Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model

  • This investigation offers an innovative analytical strategy, namely the Riccati modified extended simple equation method (RMESEM), to establish and analyze soliton results of the (2+1)-dimensional dynamical generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation (GZK-BBME) in plasma physics. This equation models the physical phenomena of long waves with small and finite amplitude in magnetic plasma. Using a wave transformation, the employed transformative technique first converts GZK-BBME to a nonlinear ordinary differential equation (NODE). With the incorporation of the Riccati equation, a close-form solution is then assumed for the resultant NODE by RMESEM, which converts the NODE into a set of algebraic equations. The fresh plethora of soliton results in the form of rational, exponential, rational-hyperbolic and periodic functional cases are obtained by addressing this set of equations. Several contour, 3D, and 2D graphs are also employed to visualizes the dynamics of these constructed soliton results. These graphs demonstrate that the acquired solitons adopts the type of diverse kink solitons, including cuspon, dark, bright, lump-type, and dark-bright kinks. In addition, our proposed RMESEM shows the applications of the model by producing different traveling soliton results, providing qualitative information on the GZK-BBMEs and possible applications in dealing with other similar kinds of non-linear models.

    Citation: Naher Mohammed A. Alsafri, Hamad Zogan. Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model[J]. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661

    Related Papers:

    [1] A. Q. Khan, Ibraheem M. Alsulami . Discrete Leslie's model with bifurcations and control. AIMS Mathematics, 2023, 8(10): 22483-22506. doi: 10.3934/math.20231146
    [2] Xiongxiong Du, Xiaoling Han, Ceyu Lei . Dynamics of a nonlinear discrete predator-prey system with fear effect. AIMS Mathematics, 2023, 8(10): 23953-23973. doi: 10.3934/math.20231221
    [3] Fatao Wang, Ruizhi Yang, Yining Xie, Jing Zhao . Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator. AIMS Mathematics, 2023, 8(8): 17719-17743. doi: 10.3934/math.2023905
    [4] Abdul Qadeer Khan, Ayesha Yaqoob, Ateq Alsaadi . Neimark-Sacker bifurcation, chaos, and local stability of a discrete Hepatitis C virus model. AIMS Mathematics, 2024, 9(11): 31985-32013. doi: 10.3934/math.20241537
    [5] Xiaoming Su, Jiahui Wang, Adiya Bao . Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. AIMS Mathematics, 2024, 9(5): 13462-13491. doi: 10.3934/math.2024656
    [6] Ahmad Suleman, Rizwan Ahmed, Fehaid Salem Alshammari, Nehad Ali Shah . Dynamic complexity of a slow-fast predator-prey model with herd behavior. AIMS Mathematics, 2023, 8(10): 24446-24472. doi: 10.3934/math.20231247
    [7] Weili Kong, Yuanfu Shao . Bifurcations of a Leslie-Gower predator-prey model with fear, strong Allee effect and hunting cooperation. AIMS Mathematics, 2024, 9(11): 31607-31635. doi: 10.3934/math.20241520
    [8] Ali Al Khabyah, Rizwan Ahmed, Muhammad Saeed Akram, Shehraz Akhtar . Stability, bifurcation, and chaos control in a discrete predator-prey model with strong Allee effect. AIMS Mathematics, 2023, 8(4): 8060-8081. doi: 10.3934/math.2023408
    [9] Abdul Qadeer Khan, Ayesha Yaqoob, Ateq Alsaadi . Discrete Hepatitis C virus model with local dynamics, chaos and bifurcations. AIMS Mathematics, 2024, 9(10): 28643-28670. doi: 10.3934/math.20241390
    [10] Fethi Souna, Salih Djilali, Sultan Alyobi, Anwar Zeb, Nadia Gul, Suliman Alsaeed, Kottakkaran Sooppy Nisar . Spatiotemporal dynamics of a diffusive predator-prey system incorporating social behavior. AIMS Mathematics, 2023, 8(7): 15723-15748. doi: 10.3934/math.2023803
  • This investigation offers an innovative analytical strategy, namely the Riccati modified extended simple equation method (RMESEM), to establish and analyze soliton results of the (2+1)-dimensional dynamical generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation (GZK-BBME) in plasma physics. This equation models the physical phenomena of long waves with small and finite amplitude in magnetic plasma. Using a wave transformation, the employed transformative technique first converts GZK-BBME to a nonlinear ordinary differential equation (NODE). With the incorporation of the Riccati equation, a close-form solution is then assumed for the resultant NODE by RMESEM, which converts the NODE into a set of algebraic equations. The fresh plethora of soliton results in the form of rational, exponential, rational-hyperbolic and periodic functional cases are obtained by addressing this set of equations. Several contour, 3D, and 2D graphs are also employed to visualizes the dynamics of these constructed soliton results. These graphs demonstrate that the acquired solitons adopts the type of diverse kink solitons, including cuspon, dark, bright, lump-type, and dark-bright kinks. In addition, our proposed RMESEM shows the applications of the model by producing different traveling soliton results, providing qualitative information on the GZK-BBMEs and possible applications in dealing with other similar kinds of non-linear models.



