1. Suppose that a−d>0 and c+d<0 are satisfied. Then, as k varies and passes through the critical value k=a(c+d)(d−a)m(a+d), system (1.2) undergoes a Hopf bifurcation at O(0,0,0,0).
Proof. Assume that system (1.2) has a pure imaginary root λ=iω,(ω∈R+). From (2.1), we get
(a−d)ω2−2akm=0,ω3−(km−ac−ad)ω=0, |
then
ω=ω0=√km−ac−ad,k=k0=a(c+d)(d−a)m(a+d). |
Substituting k=k0 into (2.1), we have
λ1=iω0,λ2=−iω0,λ3=d−a,λ4=−b. |
Therefore, when a−d>0, c−d<0 and k=k0, the first condition for Hopf bifurcation [24] is satisfied. From (2.1), we have
Re(λ′(k0))|λ=iω0=m(a+d)22(a+d)(a−d)2−4a2(c+d)>0. |
Thus, the second condition for a Hopf bifurcation [24] is also met. Hence, Hopf bifurcation exists.
Remark 3.1. When km−ac−ad≤0, system (1.2) has no Hopf bifurcation at the zero equilibrium point.
Theorem 3.2. When a>d and c+d<0, the periodic solutions of (1.2) from Hopf bifurcation at O(0,0,0,0) exist for sufficiently small 0<|k−k0|=|k−a(c+d)(d−a)m(a+d)|. And the periodic solutions have the following properties:
(I) if δ2δ1>0 (resp., δ2δ1<0), then the Hopf bifurcation of system (1.2) at (0,0,0,0) is non-degenerate and supercritical (resp. subcritical), and the bifurcating periodic solution exists for k<k0 (resp., k>k0) and is stable (resp., unstable), where
δ1=−b√−a2(c+d)a+d(a3−a2d+2acd+ad2+d3)(a+d)(8a2c+8a2d−b2a−b2d), |
δ2=(16c+16d)a5+(2bce+2bde+16cde+16d2e−3b2+4bc+4bd)a4+(b2ce−2b2de−4bc2e−6bcde−2bd2e−16c2de−32cd2e−16d3e−3b2d+4bcd+4bd2−16cd2−16d3)a3+(−2b2c2e+2b2cde+b2d2e+2bcd2e+2bd3e+16c2d2e+16cd3e−2b2cd+b2d2)a2+(−2b2c2de−3b2cd2e+2b2d3e−4bc2d2e−6bcd3e−2bd4e−2b2cd2+b2d3)a−4b2cd3e−b2d4e; |
(II) the period and characteristic exponent of the bifurcating periodic solution are
T=2πω0(1+τ2ε2+O(ε4)),β=β2ε2+O(ε4), |
where
ε=k−k0μ2+O[(k−k0)2],β2=a44δ1[−2√−a2(c+d)a+d(c+d)δ2], |
τ2=δ2a34δ1(a+d)[√2√−a2(c+d)a+d(a2−ac−ad−d2)+a2c+a2d+acd+ad2], |
μ2=a44mδ1(a+d)2√−a2(c+d)a+d(c+d)δ2[2(a+d)(a−d)2−4a2(c+d)]; |
(III) the expression of the bifurcating periodic solution is
[uvwp]=[εa√−2a2(c+d)a+dcos(2πtT)ε[a√−2a2(c+d)a+dcos(2πtT)+2a2(c+d)a+dsin(2πtT)]ε2Lεa(c+d)(−d+a)m(a+d)[√−2a2(c+d)a+dcos(2πtT)+2asin(2πtT)]]+O(ε3), |
where
L=−a4(c+d)ab+bd+δ4[2cos2(2πtT)−1]−δ5sin(4πtT), |
δ4=a3(c+d)(4a2c+4a2d−a2b−adb)(a+d)(b2a+b2d−8a2c−8a2d),δ5=a3(c+d)(2a−b)(a+d)√−2a2(c+d)a+d(a+d)(b2a+b2d−8a2c−8a2d). |
Proof. Let k=k0, by straightforward computations, we can obtain
t1=[aω0aω0+(k0m−ac−ad)i02ak0i−k0ω0],t3=[0010],t4=[ad−a2d2−ad0k0(a+d)], |
which satisfy
Jt1=iω0t1,Jt3=−bt3,Jt4=(d−a)t4, |
where
J=[−aa00cd0m00−b0−k−k00]. |
Now, we use transformation X=QX1, where
X=(u,v,w,p)T,X1=(u1,v1,w1,p1)T, |
and
Q=[aw00−a2+adawac+ad−k0m0−ad+d20010−k0w−2ak00k0(a+d)], |
then, system (1.2) is transformed into
{˙u1=−ω0v1+F1(u1,v1,w1,p1),˙v1=ω0u1+F2(u1,v1,w1,p1),˙w1=−bw1+F3(u1,v1,w1,p1),˙p1=−(a−d)p1+F4(u1,v1,w1,p1), | (3.1) |
where
F1(u1,v1,w1,p1)=−w1a√−2a2(c+d)a+d(a3−a2d+2acd+ad2+d3)[√−2a2(c+d)a+da(a+d)(a2−ace−d2e−ad)u1−2a2e(c+d)(ac+d2)v1−p1(a−d)(a+d)(a3−acde−d3e−a2d)], |