    The topic of boundary value problems is an interesting area of research in view of its applications in applied and technical sciences. In the recent years, the class of nonlocal fractional order boundary value problems involving different fractional derivatives (such as Riemann-Liouville, Caputo, etc.) received an overwhelming interest from many researchers. For the details of a variety of nonlocal single-valued and multivalued boundary value problems involving different types of fractional order derivative operators, we refer the reader to the text [1], articles [2,3,4,5,6,7] and the references cited therein. There has been shown a great enthusiasm in developing the existence theory for Hilfer, ψ-Hilfer and (k,ψ) Hilfer type fractional differential equations equipped with different types of boundary conditions, for instance, see [8,9,10,11,12,13,14,15,16].

    Nonlocal boundary conditions are found to be more plausible and practical in contrast to the classical boundary conditions in view of their applicability to describe the changes happening within the given domain. Closed boundary conditions are found to be of great help in describing the situation when there is no fluid flow along the boundary or through it. The free slip condition is also a type of the closed boundary conditions which describes the situation when there is a flow along the boundary, but there is no flow perpendicular to it. Such conditions are also useful in the study of sandpile model [17,18], honeycomb lattice [19], deblurring problems [20], closed-aperture wavefield decomposition in solid media [21], vibration analysis of magneto-electro-elastic cylindrical composite panel [22], etc.

    Now we review some works on the boundary value problems with closed boundary conditions. In [23], the authors studied the single-valued and multivalued fractional boundary value problems with open and closed boundary conditions. A three-dimensional Neumann boundary value problem with a generalized boundary condition in a domain with a smooth closed boundary was discussed in [24]. For some interesting results on impulsive fractional differential equations with closed boundary conditions, see the articles [25,26].

    The objective of the present work is to investigate a new class of mixed nonlinear boundary value problems involving a right Caputo fractional derivative, mixed Riemann-Liouville fractional integral operators, and multipoint variant of closed boundary conditions. In precise terms, we consider the following fractional order nonlocal and nonlinear problem:

    CDαTy(t)+λIρTIσ0+h(t,y(t))=f(t,y(t)),tJ:=[0,T], (1.1)
    y(T)=mı=1(piy(ξi)+Tqiy(ξi)),Ty(T)=mı=1(riy(ξi)+Tviy(ξi)), (1.2)

    where CDαT denote the right Caputo fractional derivative of order α(1,2], IρT and Iσ0+ represent the right and left Riemann-Liouville fractional integral operators of orders ρ,σ>0 respectively, f,h:[0,T]×RR are given continuous functions and λ,pi,qi,ri,viR,i{1,2,3,...,m}, and ξi(0,T). Notice that the integro-differential Eq (1.1) contains the usual and mixed Riemann-Liouville integrals type nonlinearities. The boundary conditions (1.2) can be interpreted as the values of the unknown function and its derivative at the right end-point T of the interval [0,T] are proportional to a linear combination of these values at arbitrary nonlocal positions ξi(0,T). Physically, the nonlocal multipoint closed boundary conditions provide a flexible mechanism to close the boundary at arbitrary positions in the given domain instead of the left end-point of the domain.

    Here we emphasize that much of the literature on fractional differential equations contains the left-sided fractional derivatives and there are a few works dealing with the right-sided fractional derivatives. For instance, the authors in [27,28] studied the problems involving the right-handed Riemann–Liouville fractional derivative operators, while a problem containing the right-handed Caputo fractional derivative was considered in [29]. The problem studied in the present paper is novel in the sense that it solves an integro-differential equation with a right Caputo fractional derivative and mixed nonlinearities complemented with a new concept of nonlocal multipoint closed boundary conditions. The results accomplished for the problems (1.1) and (1.2) will enrich the literature on boundary value problems involving the right-sided fractional derivative operators. The present work is also significant as it produces several new results as special cases as indicated in the last section.

    The rest of the paper is arranged as follows. In Section 2, we present an auxiliary lemma which is used to transform the given nonlinear problem into a fixed-point problem. Section 3 contains the main results and illustrative examples. Some interesting observations are presented in the last Section 4.

    Let us begin this section with some definitions [30].

    Definition 2.1. The left and right Riemann-Liouville fractional integrals of order β>0 for gL1[a,b], existing almost everywhere on [a,b], are respectively defined by

    Iβa+g(t)=ta(ts)β1Γ(β)g(s)dsandIβbg(t)=bt(st)β1Γ(β)g(s)ds.

    Definition 2.2. For gACn[a,b], the right Caputo fractional derivative of order β(n1,n],nN, existing almost everywhere on [a,b], is defined by

    CDβbg(t)=(1)nbt(st)nβ1Γ(nβ)g(n)(s)ds.

    In the following lemma, we solve a linear variant of the fractional integro-differential equation (1.1) supplemented with multipoint closed boundary conditions (1.2).

    Lemma 2.1. Let H,FC[0,T] and Δ0. Then the linear problem

    {CDαTy(t)+λIρTIσ0+H(t)=F(t),tJ:=[0,T],y(T)=mı=1(piy(ξi)+Tqiy(ξi)),Ty(T)=mı=1(riy(ξi)+Tviy(ξi)),0<ξi<T, (2.1)

    is equivalent to the integral equation

    y(t)=Tt(st)α1Γ(α)[F(s)λIρTIσ0+H(s)]ds+b1(t){mı=1piTξi(sξi)α1Γ(α)[F(s)λIρTIσ0+H(s)]dsTmı=1qiTξi(sξ)α2Γ(α1)[F(s)λIρTIσ0+H(s)]ds}+b2(t){mı=1riTξi(sξi)α1Γ(α)[F(s)λIρTIσ0+H(s)]dsTmi=1viTξi(sξi)α2Γ(α1)[F(s)λIρTIσ0+H(s)]ds}, (2.2)

    where

    b1(t)=1Δ(tS6S7TS9+T),b2(t)=1Δ[(1S1)t+S2+TS4T],Δ=(S11)(S7+TS9T)S6(S2+TS4T),S1=mı=1pi,S2=mı=1piξi,S3=mı=1piAi,S4=mı=1qi,S5=mı=1qiBi,S6=mı=1ri,S7=mı=1riξi,S8=mı=1riAi,S9=mı=1vi,S10=mı=1viBi,Ai=IαT[F(ξi)λIρTIσ0+H(ξi)],Bi=Iα1T[F(ξi)λIρTIσ0+H(ξi)]. (2.3)

    Proof. Applying the right fractional integral operator IαT to the integro-differential equation in (2.1), we get

    y(t)=IαTF(t)λIα+ρTIσ0+H(t)c0c1t, (2.4)

    where c0 and c1 are unknown arbitrary constants. Using (2.4) in the nonlocal closed boundary conditions of (2.1), we obtain

    {(S11)c0+(S2+TS4T)c1=S3+TS5,S6c0+(S7+TS9T)c1=S8+TS10, (2.5)

    where Si,i=1,,10, are given in (2.3).

    Solving the system (2.5) for c0 and c1, we find that

    c0=1Δ[(S7+TS9T)(S3+TS5)(S2+TS4T)(S8+TS10)],c1=1Δ[S6(S3+TS5)+(S11)(S8+TS10)],

    where Δ is given in (2.3). Substituting the above values of c0 and c1 in (2.4) together with the notation (2.3), we obtain the solution (2.2). The converse of this lemma can be obtained by direct computation. This completes the proof.

    This section is devoted to our main results concerning the existence and uniqueness of solutions for the problems (1.1) and (1.2).

    In order to convert the problems (1.1) and (1.2) into a fixed point problem, we define an operator V:XX by using Lemma 2.1 as follows:

    Vy(t)=Tt(st)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds+b1(t){mı=1piTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]dsTmı=1qiTξi(sξ)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds}+b2(t){mı=1riTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]dsTmi=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds},tJ, (3.1)

    where X=C([0,T],R) denotes the Banach space of all continuous functions from [0,T]R equipped with the norm y=sup{|y(t)|:t[0,T]}. Notice that the fixed point problem Vy(t)=y(t) is equivalent to the boundary value problems (1.1) and (1.2) and the fixed points of the operator V are its solutions.

    In the forthcoming analysis, we use the following estimates:

    Tt(st)α+ρ1Γ(α+ρ)Iσ0+ds=Tt(st)α+ρ1Γ(α+ρ)s0(su)σ1Γ(σ)dudsTσ(Tt)α+ρΓ(σ+1)Γ(α+ρ+1),Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds=Tξi(sξi)α+ρ1Γ(α+ρ)s0(su)σ1Γ(σ)dudsTσ(Tξi)α+ρΓ(σ+1)Γ(α+ρ+1),

    where we have used uσTσ,ρ,σ>0.

    In the sequel, we set

    Ω1=1Γ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]},Ω2=|λ|TσΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}, (3.2)

    where

    ¯b1=maxt[0,T]|b1(t)|,¯b2=maxt[0,T]|b2(t)|.

    In the following, Krasnosel'skii's fixed point theorem [31] is applied to prove our first existence result for the problems (1.1) and (1.2).

    Theorem 3.1. Assume that:

    (H1) There exists L>0 such that |f(t,x)f(t,y)|L|xy|,t[0,T],x,yR;

    (H2) There exists K>0 such that |h(t,x)h(t,y)|K|xy|,t[0,T],x,yR;

    (H3) |f(t,y)|δ(t) and |h(t,y)|θ(t), where δ,θC([0,T],R+).

    Then, the problems (1.1) and (1.2) has at least one solution on [0,T] if Lγ1+Kγ2<1, where

    γ1=TαΓ(α+1),γ2=|λ|Tα+ρ+σΓ(σ+1)Γ(α+ρ+1). (3.3)

    Proof. Introduce the ball Bη={yX:yη}, with

    ηδΩ1+θΩ2. (3.4)

    Now we verify the hypotheses of Krasnosel'skii's fixed point theorem in three steps by splitting the operator V:XX defined by (3.1) on Bη as V=V1+V2, where

    V1y(t)=Tt(st)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds,tJ,V2y(t)=b1(t){mı=1piTξi(sξi)α1Γ(α)[f(s,y(s))dsλIρTIσ0+h(s,y(s))]dsTmı=1qiTξi(sξ)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds}+b2(t){mı=1riTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]dsTmi=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds},tJ.