F2(u1,v1,w1,p1)=−w12a2(a3−a2d+2acd+ad2+d3)[√−2a2(c+d)a+da(a+d)(a2e+d2e+2ad)u1+2ea2(a2+d2)(c+d)v1−dp1(a−d)(a+d)(a2e+d2e+2a2)], |
F3(u1,v1,w1,p1)=aa+d(√−2a2(c+d)a+du1−p1a+dp1)[au1(a+d)√−2a2(c+d)a+d+2a2v1c−a2dp1+2a2v1d+d3p1], |
F4(u1,v1,w1,p1)=−w1(a+d)[a3+d3−ad(a−d−2c)][√−2a2(c+d)a+da(a+d)(ae−ce+a+d)u1+2a2e(c+d)(a−c)v1−p1(a−d)(a+d)(ade−cde+a2+ad)]. |
Furthermore,
g11=14[∂2F1∂u21+∂2F1∂v21+i(∂2F2∂u21+∂2F2∂v21)]=0, |
g02=14[∂2F1∂u21−∂2F1∂v21−2∂2F2∂u1∂v1+i(∂2F2∂u21−∂2F2∂v21+2∂2F1∂u1∂v1)]=0, |
g20=14[∂2F1∂u21−∂2F1∂v21+2∂2F2∂u1∂v1+i(∂2F2∂u21−∂2F2∂v21−2∂2F1∂u1∂v1)]=0, |
G21=18[∂3F1∂u31+∂3F2∂v31+∂3F1∂u1∂v21+∂3F2∂u21∂v1+i(∂3F2∂u31−∂3F2∂v31+∂3F2∂u1∂v21−∂3F1∂u21∂v1)]=0. |
By solving the following equations
[−b00−(a−d)][ω111ω211]=−[h111h211], |
[−b−2iω000−(a−d)−2iω0][ω120ω220]=−[h120h220], |
where
h111=−a4(c+d)a+d, |
h211=14(∂2F4∂x21+∂2F4∂y21)=0, |
h120=−a4(c+d)−ia3(c+d)√−2a2(c+d)a+d, |
h220=14(∂2F4∂x21−∂2F4∂y21−2i∂2F4∂x1∂y1)=0, |
one obtains
ω111=−a4(c+d)ab+bd,ω211=0,ω220=0, |
ω120=a3(c+d)(a+d)(b2a+b2d−8a2c−8a2d)[4a2c+4a2d−a2b−adb+i√−2a2(c+d)a+d(2a−b)(a+d)], |
G1110=12[(∂2F1∂u1∂w1+∂2F2∂v1∂w1)+i(∂2F2∂u1∂w1−∂2F1∂v1∂w1)]=−14√−a2(c+d)a+d(a3−a2d+2acd+ad2+d3)[2√−a2(c+d)a+d(a−d)(ade−cde+a2+ad)−i√2(a2e−2ace−d2e+2ad)a(c+d)], |
G2110=12[(∂2F1∂u1∂p1+∂2F2∂v1∂p1)+i(∂2F2∂u1∂p1−∂2F1∂v1∂p1)]=0, |
G1101=−14√−a2(c+d)a+d(a3−a2d+2acd+ad2+d3)[2√−a2(c+d)a+d(−2a2ce−a2de−acde−ad2e−cd2e−2d3e+a3−ad2)−i√2(a2e+2ace+3d2e+2ad)a(c+d)], |
G2101=12[(∂2F1∂u1∂p1−∂2F2∂v1∂p1)+i(∂2F2∂u1∂p1+∂2F1∂v1∂p1)]=0, |
g21=G21+2∑j=1(2Gj110ωj11+Gj101ωj20)=a44δ1[−2√−a2(c+d)a+d(c+d)δ2+i√2a(c+d)2δ3], |
where
δ1=−b√−a2(c+d)a+d(a3−a2d+2acd+ad2+d3)(a+d)(8a2c+8a2d−b2a−b2d), |
δ2=(16c+16d)a5+(2bce+2bde+16cde+16d2e−3b2+4bc+4bd)a4+(b2ce−2b2de−4bc2e−6bcde−2bd2e−16c2de−32cd2e−16d3e−3b2d+4bcd+4bd2−16cd2−16d3)a3+(−2b2c2e+2b2cde+b2d2e+2bcd2e+2bd3e+16c2d2e+16cd3e−2b2cd+b2d2)a2+(−2b2c2de−3b2cd2e+2b2d3e−4bc2d2e−6bcd3e−2bd4e−2b2cd2+b2d3)a−4b2cd3e−b2d4e, |
δ3=(16ce+16de+4b)a4+(−3b2e−4bce−32c2e−32cde−2b2+32cd+32d2)a3+(6b2ce−b2de+8bc2e+4bcde−4bd2e−16cd2e−16d3e−6b2d+8bcd+4bd2)a2+(4b2cde+b2d2e+8bcd2e+4bd3e−4b2d2)a+2b2cd2e+3b2d3e. |
Based on above calculation and analysis, we get
C1(0)=i2ω0(g20g11−2|g11|2−13|g02|2)+12g21=12g21, |
μ2=−ReC1(0)α′(0)=a44mδ1(a+d)2√−a2(c+d)a+d(c+d)δ2[2(a+d)(a−d)2−4a2(c+d)], |
τ2=δ2a34δ1(a+d)[√2√−a2(c+d)a+d(a2−ac−ad−d2)+a2c+a2d+acd+ad2], |
where
ω′(0)=−12√−a2(c+d)a+d(a2−ac−ad−d2)(a+d)√2ma(a3c+a3d−2a2c2−5a2cd−3a2d2−acd2−ad3+cd3+d4), |
α′(0)=m(a+d)22(a+d)(a−d)2−4a2(c+d), |
β2=2ReC1(0)=a44δ1[−2√−a2(c+d)a+d(c+d)δ2]. |
From a−d>0 and c+d<0, we have if δ2δ1>0 (resp., δ2δ1<0), then μ2<0 (resp., μ2>0) and β2>0 (resp., β2<0), the Hopf bifurcation of system (1.2) at (0,0,0,0) is non-degenerate and supercritical (resp. subcritical), and the bifurcating periodic solution exists for k<k0 (resp., k>k0) and is stable (resp., unstable).
Furthermore, the period and characteristic exponent are
T=2πω0(1+τ2ε2+O(ε4)),β=β2ε2+O(ε4), |
where ε=k−k0μ2+O[(k−k0)2].