    (i) For y,xBη, we have

    V1y+V2xsupt[0,T]{Tt(st)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+|b1(t)|{mı=1|pi|Tξi(sξi)α1Γ(α)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds}+|b2(t)|{mı=1|ri|Tξi(sξi)α1Γ(α)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds}}δsupt[0,T]{Tt(st)α1Γ(α)ds+|b1(t)|[mı=1|pi|Tξi(sξi)α1Γ(α)ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α1Γ(α)ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)ds]}+θ|λ|supt[0,T]{Tt(st)α+ρ1Γ(α+ρ)Iσ0+ds+|b1(t)|[mı=1Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|vi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]}δsupt[0,T]{(Tt)αΓ(α+1)+|b1(t)|[mı=1|pi|(Tξi)αΓ(α+1)+Tmı=1|qi|(Tξi)α1Γ(α)]+|b2(t)|[mı=1|ri|(Tξi)αΓ(α+1)+Tmı=1|vi|(Tξi)α1Γ(α)]}+θ|λ|TσΓ(σ+1)supt[0,T]{(Tt)α+ρΓ(α+ρ+1)ds+|b1(t)|[mı=1(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|qi|(Tξi)α+ρ1Γ(α+ρ)]+|b2(t)|[mı=1|ri|(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|vi|(Tξi)α+ρ1Γ(α+ρ)]}δΓ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+θ|λ|TσΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}βΩ1+θΩ2<η,

    where we used (3.4). Thus V1y+V2xBη.

    (ii) Using (H1) and (H2), it is easy to show that

    V1yV1xsupt[0,T]{Tt(st)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tt(st)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds}(Lγ1+Kγ2)yx,

    which, in view of the condition Lγ1+Kγ2<1, implies that the operator V1 is a contraction.

    (iii) Continuity of the functions f,h implies that the operator V2 is continuous. In addition, V2 is uniformly bounded on Bη as

    V2ysupt[0,T]{|b1(t)|[mı=1|pi|Tξi(sξi)α1Γ(α)|f(s,y(s))|ds+|λ|mı=1|pi|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))|ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)|f(s,y(s))|ds+|λ|Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+|h(s,y(s))|ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α1Γ(α)|f(s,y(s))|+|λ|mı=1|ri|Tξi(sξi)α+ρ1(α+ρ)Iσ0+|h(s,y(s))|ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)|f(s,y(s))|ds+|λ|Tmı=1|vi|Tξi(sξi)α+ρ2)Γ(α+ρ1)|h(s,y(s))|ds]}δsupt[0,T]{|b1(t)|[mı=1|pi|Tξi(sξi)α1Γ(α)ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α1Γ(α)ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)ds]}+|λ|θsupt[0,T]{|b1(t)|[mı=1|pi|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|vi|Tξi(sξi)α+ρ2)Γ(α+ρ1)Iσ0+ds]}δsupt[0,T]{|b1(t)|[mı=1|pi|(Tξi)αΓ(α+1)+Tmı=1|qi|(Tξi)α1Γ(α)]+|b2(t)|[mı=1|ri|(Tξi)αΓ(α+1)+Tmı=1|vi|(Tξi)α1Γ(α)]+|λ|θTσΓ(σ+1)supt[0,T]{|b1(t)|[mı=1|pi|(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|qi|(Tξi)α+ρ1Γ(α+ρ)]+|b2(t)|[mı=1|ri|(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|vi|(Tξi)α+ρ1)Γ(α+ρ)]}δ(Ω1γ1)+θ(Ω2γ2),

    where Ωi, and γi, i=1,2, are defined in (3.2) and (3.3), respectively. To show the compactness of V2, we fix sup(t,y)[0,T]×Bη|f(t,y)|=¯f, sup(t,y)[0,T]×Bη|h(t,y)|=¯h. Then, for 0<t1<t2<T, we have

    |(V2y)(t2)(V2y)(t1)||b1(t2)b1(t1)|{mı=1|pi|Tξi(sξi)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}+|b2(t2)b2(t1)|{mı=1|ri|Tξ(sξ)α1Γ(α)[|f(s,y(s))|+λ|IρTIσ0+|h(s,y(s))|ds]+Tmı=1|vi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}|S6||t2t1||Δ|{¯fΓ(α+1)[mı=1|pi|(Tξi)α+αTmi=1|qi|(Tξi)α1]+¯h|λ|TσΓ(σ+1)Γ(α+ρ+1)[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmi=1|qi|(Tξi)α+ρ1]}+|S11||t2t1||Δ|{¯fΓ(α+1)[mı=1|ri|(Tξi)α+αTmi=1|vi|(Tξi)α1]+¯h|λ|TσΓ(σ+1)Γ(α+ρ+1)[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmi=1|vi|(Tξi)α+ρ1]},

    which tends to zero, independent of y, as t2t1. This shows that V2 is equicontinuous. It is clear from the foregoing arguments that the operator V2 is relatively compact on Bη. Hence, by the Arzelá-Ascoli theorem, V2 is compact on Bη.

    In view of the foregoing arguments (i)–(iii), the hypotheses of the Krasnosel'skii's fixed point theorem [31] are satisfied. Hence, the operator V1+V2=V has a fixed point, which implies that the problems (1.1) and (1.2) has at least one solution on [0,T]. The proof is finished.

    Remark 3.1. Interchanging the roles of the operators V1 and V2 in the previous result, the condition Lγ1+Kγ2<1 changes to the following one:

    L(Ω1γ1)+K(Ω2γ2)<1,

    where Ω1,Ω2 and γ1,γ2 are defined in (3.2) and (3.3) respectively.

    The following existence result relies on Leray-Schauder nonlinear alternative [32].

    Theorem 3.2. Suppose that the following conditions hold:

    (H4) There exist continuous nondecreasing functions ϕ1,ϕ2:[0,)(0,) such that (t,y)[0,1]×R, |f(t,y)|ω1(t)ϕ1(y) and |h(t,y)|ω2(t)ϕ2(y), where ω1,ω2C([0,T],R+);

    (H5)There exists a constant M>0 such that

    Mω1ϕ1(M)Ω1+ω2ϕ2(M)Ω2>1.

    Then, the problems (1.1) and (1.2) has at least one solution on [0,T].

    Proof. We firstly show that the operator V:XX defined by (3.1) is completely continuous.

    (i) V maps bounded sets into bounded sets in X.

    Let yBr={yX:yr}, where r is a fixed number. Then, using the strategy employed in the proof of Theorem 3.1, we obtain

    Vyω1ϕ1(r)Γ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+|λ|Tσω2ϕ2(r)Γ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}=ω1ϕ1(r)Ω1+ω2ϕ2(r)Ω2<.

    (ii) V maps bounded sets into equicontinuous sets.

    Let 0<t1<t2<T and yBr. Then, we obtain

    |Vy(t2)Vy(t1)||Tt2(st2)α1(st1)α1Γ(α)f(s,y(s))ds+t2t1(st1)α1Γ(α)f(s,y(s))dsλTt2(st2)α+ρ1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))dsλt2t1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))ds|+|b1(t2)b1(t1)|{|mı=1piTξi(sξ)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1qiTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}+|b2(t2)b2(t1)|{|mı=1riTξi(sξ)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}|Tt2(st2)α1(st1)α1Γ(α)f(s,y(s))ds+t2t1(st1)α1Γ(α)f(s,y(s))ds|+|λTt2(st2)α+ρ1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))ds+λt2t1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))ds|+|S6||t2t1|Δ|{|mı=1piTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1qiTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}+|S11||t2t1|Δ{|mı=1riTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}ω1(t)Φ1(r)Γ(α+1){|(Tt2)α(Tt1)α|+2|(t2t1)α|+|t2t1||Δ|[|S6|(mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1)+|S11|(mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1)]}+|λ|Tσω2(t)ϕ2(r)Γ(σ+1)Γ(α+ρ+1){|(Tt2)α+ρ(Tt1)α+ρ+2|t2t1|α+ρ+|t2t1||Δ|[|S6|(mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1)+|S11|(mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1)]}.

    Notice that the right-hand side of the above inequality tends to 0 as t2t1, independent of yBr. Thus, it follows by the Arzelá–Ascoli theorem that the operator V:XX is completely continuous.

    The conclusion of the Leray-Schauder nonlinear alternative [32] will be applicable once it is shown that there exists an open set UC([0,T],R) with yνVy for ν(0,1) and yU. Let yC([0,T],R) be such that y=νVy for ν(0,1). As argued in proving that the operator V is bounded, one can obtain that

    |y(t)|=|νVy(t)||ω1(t)|ϕ(y)Ω1+|ω2(t)|ψ(y)Ω2,

    which can be written as

    yω1ϕ(y)Ω1+ω2ψ(y)Ω21.

    On the other hand, we can find a positive number M such that yM by assumption (H5). Let us set

    W={yX:y<M}.

    Clearly, W contains a solution only when y=M. In other words, we cannot find a solution yW satisfying y=νVy for some ν(0,1). In consequence, the operator V has a fixed point y¯W, which is a solution of the problems (1.1) and (1.2). The proof is finished.

    Here we apply Banach contraction mapping principle to establish the uniqueness of solutions for the problems (1.1) and (1.2).

    Theorem 3.3. If the conditions (H1) and (H2) hold, then the problems (1.1) and (1.2) has a unique solution on [0,T] if

    LΩ1+KΩ2<1, (3.5)

    where Ω1 and Ω2 are defined in (3.2).

    Proof. In the first step, we show that VBκBκ, where Bκ={yX:yκ} with

    κf0Ω1+h0Ω21(LΩ1+KΩ2),f0=supt[0,T]|f(t,0)|,h0=supt[0,T]|h(t,0)|.

    For yBκ and using the condition (H1), we have

    |f(t,y)|=|f(t,y)f(t,0)+f(t,0)||f(t,y)f(t,0)|+|f(t,0)|Ly+f0Lr+f0. (3.6)

    Similarly, using (H2), we get

    |h(t,y)|Kr+h0. (3.7)

    In view of (3.6) and (3.7), we obtain

    Vysupt[0,T]|Vy(t)|supt[0,T]{Tt(st)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+|b1(t)|{mı=1piTξi(sξi)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}+|b2(t)|{mı=1riTξi(sξi)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+Tmi=1|vi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}}(Lr+f0)supt[0,T]{Tt(st)α1Γ(α)ds+|b1(t)|[mi=1|pi|Tξi(sξi)α1Γ(α)ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)ds]+|b2(t)|[mi=1|ri|Tξi(sξi)α1Γ(α)ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)ds]}+|λ|(Kr+h0)supt[0,T]{Tt(st)α+ρ1Γ(α+ρ)Iσ0+ds+|b1(t)|[mi=1|pi|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]+|b2(t)|[mi=1|ri|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|vi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]}(Lr+f0)Γ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+Tσ|λ|(Kr+h0)Γ(σ)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}=(Lr+f0)Ω1+(Kr+h0)Ω2<κ,

    which implies that VyBκ, for any yBκ. Therefore, VBκBκ.