And the expression of the bifurcating periodic solution is (except for an arbitrary phase angle)
X=(u,v,w,p)T=Q(¯y1,¯y2,¯y3,¯y4)T=QY, |
where
¯y1=Reμ,¯y2=Imμ,(¯y3,¯y4)T=ω11|μ|2+Re(ω20μ2)+O(|μ|2), |
ω11=(ω111,0)T,ω20=(ω120,0)T, |
and
μ=εe2itπT+iε26ω0[g02e−4itπT−3g20e4itπT+6g11]+O(ε3)=εe2itπT+O(ε3). |
By computations, we can obtain
[uvwp]=[εa√−2a2(c+d)a+dcos(2πtT)ε[a√−2a2(c+d)a+dcos(2πtT)+2a2(c+d)a+dsin(2πtT)]ε2Lεa(c+d)(−d+a)m(a+d)[√−2a2(c+d)a+dcos(2πtT)+2asin(2πtT)]]+O(ε3), |
where
L=−a4(c+d)ab+bd+δ4[2cos2(2πtT)−1]−δ5sin(4πtT), |
δ4=a3(c+d)(4a2c+4a2d−a2b−adb)(a+d)(b2a+b2d−8a2c−8a2d), |
δ5=a3(c+d)(2a−b)(a+d)√−2a2(c+d)a+d(a+d)(b2a+b2d−8a2c−8a2d). |
Based on the above discussion, the conclusions of Theorem 3.2 are proved.
In order to verify the above theoretical analysis, we assume
a=1,b=0.5,c=−2,d=0.5,m=1,e=1. |
According to Theorem 3.1, we get k0=1. Then from Theorem 3.2, μ2=−51.111 and β2=17.037, which imply that the Hopf bifurcation of system (1.2) at (0,0,0,0) is nondegenerate and supercritical, a bifurcation periodic solution exists for k<k0=1 and the bifurcating periodic solution is stable. Figure 11(Ⅰ) shows the Hopf periodic solution occurs when k=0.9999<k0=1. Based on above conclusions, in this case, it can be seen that the critical value k0 and the properties of Hopf bifurcation of system (1.2) at (0,0,0,0) still remain unchanged with the parameters (a,b,c,d,m,e)=(1,10,−2,0.5,1,10). By computations, we get μ2=−13.292 and β2=4.430. The corresponding Hopf periodic orbit with k=0.9999 is given in Figure 11(Ⅱ).
In some cases, chaos usually is harmful and need to be suppressed, such as in pendulum system [25], wind power system [26] and spiral waves chaos [27], etc.. Therefore, chaos control has been widely concerned by scholars, and many valuable hyperchaos control methods have emerged, such as universal adaptive feedback control [28], linear state-feedback control and fuzzy disturbance-observer-based terminal sliding mode control scheme [29,30], etc. In addition, the chaos control can be achieved based on the ultimate boundedness of a chaotic system [31,32,33]. In this section, we will control hyperchaotic system (1.2) to stable equilibrium (0,0,0,0) by using the linear feedback control method. Suppose that the controlled hyperchaotic system is given by
{˙u=a(v−u)+evw+c1u,˙v=cu+dv−uw+mp+c2v,˙w=−bw+uv+c3w,˙p=−ku−kv+c4p, | (4.1) |
where cj(j=1,2,3,4) are feedback coefficients. The Jacobian matrix of system (4.1) at zero equilibrium point is
Jc=[−a+c1a00cd+c20m00−b+c30−k−k0c4]. |
The characteristic equation of Jc at zero equilibrium point is
f(λ)=λ4+t3λ3+t2λ2+t1λ+t0, |
where
t0=abcc4+abdc4+2abkm+abc2c4−acc3c4−adc3c4−2akmc3−ac2c3c4−bdc1c4−bkmc1−bc1c2c4+dc1c3c4+kmc1c3+c1c2c3c4, |
t1=(c3c4−bc−bd−bc2−bc4+cc3+cc4+dc3+dc4+2km+c3c2+c2c4)a+(bc1+bc4−c1c3−c1c4−c3c4)d+b(km+c1c2+c1c4+c2c4)−(km+c1c2+c1c4+c2c4)c3−kmc1−c1c2c4, |
t2=ab−ac−ad−ac2−ac3−ac4−bd−bc1−bc2−bc4+dc1+dc3+dc4+km+c1c2+c1c3+c1c4+c2c3+c2c4+c3c4, |
t3=a+b−d−c1−c2−c3−c4. |
According to Routh-Hurwitz criterion [23], the real parts of eigenvalues are negative if and only if
t3(t1t2−t3t0)−t21>0,t3t2−t1>0,t3>0,t0>0. | (4.2) |
Case 1. For the parameters a=15,b=43,c=1,d=16,e=5,m=5,k=2, we assume cj=−20(j=1,2,3,4), system (4.1) has only one equilibrium point (0,0,0,0), and the corresponding eigenvalues are
λ1=−63,λ2=−4.468,λ3=−35.756,λ4=−18.774, |
the equilibrium point is asymptotically stable.
Case 2. For the parameters b=43,a=15,c=1,e=5,k=5,d=16,m=0.5, we assume cj=−20 (j=1,2,3,4), system (4.1) also has only one equilibrium point (0,0,0,0), and the corresponding eigenvalues are
λ1=−63,λ2=−3.747,λ3=−19.703,λ4=−35.549, |
the zero equilibrium point is asymptotically stable.
For the two cases, the behaviors of the state (u,v,w,p) of hyperchaotic system (1.2) and controlled hyperchaotic system (4.1) with time are shown in Figures 12 and 13, respectively. These indicate that the controlled hyperchaotic system (4.1) is asymptotically stable at zero-equilibrium point by selecting appropriate feedback coefficients.
In this paper, we present a new 4D hyperchaotic system by introducing a linear controller to the second equation of the 3D chaotic Qi system. The new system always has two unstable nonzero equilibrium points which are symmetric about w axis. The complex dynamical behaviors, including dissipativity and invariance, equilibria and their stability, quasi-periodicity, chaos and hyperchaos of new 4D system (1.2) are investigated and analyzed. Furthermore, the existence of Hopf bifurcation, the stability and expression of the Hopf bifurcation at zero-equilibrium point are studied using the normal form theory and symbolic computations. Based on Section 3, it can also be seen that the parameters b and e are unrelated to the critical value k of Hopf bifurcation of the new 4D system. In order to analyze and verify the complex phenomena of the system, some numerical simulations are carried out including Lyapunov exponents, bifurcation and Poincaré maps, etc. The results show that the new 4D hyperchaotic system can exhibit complex dynamical behaviors, such as quasi-periodic, chaotic and hyperchaotic. Furthermore, the resistors, capacitors, operational amplifiers and analog multipliers can be used to design the hyperchaotic electronic circuit, to verify the existence of the hyperchaotic attractor of the system from another perspective, embodying the application of the hyperchaotic circuit system. We will investigate the ultimate bound sets of the hyperchaotic system, a new method for hyperchaos control and hyperchaotic electronic circuit in a future study.
Project supported by the Doctoral Scientific Research Foundation of Hanshan Normal University (No. QD202130).
The authors declare that they have no conflict of interest.
[1] |
V. Aula, Institutions, infrastructures, and data friction—reforming secondary use of health data in Finland, Big Data Soc., 6 (2019), 1–13. http://dx.doi.org/10.1177/2053951719875980 doi: 10.1177/2053951719875980
![]() |
[2] | European commission, Proposal for a regulation of the European parliament and of the council on the European health data space, European parliament, 2022. Available from: https://www.europarl.europa.eu/legislative-train/theme-promoting-our-european-way-of-life/file-european-health-data-space. |
[3] |
R. Lun, D. Siegal, T. Ramsay, G. Stotts, D. Dowlatshahi, Synthetic data in cancer and cerebrovascular disease research: a novel approach to big data, PLoS ONE, 19 (2024), e0295921. http://dx.doi.org/10.1371/journal.pone.0295921 doi: 10.1371/journal.pone.0295921
![]() |
[4] |
E. Sizikova, A. Badal, J. G. Delfino, M. Lago, B. Nelson, N. Saharkhiz, et al., Synthetic data in radiological imaging: current state and future outlook, Artif. Intell., 1 (2024), ubae007. http://dx.doi.org/10.1093/bjrai/ubae007 doi: 10.1093/bjrai/ubae007
![]() |
[5] |
J. A. Thomas, R. E. Foraker, N. Zamstein, J. D. Morrow, P. R. Payne, A. B. Wilcox, Demonstrating an approach for evaluating synthetic geospatial and temporal epidemiologic data utility: results from analyzing > 1.8 million SARS-CoV-2 tests in the United States national COVID cohort collaborative (N3C), J. Am. Med. Inform. Asso., 29 (2022), 1350–1365. http://dx.doi.org/10.1093/jamia/ocac045 doi: 10.1093/jamia/ocac045
![]() |
[6] |
H. Murtaza, M. Ahmed, N. F. Khan, G. Murtaza, S. Zafar, A. Bano, Synthetic data generation: state of the art in health care domain, Comput. Sci. Rev., 48 (2023), 100546. http://dx.doi.org/10.1016/j.cosrev.2023.100546 doi: 10.1016/j.cosrev.2023.100546
![]() |
[7] |
A. Gonzales, G. Guruswamy, S. R. Smith, Synthetic data in health care: a narrative review, PLOS Digit Health, 2 (2023), e0000082. http://dx.doi.org/10.1371/journal.pdig.0000082 doi: 10.1371/journal.pdig.0000082
![]() |
[8] |
S. James, C. Harbron, J. Branson, M. Sundler, Synthetic data use: exploring use cases to optimise data utility, Discov. Artif. Intell., 1 (2021), 15. http://dx.doi.org/10.1007/s44163-021-00016-y doi: 10.1007/s44163-021-00016-y
![]() |
[9] |
V. C. Pezoulas, D. I. Zaridis, E. Mylona, C. Androutsos, K. Apostolidis, N. S. Tachos, et al., Synthetic data generation methods in healthcare: a review on open-source tools and methods, Comput. Struct. Biotec., 23 (2024), 2892–2910. http://dx.doi.org/10.1016/j.csbj.2024.07.005 doi: 10.1016/j.csbj.2024.07.005
![]() |
[10] | C. A. F. López, A. Elbi, On the legal nature of synthetic data, NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research, 2022. |
[11] |
M. S. Gal, O. Lynskey, Synthetic data: legal implications of the data-generation revolution, Iowa L. Rev., 109 (2023), 1087. http://dx.doi.org/10.2139/ssrn.4414385 doi: 10.2139/ssrn.4414385
![]() |
[12] | J. Drechsler, A. C. Haensch, 30 years of synthetic data, Statist. Sci., 39 (2024), 221–242. http://dx.doi.org/10.1214/24-STS927 |
[13] | J. Jordon, L. Szpruch, F. Houssiau, M. Bottarelli, G. Cherubin, C. Maple, et al., Synthetic data—what, why and how? arXiv: 2205.03257. http://dx.doi.org/10.48550/arXiv.2205.03257 |
[14] | T. E. Raghunathan, J. P. Reiter, D. B. Rubin, Multiple imputation for statistical disclosure limitation, J. Off. Stat., 19 (2003), 1. |
[15] |
K. El Emam, L. Mosquera, J. Bass, Evaluating identity disclosure risk in fully synthetic health data: model development and validation, J. Med. Internet Res., 22 (2020), 23139. http://dx.doi.org/10.2196/23139 doi: 10.2196/23139
![]() |
[16] | J. P. Reiter, Inference for partially synthetic, public use microdata sets, Surv. Methodol., 29 (2003), 181–188. |
[17] | H. Surendra, H. Mohan, A review of synthetic data generation methods for privacy preserving data publishing, International Journal of Scientific and Technology Research, 6 (2017), 95–101. |
[18] |
S. Mohiuddin, R. Gardiner, M. Crofts, P. Muir, J. Steer, J. Turner, et al., Modelling patient flows and resource use within a sexual health clinic through discrete event simulation to inform service redesign, BMJ Open, 10 (2020), e037084. http://dx.doi.org/10.1136/bmjopen-2020-037084 doi: 10.1136/bmjopen-2020-037084
![]() |
[19] |
A. A. Tako, K. Kotiadis, C. Vasilakis, A. Miras, C. W. le Roux, Improving patient waiting times: a simulation study of an obesity care service, BMJ Qual. Saf., 23 (2014), 373–381. http://dx.doi.org/10.1136/bmjqs-2013-002107 doi: 10.1136/bmjqs-2013-002107
![]() |
[20] |
J. Yoon, M. Mizrahi, N. F. Ghalaty, T. Jarvinen, A. S. Ravi, P. Brune, et al., EHR-Safe: generating high-fidelity and privacy-preserving synthetic electronic health records, NPJ Digit. Med., 6 (2023), 141. http://dx.doi.org/10.1038/s41746-023-00888-7 doi: 10.1038/s41746-023-00888-7
![]() |
[21] |