    Next, we prove that V is a contraction. For that, let x,yX and t[0,T]. Then, by the conditions (H1) and (H2), we obtain

    VyVx=supt[0,T]|(Vy)(t)(Vx)(t)|supt[0,T]{Tt(st)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tt(st)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds+|b1(t)|[mı=1|pi|(Tξi(sξi)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds)+Tmı=1|qi|(Tξi(sξi)α2Γ(α1)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+|h(s,y(s))h(s,x(s))|ds)]+|b2(t)|[mı=1|ri|(Tξi(sξi)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds)+Tmı=1|vi|(Tξi(sξi)α2Γ(α1)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+|h(s,y(s))h(s,x(s))|ds)]}LΓ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+Tσ|λ|KΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}yx=(LΩ1+KΩ2)yx,

    which shows that V is a contraction in view of the condition (3.5). Therefore, we deduce by Banach contraction mapping principle that there exists a unique fixed point for the operator V, which corresponds to a unique solution for the problems (1.1) and (1.2) on [0,T]. The proof is completed.

    In this subsection, we construct examples for illustrating the abstract results derived in the last two subsections. Let us consider the following problem:

    {D9/81y(t)+3I7/31I3/40+h(t,y(t))=f(t,y(t)), tJ:=[0,1],y(T)=3ı=1piy(ξi)+3ı=1qiy(ξi),y(T)=3ı=1riy(ξi)+3ı=1viy(ξi),,0<ξi<1. (3.8)

    Here α=9/8,ρ=7/3,σ=3/4,λ=3,ξ1=3/7,ξ2=2/3,ξ3=4/5,p1=1/2,p2=1/3,p3=1/4,q1=2,q2=3,q3=4,r1=1,r2=1,r3=3,v1=2/7,v2=3/7,v3=4/7. Using the given data, it is found that

    ¯b1=maxt[0,1]|b1(t)|=|b1(t)|t=10.1112461491,¯b2=maxt[0,1]|b2(t)|=|b2(t)|t=10.3364235041.

    In consequence, we get Ω12.517580993,Ω20.3543113654 (Ω1, Ω2 are defined in (3.2)).

    (i) For illustrating Theorem 3.1, we consider the functions

    f(t,y)=m12t+25(y21+y2+cos3t+1),h(t,y)=m23t2+64(2tan1y+sint+et/2), (3.9)

    where m1 and m2 are finite positive real numbers. Observe that

    |f(t,y)|δ(t)=m1(2+cos3t)2t+25,|h(t,y)|θ(t)=m2(π+sint+et/2)3t2+64,

    and f(t,y) and h(t,y) respectively satisfy the conditions (H1) and (H2) with L=2m1/25 and K=m2/24. Moreover, γ10.9438765902 and γ20.2972831604. By the condition Lγ1+Kγ2<1, we get

    0.0755101272m1+0.0123867984m2<1 (3.10)

    For the values of m1 and m2 satisfying the inequality (3.10), the hypothesis of Theorem 3.1 is satisfied. Hence, it follows by the conclusion of Theorem 3.1 that the problem (3.8) with f(t,y) and h(t,y) given in (3.9) has at least one solution on [0,1]. If the values m1 and m2 do not satisfy the inequality (3.10), then Theorem 3.1 does not guarantee the existence of at least one solution to the problem (3.8) with f(t,y) and h(t,y) given in (3.9) for such values of m1 and m2.

    (ii) In order to illustrate Theorem 3.2, we take the following functions (instead of (3.9)) in the problem (3.8):

    f(t,y)=e3tt2+3[siny+1/5],h(t,y)=27t3+1(|y|1+|y||y|+π/4). (3.11)

    Observe that the assumption (H4) is satisfied as |f(t,y)|ω1(t)ϕ1(y) and |h(t,y)|ω2(t)ϕ2(y), where ω1(t)=e3t/(t2+3), ϕ1(y)=(y+1/5), ω2(t)=2/(7t3+1), ϕ2(y)=(y+π/4). It is easy to see that ω1=1/3 and ω2=2/7. By the condition (H5), we find that M>4.151876169. Thus, all the conditions of Theorem 3.2 are satisfied and hence the problem (3.8) with f(t,y) and h(t,y) given by (3.11) has at least one solution on [0,1].

    (iii) The conditions (H1) and (H2) are respectively satisfied by f(t,y) and h(t,y) defined in (3.9) with L=2m1/25 and K=m2/24. By the condition (3.5), we have

    0.20140647944m1+0.0147629736m2<1. (3.12)

    Clearly, all the assumptions of Theorem 3.3 hold true with the values of m1 and m2 satisfying the inequality (3.12). In consequence, the problem (3.8) with f(t,y) and h(t,y) given in (3.11) has a unique solution on [0,1]. In case, we take m1=m2=m in (3.9), then the condition (3.12) implies the existence of a unique solution for the problem at hand for m<4.62600051. One can notice that Theorem 3.1 does not guarantee the existence of a unique solution to the problem (3.8) with f(t,y) and h(t,y) given in (3.9) for the values of m1 and m2, which do not satisfy the inequality (3.12).