L. Juwara, A. El-Hussuna, K. El Emam, An evaluation of synthetic data augmentation for mitigating covariate bias in health data, Patterns, 5 (2024), 100946. http://dx.doi.org/10.1016/j.patter.2024.100946 doi: 10.1016/j.patter.2024.100946
![]() |
[22] |
S. Kaji, S. Kida, Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging, Radiol. Phys. Technol., 12 (2019), 235–248. http://dx.doi.org/10.1007/s12194-019-00520-y doi: 10.1007/s12194-019-00520-y
![]() |
[23] |
S. Dayarathna, K. T. Islam, S. Uribe, G. Yang, M. Hayat, Z. Chen, Deep learning based synthesis of MRI, CT and PET: review and analysis, Med. Image Anal., 92 (2024), 103046. http://dx.doi.org/10.1016/j.media.2023.103046 doi: 10.1016/j.media.2023.103046
![]() |
[24] |
K. Armanious, C. Jiang, M. Fischer, T. Küstner, T. Hepp, K. Nikolaou, et al., MedGAN: medical image translation using GANs, Comput. Med. Imag. Grap., 79 (2020), 101684. http://dx.doi.org/10.1016/j.compmedimag.2019.101684 doi: 10.1016/j.compmedimag.2019.101684
![]() |
[25] |
J. Zhang, X. He, L. Qing, F. Gao, B. Wang, BPGAN: brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer's disease diagnosis, Comput. Meth. Prog. Bio., 217 (2022), 106676. http://dx.doi.org/10.1016/j.cmpb.2022.106676 doi: 10.1016/j.cmpb.2022.106676
![]() |
[26] | M. J. Tadi, J. Teuho, R. Klén, E. Lehtonen, A. Saraste, C. S. Levin, Synthetic full dose cardiac PET images from low dose scans using conditional GANs, Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2022, 1–2. http://dx.doi.org/10.1109/NSS/MIC44845.2022.10399148 |
[27] | D. Doncenco, Exploring medical image data augmentation and synthesis using conditional generative adversarial networks, B.S. Thesis, Turku University of Applied Sciences, 2022. |
[28] |
J. T. Huhtanen, M. Nyman, D. Doncenco, M. Hamedian, D. Kawalya, L. Salminen, et al., Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs, Sci. Rep., 12 (2022), 11803. http://dx.doi.org/10.1038/s41598-022-16154-x doi: 10.1038/s41598-022-16154-x
![]() |
[29] |
P. Movahedi, V. Nieminen, I. M. Perez, H. Daafane, D. Sukhwal, T. Pahikkala et al., Benchmarking evaluation protocols for classifiers trained on differentially private synthetic data, IEEE Access, 12 (2024), 118637–118648. http://dx.doi.org/10.1109/ACCESS.2024.3446913 doi: 10.1109/ACCESS.2024.3446913
![]() |
[30] |
A. R. Benaim, R. Almog, Y. Gorelik, I. Hochberg, L. Nassar, T. Mashiach, et al., Analyzing medical research results based on synthetic data and their relation to real data results: systematic comparison from five observational studies, JMIR Med. Inform., 8 (2020), e16492. http://dx.doi.org/10.2196/16492 doi: 10.2196/16492
![]() |
[31] | P. Movahedi, V. Nieminen, I. M. Perez, T. Pahikkala, A. Airola, Evaluating classifiers trained on differentially private synthetic health data, Proceedings of IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), 2023,748–753. http://dx.doi.org/10.1109/CBMS58004.2023.00313 |
[32] |
B. Nowok, G. M. Raab, C. Dibben, Synthpop: bespoke creation of synthetic data in R, J. Stat. Softw., 74 (2016), 1–26. http://dx.doi.org/10.18637/jss.v074.i11 doi: 10.18637/jss.v074.i11
![]() |
[33] | A. Montanez, SDV: an open source library for synthetic data generation, Ph.D Thesis, Massachusetts Institute of Technology, 2018. |
[34] | T. Li, N. Li, On the tradeoff between privacy and utility in data publishing, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009,517–526. http://dx.doi.org/10.1145/1557019.1557079 |
[35] |
A. Slavković, J. Seeman, Statistical data privacy: a song of privacy and utility, Annu. Rev. Stat. Appl., 10 (2023), 189–218. http://dx.doi.org/10.1146/annurev-statistics-033121-112921 doi: 10.1146/annurev-statistics-033121-112921
![]() |
[36] | B. Zhao, M. A. Kaafar, N. Kourtellis, Not one but many tradeoffs: privacy vs. utility in differentially private machine learning, Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Security Workshop, 2020, 15–26. http://dx.doi.org/10.1145/3411495.3421352 |
[37] | M. Hittmeir, R. Mayer, A. Ekelhart, A baseline for attribute disclosure risk in synthetic data, Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, 2020,133–143. http://dx.doi.org/10.1145/3374664.3375722 |
[38] |
K. El Emam, L. Mosquera, X. Fang, Validating a membership disclosure metric for synthetic health data, JAMIA Open, 5 (2022), ooac083. http://dx.doi.org/10.1093/jamiaopen/ooac083 doi: 10.1093/jamiaopen/ooac083
![]() |
[39] | L. Sweeney, Simple demographics often identify people uniquely, Data Privacy Working Paper, 2000. |
[40] |
L. Sweeney, k-anonymity: a model for protecting privacy, Int. J. Uncertain. Fuzz., 10 (2002), 557–570. http://dx.doi.org/10.1142/S0218488502001648 doi: 10.1142/S0218488502001648
![]() |
[41] | N. Li, T. Li, S. Venkatasubramanian, t-closeness: privacy beyond k-anonymity and l-diversity, Proceedings of the 23rd international conference on data engineering, 2007,106–115. http://dx.doi.org/10.1109/ICDE.2007.367856 |
[42] |
C. Dwork, A. Roth, The algorithmic foundations of differential privacy, Found. Trends Theor. C., 9 (2014), 211–407. http://dx.doi.org/10.1561/0400000042 doi: 10.1561/0400000042
![]() |
[43] |
M. Finck, F. Pallas, They who must not be identified—distinguishing personal from non-personal data under the GDPR, Int. Data Priv. Law, 10 (2020), 11–36. http://dx.doi.org/10.1093/idpl/ipz026 doi: 10.1093/idpl/ipz026
![]() |
[44] |
A. Cohen, K. Nissim, Towards formalizing the GDPR's notion of singling out, PNAS, 117 (2020), 8344–8352. http://dx.doi.org/10.1073/pnas.1914598117 doi: 10.1073/pnas.1914598117
![]() |
[45] |
M. Veale, R. Binns, L. Edwards, Algorithms that remember: model inversion attacks and data protection law, Phil. Trans. R. Soc. A, 376 (2018), 20180083. http://dx.doi.org/10.1098/rsta.2018.0083 doi: 10.1098/rsta.2018.0083
![]() |
[46] |
C. Sun, J. van Soest, M. Dumontier, Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy, J. Biomed. Inform., 143 (2023), 104404. http://dx.doi.org/10.1016/j.jbi.2023.104404 doi: 10.1016/j.jbi.2023.104404
![]() |
[47] | J. Jordon, J. Yoon, M. van der Schaar, PATE-GAN: generating synthetic data with differential privacy guarantees, Proceedings of International Conference on Learning Representations, 2019, 1–29. |
[48] | N. C. Abay, Y. Zhou, M. Kantarcioglu, B. Thuraisingham, L. Sweeney, Privacy preserving synthetic data release using deep learning, In: Machine learning and knowledge discovery in databases, Cham: Springer, 2019,510–526. http://dx.doi.org/10.1007/978-3-030-10925-7_31 |
[49] | I. Montoya Perez, P. Movahedi, V. Nieminen, A. Airola, T. Pahikkala, Does differentially private synthetic data lead to synthetic discoveries? Methods Inf. Med., in press. http://dx.doi.org/10.1055/a-2385-1355 |
[50] | M. I. Khan, M. A. Azeem, E. Alhoniemi, E. Kontio, S. A. Khan, M. Jafaritadi, Regularized weight aggregation in networked federated learning for glioblastoma segmentation, In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, Cham: Springer, 2022,121–132. http://dx.doi.org/10.1007/978-3-031-44153-0_12 |
[51] | M. I. Khan, M. Jafaritadi, E. Alhoniemi, E. Kontio, S. A. Khan, Adaptive weight aggregation in federated learning for brain tumor segmentation, In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, Cham: Springer, 2022,455–469. http://dx.doi.org/10.1007/978-3-031-09002-8_40 |
[52] | M. I. Khan, E. Alhoniemi, E. Kontio, S. A. Khan, M. Jafaritadi, RegAgg: a scalable approach for efficient weight aggregation in federated lesion segmentation of brain MRIs, Proceedings of Eighth International Conference on Fog and Mobile Edge Computing (FMEC), 2023,101–106. http://dx.doi.org/10.1109/FMEC59375.2023.10306171 |
[53] |
J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, F. Wang, Federated learning for healthcare informatics, J. Healthc. Inform. Res., 5 (2021), 1–19. http://dx.doi.org/10.1007/s41666-020-00082-4 doi: 10.1007/s41666-020-00082-4
![]() |
[54] |
M. Giuffrè, D. L. Shung, Harnessing the power of synthetic data in healthcare: innovation, application, and privacy, NPJ Digit. Med., 6 (2023), 186. http://dx.doi.org/10.1038/s41746-023-00927-3 doi: 10.1038/s41746-023-00927-3
![]() |
[55] | D. Shanley, J. Hogenboom, F. Lysen, L. Wee, A. Lobo Gomes, A. Dekker, et al., Getting real about synthetic data ethics: are AI ethics principles a good starting point for synthetic data ethics? EMBO Rep., 25 (2024), 2152–2155. http://dx.doi.org/10.1038/s44319-024-00101-0 |
[56] |
B. N. Jacobsen, Machine learning and the politics of synthetic data, Big Data Soc., 10 (2023), 1–12. http://dx.doi.org/10.1177/20539517221145372 doi: 10.1177/20539517221145372
![]() |
[57] | C. D. Whitney, J. Norman, Real risks of fake data: synthetic data, diversity-washing and consent circumvention, Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 2024, 1733–1744. http://dx.doi.org/10.1145/3630106.3659002 |
[58] | G. Ganev, B. Oprisanu, E. De Cristofaro, Robin Hood and Matthew effects: differential privacy has disparate impact on synthetic data, Proceedings of the 39th International Conference on Machine Learning, 2022, 6944–6959. |
[59] |
T. Hayashi, D. Cimr, H. Fujita, R. Cimler, Interpretable synthetic signals for explainable one-class time-series classification, Eng. Appl. Artif. Intell., 131 (2024), 107716. http://dx.doi.org/10.1016/j.engappai.2023.107716 doi: 10.1016/j.engappai.2023.107716
![]() |
[60] | J. Vaiste, Ethical implications of AI-generated synthetic health data, HAL Id: hal-04216538. |
[61] | J. S. Franklin, K. Bhanot, M. Ghalwash, K. P. Bennett, J. McCusker, D. L. McGuinness, An ontology for fairness metrics, Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 2022,265–275. http://dx.doi.org/10.1145/3514094.3534137 |
[62] |
K. Bhanot, M. Qi, J. S. Erickson, I. Guyon, K. P. Bennett, The problem of fairness in synthetic healthcare data, Entropy, 23 (2021), 1165. http://dx.doi.org/10.3390/e23091165 doi: 10.3390/e23091165
![]() |
[63] | T. Farrand, F. Mireshghallah, S. Singh, A. Trask, Neither private nor fair: impact of data imbalance on utility and fairness in differential privacy, Proceedings of the 2020 workshop on privacy-preserving machine learning in practice, 2020, 15–19. http://dx.doi.org/10.1145/3411501.3419419 |