    In this study, we discussed the existence and uniqueness of solutions under different assumptions for a boundary value problem involving a right Caputo fractional derivative with usual and mixed Riemann-Liouville integrals type nonlinearities, equipped with nonlocal multipoint version of the closed boundary conditions. Our results are not only new in the given configuration, but also yield some new results as special cases. Here are some examples.

    ● If λ=0 in (1.1), then our results correspond to the fractional differential equation CDαTy(t)=f(t,y(t)) with the boundary conditions (1.2).

    ● In case, we take qi=0,ri=0,i=1,,m in the results of this paper, we obtain the ones for the Eq (1.1) supplemented with boundary conditions: y(T)=mı=1piy(ξi),y(T)=mı=1viy(ξi).

    ● We get the results for the Eq (1.1) complemented with boundary conditions: y(T)=Tmı=1qiy(ξi),Ty(T)=mı=1riy(ξi) by taking pi=0,vi=0,i=1,,m in the obtained results.

    The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, has funded this project under grant No. (KEP-PhD: 35-130-1443).

    The authors declare no conflict of interest.



    [1] J. G. Caputo, D. Dutykh, Nonlinear waves in networks: model reduction for the sine-Gordon equation, Phys. Rev. E, 90 (2014), 022912. https://doi.org/10.1103/PhysRevE.90.022912 doi: 10.1103/PhysRevE.90.022912
    [2] X. Yang, Z. Wang, Z. Zhang, Generation of anomalously scattered lumps via lump chains degeneration within the Mel'nikov equation, Nonlinear Dyn., 111 (2023), 15293–15307. https://doi.org/10.1007/s11071-023-08615-3 doi: 10.1007/s11071-023-08615-3
    [3] D. Dutykh, J. G. Caputo, Wave dynamics on networks: method and application to the sine-Gordon equation, Appl. Numer. Math., 131 (2018), 54–71. https://doi.org/10.1016/j.apnum.2018.03.010 doi: 10.1016/j.apnum.2018.03.010
    [4] X. Yang, Z. Wang, Z. Zhang, Decay mode ripple waves within the (3+1)-dimensional Kadomtsev-Petviashvili equation, Math. Methods Appl. Sci., 47 (2024), 10444–10461. https://doi.org/10.1002/mma.10132 doi: 10.1002/mma.10132
    [5] X. Yang, Z. Wang, Z. Zhang, Solitons and lump waves to the elliptic cylindrical Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107837. https://doi.org/10.1016/j.cnsns.2024.107837 doi: 10.1016/j.cnsns.2024.107837
    [6] R. Ali, Z. Zhang, H. Ahmad, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quant. Electron., 56 (2024), 838. https://doi.org/10.1007/s11082-024-06370-2 doi: 10.1007/s11082-024-06370-2
    [7] R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (GG)-expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alex. Eng. J., 79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
    [8] D. Dutykh, T. Katsaounis, D. Mitsotakis, Finite volume methods for unidirectional dispersive wave models, Int. J. Numer. Meth. Fluids, 71 (2013), 717–736. https://doi.org/10.1002/fld.3681 doi: 10.1002/fld.3681
    [9] D. Dutykh, M. Chhay, F. Fedele, Geometric numerical schemes for the KdV equation, Comput. Math. Math. Phys., 53 (2013), 221–236. https://doi.org/10.1134/S0965542513020103 doi: 10.1134/S0965542513020103
    [10] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [11] Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
    [12] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [13] C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
    [14] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation, Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 doi: 10.1016/j.rinp.2023.107298
    [15] S. Guo, A. Das, Cohomology and deformations of generalized Reynolds operators on Leibniz algebras, Rocky Mountain J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
    [16] T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE Trans. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
    [17] K. J. Wang, F. Shi, J. H. Liu, J. Si, Application of the extended F-expansion method for solving the fractional Gardner equation with conformable fractional derivative, Fractals, 30 (2022), 2250139. https://doi.org/10.1142/S0218348X22501390 doi: 10.1142/S0218348X22501390
    [18] F. Wang, M. M. A. Khater, Computational simulation and nonlinear vibration motions of isolated waves localized in small part of space, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.03.009 doi: 10.1016/j.joes.2022.03.009
    [19] J. Liu, F. Wang, R. A. Attia, S. H. Alfalqi, J. F. Alzaidi, M. M. Khater, Innovative insights into wave phenomena: computational exploration of nonlinear complex fractional generalized-Zakharov system, Qual. Theory Dyn. Syst., 23 (2024), 170. https://doi.org/10.1007/s12346-024-01023-x doi: 10.1007/s12346-024-01023-x
    [20] H. Khan, Shoaib, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
    [21] R. Qahiti, N. M. A. Alsafri, H. Zogan, A. A. Faqihi, Kink soliton solution of integrable Kairat-X equation via two integration algorithms, AIMS Math., 9 (2024), 30153–30173. https://doi.org/10.3934/math.20241456 doi: 10.3934/math.20241456
    [22] H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (GG)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