[64] |
V. Volovici, N. L. Syn, A. Ercole, J. J. Zhao, N. Liu, Steps to avoid overuse and misuse of machine learning in clinical research, Nat. Med., 28 (2022), 1996–1999. http://dx.doi.org/10.1038/s41591-022-01961-6 doi: 10.1038/s41591-022-01961-6
![]() |
[65] |
A. S. Hashemi, A. Soliman, J. Lundström, K. Etminani, Domain knowledge-driven generation of synthetic healthcare data, Stud. Health Technol. Inform., 302 (2023), 352–353. http://dx.doi.org/10.3233/SHTI230136 doi: 10.3233/SHTI230136
![]() |
[66] | J. Latner, M. Neunhoeffer, J. Drechsler, Generating synthetic data is complicated: know your data and know your generator, In: Privacy in statistical databases, Cham: Springer, 2024,115–128. http://dx.doi.org/10.1007/978-3-031-69651-0_8 |
[67] |
F. K. Dankar, M. K. Ibrahim, L. Ismail, A multi-dimensional evaluation of synthetic data generators, IEEE Access, 10 (2022), 11147–11158. http://dx.doi.org/10.1109/ACCESS.2022.3144765 doi: 10.1109/ACCESS.2022.3144765
![]() |
[68] | M. Miletic, M. Sariyar, Assessing the potentials of LLMs and GANs as state-of-the-art tabular synthetic data generation methods, In: Privacy in statistical databases, Cham: Springer, 2024,374–389. http://dx.doi.org/10.1007/978-3-031-69651-0_25 |
[69] | R. Hamon, H. Junklewitz, I. Sanchez, Robustness and explainability of artificial intelligence, Luxembourg: Publications Office of the European Union, 2020. http://dx.doi.org/10.2760/57493 |
[70] |
M. Hernandez, G. Epelde, A. Alberdi, R. Cilla, D. Rankin, Synthetic data generation for tabular health records: a systematic review, Neurocomputing, 493 (2022), 28–45. http://dx.doi.org/10.1016/j.neucom.2022.04.053 doi: 10.1016/j.neucom.2022.04.053
![]() |
[71] | K. Perkonoja, K. Auranen, J. Virta, Methods for generating and evaluating synthetic longitudinal patient data: a systematic review, arXiv: 2309.12380. http://dx.doi.org/10.48550/arXiv.2309.12380 |
[72] |
J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, X. Xiao, PrivBayes: private data release via Bayesian networks, ACM T. Database Syst., 42 (2017), 25. http://dx.doi.org/10.1145/3134428 doi: 10.1145/3134428
![]() |
[73] | J. de Benedetti, N. Oues, Z. Wang, P. Myles, A. Tucker, Practical lessons from generating synthetic healthcare data with Bayesian networks, In: ECML PKDD 2020 workshops, Cham: Springer, 2020, 38–47. http://dx.doi.org/10.1007/978-3-030-65965-3_3 |
[74] | I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial nets, Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 2672–2680. |
[75] | D. P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv: 1312.6114. http://dx.doi.org/10.48550/arXiv.1312.6114 |
[76] |
C. Yan, Y. Yan, Z. Wan, Z. Zhang, L. Omberg, J. Guinney, et al., A multifaceted benchmarking of synthetic electronic health record generation models, Nat. Commun., 13 (2022), 7609. http://dx.doi.org/10.1038/s41467-022-35295-1 doi: 10.1038/s41467-022-35295-1
![]() |
[77] | S. Biswal, S. Ghosh, J. Duke, B. Malin, W. Stewart, C. Xiao, J. Sun, EVA: generating longitudinal electronic health records using conditional variational autoencoders, Proceedings of the 6th Machine Learning for Healthcare Conference, 2021,260–282. |
[78] |
F. K. Dankar, M. Ibrahim, Fake it till you make it: guidelines for effective synthetic data generation, Appl. Sci., 11 (2021), 2158. http://dx.doi.org/10.3390/app11052158 doi: 10.3390/app11052158
![]() |
[79] |
C. Yan, Z. Zhang, S. Nyemba, Z. Li, Generating synthetic electronic health record data using generative adversarial networks: tutorial, JMIR AI, 3 (2024), e52615. http://dx.doi.org/10.2196/52615 doi: 10.2196/52615
![]() |
[80] | V. Nieminen, T. Pahikkala, A. Airola, Empirical evaluation of amplifying privacy by subsampling for GANs to create differentially private synthetic tabular data, Proceedings of TKTP 2023: Annual Symposium for Computer Science, 2023, 72–81. |
[81] | A. Alaa, B. van Breugel, E. S. Saveliev, M. van der Schaar, How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models, Proceedings of the 39th International Conference on Machine Learning, 2022,290–306. |
[82] |
A. Yale, S. Dash, R. Dutta, I. Guyon, A. Pavao, K. P. Bennett, Generation and evaluation of privacy preserving synthetic health data, Neurocomputing, 416 (2020), 244–255. http://dx.doi.org/10.1016/j.neucom.2019.12.136 doi: 10.1016/j.neucom.2019.12.136
![]() |
[83] |
J. Yoon, L. N. Drumright, M. van der Schaar, Anonymization through data synthesis using generative adversarial networks (ADS-GAN), IEEE J. Biomed. Health, 24 (2020), 2378–2388. http://dx.doi.org/10.1109/JBHI.2020.2980262 doi: 10.1109/JBHI.2020.2980262
![]() |
[84] |
V. B. Vallevik, A. Babic, S. E. Marshall, E. Severin, H. M. Brøgger, S. Alagaratnam, et al., Can I trust my fake data—a comprehensive quality assessment framework for synthetic tabular data in healthcare, Int. J. Med. Inform., 185 (2024), 105413. http://dx.doi.org/10.1016/j.ijmedinf.2024.105413 doi: 10.1016/j.ijmedinf.2024.105413
![]() |
[85] |
Z. Azizi, S. Lindner, Y. Shiba, V. Raparelli, C. M. Norris, K. Kublickiene, et al., A comparison of synthetic data generation and federated analysis for enabling international evaluations of cardiovascular health, Sci. Rep., 13 (2023), 11540. http://dx.doi.org/10.1038/s41598-023-38457-3 doi: 10.1038/s41598-023-38457-3
![]() |
[86] |
M. Hernandez, G. Epelde, A. Beristain, R. Álvarez, C. Molina, X. Larrea, et al., Incorporation of synthetic data generation techniques within a controlled data processing workflow in the health and wellbeing domain, Electronics, 11 (2022), 812. http://dx.doi.org/10.3390/electronics11050812 doi: 10.3390/electronics11050812
![]() |
[87] |
C. Little, M. Elliot, R. Allmendinger, Federated learning for generating synthetic data: a scoping review, Int. J. Popul. Data Sci., 8 (2023), 2158. http://dx.doi.org/10.23889/ijpds.v8i1.2158 doi: 10.23889/ijpds.v8i1.2158
![]() |
[88] |
J. W. Kim, B. Jang, Privacy-preserving generation and publication of synthetic trajectory microdata: a comprehensive survey, J. Netw. Comput. Appl., 230 (2024), 103951. http://dx.doi.org/10.1016/j.jnca.2024.103951 doi: 10.1016/j.jnca.2024.103951
![]() |
[89] |
C. Alloza, B. Knox, H. Raad, M. Aguilà, C. Coakley, Z. Mohrova, et al., A case for synthetic data in regulatory decision-making in Europe, Clin. Pharmacol. Ther., 114 (2023), 795–801. http://dx.doi.org/10.1002/cpt.3001 doi: 10.1002/cpt.3001
![]() |
[90] | A. Beduschi, Synthetic data protection: towards a paradigm change in data regulation? Big Data Soc., 11 (2024), 1–5. http://dx.doi.org/10.1177/20539517241231277 |
[91] | P. Lehto, S. Malkamäki, The Finnish health sector growth and competitiveness vision 2030, Helsinki: Sitra, 2023. |
[92] | Finnish association of private care providers, Sotedigin työkalupakista eväitä tiedon hyödyntämiseen sote-palveluissa, Hyvinvointiala Hali ry, 2023. Available from: https://www.hyvinvointiala.fi/sotedigin-tyokalupakista-evaita-tiedon-hyodyntamiseen-sote-palveluissa/. |
[93] |
S. Moazemi, T. Adams, H. G. NG, L. Kühnel, J. Schneider, A. F. Näher, et al., NFDI4Health workflow and service for synthetic data generation, assessment and risk management, Stud. Health Technol. Inform., 317 (2024), 21–29. http://dx.doi.org/10.3233/SHTI240834 doi: 10.3233/SHTI240834
![]() |
1. | A. D. Mengue, D. E. Essebe, B. Z. Essimbi, High-dimensional hyperchaos and its control in a modified laser system subjected to optical injection, 2024, 56, 1572-817X, 10.1007/s11082-024-06534-0 | |
2. | Awatif Muflih Alqahtani, Arun Chaudhary, Ravi Shanker Dubey, Shivani Sharma, Comparative Analysis of the Chaotic Behavior of a Five-Dimensional Fractional Hyperchaotic System with Constant and Variable Order, 2024, 8, 2504-3110, 421, 10.3390/fractalfract8070421 | |
3. | Yu Liu, Yan Zhou, Biyao Guo, Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System, 2023, 11, 2227-7390, 2699, 10.3390/math11122699 | |
4. | ShiMing Fu, XueFeng Cheng, Juan Liu, Dynamics, circuit design, feedback control of a new hyperchaotic system and its application in audio encryption, 2023, 13, 2045-2322, 10.1038/s41598-023-46161-5 | |
5. | T.V. Yakovleva, A.V. Krysko, V.V. Dobriyan, V.A. Krysko, A modified neural network method for computing the Lyapunov exponent spectrum in the nonlinear analysis of dynamical systems, 2025, 140, 10075704, 108397, 10.1016/j.cnsns.2024.108397 | |
6. | Wassim Alexan, Yen-Lin Chen, Lip Yee Por, Mohamed Gabr, Hyperchaotic Maps and the Single Neuron Model: A Novel Framework for Chaos-Based Image Encryption, 2023, 15, 2073-8994, 1081, 10.3390/sym15051081 | |
7. | XueFeng Cheng, Hongmei Zhu, Lian Liu, Kunpeng Mao, Juan Liu, Dynamic analysis of a novel hyperchaotic system based on STM32 and application in image encryption, 2024, 14, 2045-2322, 10.1038/s41598-024-71338-x | |
8. | Shaohui Yan, Hanbing Zhang, Defeng Jiang, Multi-wing chaotic system based on smooth function and its predefined time synchronization, 2024, 138, 10075704, 108178, 10.1016/j.cnsns.2024.108178 | |
9. | Xinna Mao, Hongwei Feng, Maryam A. Al-Towailb, Hassan Saberi-Nik, Dynamical analysis and boundedness for a generalized chaotic Lorenz model, 2023, 8, 2473-6988, 19719, 10.3934/math.20231005 | |
10. | Karam Adel Abed, Saad Fawzi Al-Azzawi, Omar Saber Qasim, Electronic circuit and image encryption using a novel simple 4D hyperchaotic system, 2025, 100, 0031-8949, 015210, 10.1088/1402-4896/ad941d | |
11. | Manal Mechekef, Lotfi Meddour, Tarek Houmor, Generation of a Multiwing Hyperchaotic System With a Line Equilibrium and Its Control, 2025, 20, 1555-1415, 10.1115/1.4067860 | |
12. | Alenrex Maity, Bibhas Chandra Dhara, Image Encryption Utilizing 5D Hyperchaos, Wavelet Lifting Scheme, and Burrows–Wheeler Transform, 2025, 2193-567X, 10.1007/s13369-025-10145-6 |
m | LE1 | LE2 | LE3 | LE4 | Dynamics |
0.5 | 3.827 | 0.036 | −0.000 | −45.862 | Hyperchaos |
1 | 3.901 | 0.052 | 0.000 | −45.953 | Hyperchaos |
1.5 | 3.943 | 0.081 | −0.000 | −46.022 | Hyperchaos |
2 | 4.277 | 0.091 | −0.000 | −46.364 | Hyperchaos |
2.5 | 4.221 | 0.106 | −0.000 | −46.325 | Hyperchaos |
3 | 3.976 | 0.075 | −0.000 | −46.040 | Hyperchaos |