    [23] H. Khan, R. Shah, J. F. Gómez-Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
    [24] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [25] L. Akinyemi, M. Şenol, O. S. Iyiola, Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method, Math. Comput. Simul., 182 (2021), 211–233. https://doi.org/10.1016/j.matcom.2020.10.017 doi: 10.1016/j.matcom.2020.10.017
    [26] E. Fan, Y. C. Hona, Generalized tanh method extended to special types of nonlinear equations, Z. Naturforsch. A, 57 (2002), 692–700. https://doi.org/10.1515/zna-2002-0809 doi: 10.1515/zna-2002-0809
    [27] S. Kaewta, S. Sirisubtawee, S. Koonprasert, S. Sungnul, Applications of the (GG2)-expansion method for solving certain nonlinear conformable evolution equations, Fractal Fract., 5 (2021), 88. https://doi.org/10.3390/fractalfract5030088 doi: 10.3390/fractalfract5030088
    [28] J. Hietarinta, Introduction to the Hirota bilinear method, In: Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Integrability of nonlinear systems, Lecture Notes in Physics, Berlin: Springer, 495 (1997), 95–103. https://doi.org/10.1007/BFb0113694
    [29] M. A. Akbar, L. Akinyemi, S. W. Yao, A. Jhangeer, H. Rezazadeh, M. M. Khater, et al., Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method, Results Phys., 25 (2021), 104228. https://doi.org/10.1016/j.rinp.2021.104228 doi: 10.1016/j.rinp.2021.104228
    [30] S. Dai, Poincare-Lighthill-Kuo method and symbolic computation, Appl. Math. Mech., 22 (2001), 261–269. https://doi.org/10.1007/BF02437964 doi: 10.1007/BF02437964
    [31] S. Akcagil, T. Aydemir, A new application of the unified method, New Trends Math. Sci., 6 (2018), 185–199. https://doi.org/10.20852/ntmsci.2018.261 doi: 10.20852/ntmsci.2018.261
    [32] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [33] I. Ullah, K. Shah, T. Abdeljawad, Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation, Phys. Scr., 99 (2024), 055259. https://doi.org/10.1088/1402-4896/ad3c7e doi: 10.1088/1402-4896/ad3c7e
    [34] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [35] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [36] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. https://doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
    [37] S. A. El-Tantawy, H. A. Alyousef, R. T. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed gerdjikov-ivanov equation, Phys. Scr., 99 (2024), 035249. https://doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b
    [38] M. A. Abdou, A generalized auxiliary equation method and its applications, Nonlinear Dyn., 52 (2008), 95–102. https://doi.org/10.1007/s11071-007-9261-y doi: 10.1007/s11071-007-9261-y
    [39] A. J. M. Jawad, M. D. Petkovi, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869–877. https://doi.org/10.1016/j.amc.2010.06.030 doi: 10.1016/j.amc.2010.06.030
    [40] W. Hamali, H. Zogan, A. A. Altherwi, Dark and bright hump solitons in the realm of the quintic Benney-Lin equation governing a liquid film, AIMS Math., 9 (2024), 29167–29196. https://doi.org/10.3934/math.20241414 doi: 10.3934/math.20241414
    [41] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. A, 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [42] V. E. Zakharov, E. A. Kuznetsov, Three-dimensional solitons, Zh. Eksp. Teor. Fiz., 66 (1974), 594–597.
    [43] A. M. Wazwaz, Compact and noncompact physical structures for the ZK-BM equation, Appl. Math. Comput., 169 (2005), 713–725. https://doi.org/10.1016/j.amc.2004.09.062 doi: 10.1016/j.amc.2004.09.062
    [44] A. M. Wazwaz, The tanh method and the sine-osine method for solving the KP-MEW equation, Int. J. Comput. Math., 82 (2005), 235–246. https://doi.org/10.1080/00207160412331296706 doi: 10.1080/00207160412331296706
    [45] K. Khan, M. A. Akbar, N. H. M. Ali, The modified simple equation method for exact and solitary wave solutions of nonlinear evolution equation: the GZK-BBM equation and right-handed noncommutative Burgers equations, Int. Scholarly Res. Not., 2013 (2013), 146704. https://doi.org/10.1155/2013/146704 doi: 10.1155/2013/146704
    [46] \"O. Güner, A. Bekir, L. Moraru, A. Biswas, Bright and dark soliton solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation, Proc. Rom. Acad. Ser. A, 16 (2015), 422–429.
    [47] Z. Navickas, R. Marcinkevicius, I. Telksniene, T. Telksnys, M. Ragulskis, Structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes, Math. Comput. Model. Dyn. Syst., 30 (2024), 51–72. https://doi.org/10.1080/13873954.2024.2304808 doi: 10.1080/13873954.2024.2304808
    [48] Y. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-Ⅱ and kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
  • This article has been cited by:

    1. Bashir Ahmad, Muhammed Aldhuain, Ahmed Alsaedi, Existence Results for a Right-Caputo Type Fractional Differential Equation with Mixed Nonlinearities and Nonlocal Multipoint Sub-strips Type Closed Boundary Conditions, 2024, 45, 1995-0802, 6457, 10.1134/S1995080224606969
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1288) PDF downloads(49) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog