Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Composite trapezoidal quadrature for computing hypersingular integrals on interval

  • Received: 09 October 2024 Revised: 22 November 2024 Accepted: 27 November 2024 Published: 10 December 2024
  • MSC : 33F05, 42A50, 65D05

  • In this paper, composite trapezoidal quadrature for numerical evaluation of hypersingular integrals was first introduced. By Taylor expansion at the singular point y, error functional was obtained. We know that the divergence rate of O(hp),p=1,2, and there were no roots of the special function for the first part in the error functional. Meanwhile, for the second part of the error functional, the divergence rate was O(hp+1),p=1,2, but there were roots of the special function. We proved that the convergence rate could reach O(h2) at superconvergence points far from the end of the interval. Two modified trapezoidal quadratures are presented and their convergence rate can reach O(h2) at certain superconvergence points or any local coordinate point. At last, several examples were presented to test our theorem.

    Citation: Xiaoping Zhang, Jin Li. Composite trapezoidal quadrature for computing hypersingular integrals on interval[J]. AIMS Mathematics, 2024, 9(12): 34537-34566. doi: 10.3934/math.20241645

    Related Papers:

    [1] Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489
    [2] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [3] Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, M. A. Abdelkawy . Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(2): 2001-2018. doi: 10.3934/math.2022115
    [4] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [5] Irina Volinsky, Svetlana Bunimovich-Mendrazitsky . Mathematical analysis of tumor-free equilibrium in BCG treatment with effective IL-2 infusion for bladder cancer model. AIMS Mathematics, 2022, 7(9): 16388-16406. doi: 10.3934/math.2022896
    [6] Abdon Atangana . Fractional derivatives, dimensions, and geometric interpretation: An answer to your worries. AIMS Mathematics, 2025, 10(2): 2562-2588. doi: 10.3934/math.2025119
    [7] Mohamed I. Abbas, Maria Alessandra Ragusa . Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(11): 20328-20340. doi: 10.3934/math.20221113
    [8] Muhammad Sajid Iqbal, Nauman Ahmed, Ali Akgül, Ali Raza, Muhammad Shahzad, Zafar Iqbal, Muhammad Rafiq, Fahd Jarad . Analysis of the fractional diarrhea model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(7): 13000-13018. doi: 10.3934/math.2022720
    [9] Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad . Exploring the solutions of a financial bubble model via a new fractional derivative. AIMS Mathematics, 2025, 10(4): 8587-8614. doi: 10.3934/math.2025394
    [10] M. Mallika Arjunan, Nabil Mlaiki, V. Kavitha, Thabet Abdeljawad . On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space. AIMS Mathematics, 2023, 8(1): 1384-1409. doi: 10.3934/math.2023070
  • In this paper, composite trapezoidal quadrature for numerical evaluation of hypersingular integrals was first introduced. By Taylor expansion at the singular point y, error functional was obtained. We know that the divergence rate of O(hp),p=1,2, and there were no roots of the special function for the first part in the error functional. Meanwhile, for the second part of the error functional, the divergence rate was O(hp+1),p=1,2, but there were roots of the special function. We proved that the convergence rate could reach O(h2) at superconvergence points far from the end of the interval. Two modified trapezoidal quadratures are presented and their convergence rate can reach O(h2) at certain superconvergence points or any local coordinate point. At last, several examples were presented to test our theorem.



    In recent years, fractional differential equations (FDEs) have garnered substantial attention for their capacity to simulate intricate phenomena in a variety of disciplines, including finance, engineering, biology, and physics. These equations, which generalize classical differential equations to fractional-order derivatives, enable more precise description of heritable properties and memory in a variety of natural and man-made systems. Among these, local fractional differential equations (LFDEs) have emerged as a potent instrument for documenting the dynamical behavior of fractal and disordered domains. Nevertheless, the nonlinearity of these equations and the intricate interaction between fractional derivatives and stochastic components present substantial challenges when dealing with randomness or uncertainty. The individuals who have been gathered will be displayed using software.

    A nonlinear differential equation with extensive applications in control theory, fluid mechanics, population dynamics, and quantum mechanics, the Riccati differential equation is a well-known equation. Fractional Riccati differential equations play an important role in modeling nonlinear systems that occur in physical and engineering applications. Fractional Riccati differential equations play an important role in modeling nonlinear systems that occur in physical and engineering applications. Adomian decomposition method, He's homotopy approximation, variational iteration method, and various numerical methods have been used in solving these equations. Momani and Shawagfeh [1] obtained accurate and convergent results using the decomposition method for solving fractional Riccati differential equations. Merdan [2] investigated solutions to the fractional Riccati differential equation using modified Riemann-Liouville derivatives. Abbasbandy [3] successfully applied the iterated He's homotopy perturbation method to the quadratic Riccati differential equation. He [4] introduced an approximate analytical method for fractional seepage flow, laying the groundwork for later applications. Jafari and Tajadodi [5] utilized the variational iteration method for solving fractional Riccati equations effectively. Khader [6] provided a numerical approach to solve these equations, while Khader, Mahdy, and Mohamed [7] worked on approximate solutions. Additionally, Khader [8] extended the numerical treatment to fractional diffusion equations. Finally, Khaniyev and Merdan [9] analyzed the fractional Riccati equation in detail and proposed further improvements.

    The local fractional Riccati differential equation (LFRDE), its fractional counterpart, provides sophisticated modeling capabilities for systems with fractal-like structures. The applicability of these equations to problems where uncertainty or noise is a critical factor, such as stochastic processes or chaotic systems, is further enhanced by the inclusion of randomness. Nevertheless, the process of obtaining exact or approximate solutions to random local fractional Riccati differential equations (RLFRDEs) is a multifaceted endeavor that necessitates the use of efficient and robust solution techniques.

    The Adomian decomposition method (ADM) [10,11,12,13] and the Elzaki transform method (ETM) are among the numerous methods that have been devised in recent years to solve fractional differential equations. The Elzaki transform technique was designed as a powerful tool for solving differential and integro-differential problems. Elzaki and Ezaki [14] provided a fundamental method for solving integro-differential equations with the Elzaki transform. In the same year, they expanded the method's scope by describing its applicability to higher order ordinary differential equations [15] and variable coefficient differential equations [16]. Mahgob and Elzaki [17,18,19] used the Elzaki transform to solve Volterra type integral equations and partial integro-differential equations using various special functions (e.g., the Bulge function). Bhadane et al. [20] used this approach to solve one-dimensional groundwater recharge issues in hydrogeology and showed that it is useful in engineering. Hilal and Elzaki [21] provided an analytical solution for the telegraph equation by demonstrating that the Elzaki transform is a modified version of the Sumudu transform. Elzaki and Ezaki [22] adapted the Elzaki transform to systems of partial differential equations and shown that the approach is also applicable to system solutions. Ziane and Cherif [23] provided an enhanced version of the approach that solves nonlinear partial differential equations using the Elzaki transform decomposition method. Finally, Shah et al. [24] successfully implemented the Elzaki transform to fractional multidimensional telegraph equations, achieving remarkably accurate results by combining the approach with the Adomian decomposition methodology.

    The ETM offers an efficient framework for systematically transforming and solving differential equations, while the ADM is renowned for its capacity to decompose nonlinear problems into a set of simpler components. The Elzaki-Adomian decomposition method (EADM) is a prospective hybrid technique that capitalizes on the assets of both methods by combining these two approaches. The EADM has not yet been extensively investigated in the context of arbitrary local fractional differential equations, despite its potential.

    This paper presents the EADM [25,26,27,28,29,30] as a novel technique for solving random local fractional Riccati differential equations. The suggested approach adeptly integrates the decomposition features of ADM with the transformation attributes of ETM, offering a robust instrument to tackle the difficulties presented by nonlinearity, unpredictability, and fractional order derivatives. The primary aims of this study are to establish a systematic framework for implementing EADM in RLFRDEs, to showcase its efficacy and precision via illustrative cases, and to evaluate its performance against existing methodologies. This work aims to introduce a novel analytical method for solving the fractional-time Riccati problem through the use of the local derivative. The suggested method employs the Elzaki transform and fractional local derivative in conjunction with Adomian polynomials to get the approximate analytical solution of the fractional time Riccati problem. Three numerical implementations are provided to illustrate the proposed approach for exponential, uniform, and normal random variables, with initial conditions selected from perfectly continuous distributions for the nonlinear Riccati equation. The alteration in the solution due to the fractional parameter is examined by numerical and graphical analyses.

    The subsequent sections of this work are structured as follows: Section 2 provides the mathematical foundation and terminology pertinent to fractional calculus, local fractional derivatives, and stochastic differential equations. Section 3 delineates the Adomian-Elzaki method and its use in RLFRDEs. Section 4 provides numerical examples to substantiate the proposed method and emphasizes its benefits compared to conventional approaches. Section 5 ultimately finishes the report by discussing the research findings and prospective future directions in this field.

    Here, we present some basic definitions of local fractional derivative that are important to our research.

    Definition 2.1. Local fractional derivative of 𝒻(x) of order σ at x=x0,0<σ1:

    𝒻(σ)(x)=dσ𝒻dxσ|x=x0=limxx0Δσ𝒻(x)𝒻(x0)(xx0)σ. (2.1)

    Here, 𝒻(σ)(x)limxx0Г(1+σ)[𝒻(x)𝒻(x0)](xx0)σ.

    The local fractional partial differential operator of order σ is given by Kolwankar and Gangal [31,32],

    σω(x0,t)tσ=limxx0Δσ(ω(x0,t)ω(x0t0))(tt0)σ. (2.2)

    Here, Δσ(U(x0,t)U(x0t0))Г(1+σ)[U(x0,t)U(x0t0)].

    Definition 2.2. Let F(t) be a function that is defined for t greater than 0. The Elzaki transform of F(t) is defined as follows:

    E(F(t))=v0etv𝒻(t)dt. (2.3)

    New transformation operatör [33] LFEσ:𝒻(x)Tσ(v):

    LFEσ{𝒻(x)}=LFEσ{k=0akxkσ}=k=0Г(1+kσ)akvkσ+2σ. (2.4)

    For example,

    𝒻(x)=Eσ(iσxσ),
    LFEσ{Eσ(iσxσ)}=LFEσ{k=0ikσxkσГ(1+kσ)}=k=0Г(1+kσ)ikσГ(1+kσ)vkσ+2σ=k=0ikσvkσ+2σ,

    and if 𝒻(x)=xσГ(1+σ),

    LFEσ{xσГ(1+σ)}=Г(1+σ)1Г(1+σ)vσ+2σ=v3σ.

    Definition.2.3. [33] Local fractional Elzaki transform of the function 𝒻(x) of order σ:

    LFEσ{𝒻(x)}=Tσ(v)=vσГ(1+σ)0Eσ(xσvσ)𝒻(x)(dx)σ,0<σ1. (2.5)

    The inverse transformation may be derived as follows:

    LFE1σ{Tσ(v)}=𝒻(x).

    Teorem 2.1. [33] Elzaki transform of local fractional derivative:

    If LFEσ{𝒻(x)}=Tσ(v),

    LFEσ{Dσ0+𝒻(x)}=1vσTσ(v)vσ𝒻(0),0<σ1, (2.6)

    and

    LFEσ{Dnσ0+𝒻(x)}=1vnσTσ(v)n1k=0v(kn+2)σ𝒻(kσ)(0),0<σ1. (2.7)

    Teorem 2.2. [33] Elzaki transform of local fractional integral

    LFEσ{𝒻(x)}=Tσ(v),

    therefore,

    LFEσ{0Iσx𝒻(x)}=vσTσ(v).

    Teorem 2.3. [34] Local fractional Elzaki transformations of various special functions are presented below:

    ⅰ) 𝒻(x)=1, Eσ(x)=k=0xkσГ(1+kσ),

    LFEσ{1}=Tσ(v)=vσГ(1+σ)0Eσ(xσvσ)1(dx)σ=v2σ. (2.8)

    ⅱ) LFEσ{xσ}=Г(1+σ)v3σ, LFEσ{xσГ(1+σ)}=v3σ,

    LFEσ{xnσ}=Г(1+σ)v2σ+nσ. (2.9)

    ⅲ) 𝒻(x)=Eσ((ax)σ),

    LFEσ{Eσ((ax)σ)}=v2σ1(av)σ. (2.10)

    ⅳ) 𝒻(x)=xσГ(1+σ)Eσ((ax)σ),

    LFEσ{xσГ(1+σ)Eσ((ax)σ)}=v3σ(1(av)σ)2. (2.11)

    This section presents the Elzaki-Adomian decomposition method [35] for the solution of fractional ordinary differential equations and equation systems when the fractional Riccati differential equation is expressed as

    Dαty(t)=p(t)+q(t)y(t)+r(t)y(t)2, (2.12)

    and let y(0)=B be the initial condition, then the solution of the equation is y(t), and DαtCDαt is a Caputo fractional derivative operator with 0<α1. The real-valued functions p(t),q(t), and r(t) are well-known. Using the Elzaki transform in Eq (2.3),

    y(v)=v2y(0)+vαE[p(t)]+vαE[q(t)y(t)]+vαE[r(t)y(t)2] (2.13)

    is obtained. Then, if the inverse Elzaki transform of the expression (13) is taken,

    y(t)=y(0)+E1[vαE[p(t)]]+E1[vαE[q(t)y(t)]]+E1[vαE[r(t)y(t)2]]. (2.14)

    The Adomian decomposition approach posits that the function y may be expressed as an infinite series [36,37].

    y(t)=n=0yn(t)=y0+y1+y2+, (2.15)

    where yn can be defined recursively. This approach also presupposes that the nonlinear operator Ny may be expressed as an infinite polynomial series.

    Ny=n=0An, (2.16)

    where An=An(y0,y1,y2,,yn) is an Adomian polynomial defined,

    An(y0,y1,y2,,yn)=1n!dndλn[N(nk=0λkyk)]λ=0,n=0,1,2,

    where λ is a parameter. The Adomian polynomial An can be defined as follows:

    A0=10!d0dλ0[N(0k=0λkyk)]λ=0=N(y0),
    A1=11!d1dλ1[N(1k=0λkyk)]λ=0=y1N'(y0),
    A2=12!d2dλ2[N(2k=0λkyk)]λ=0=y2N'(y0)+y122!N''(y0).

    If we substitute (2.15) and (2.16) into (2.14),

    n=0yn(t)=y(0)+E1[vαE[p(t)]]+E1[vαE[q(t)n=0yn(t)]]+E1[vαE[n=0An]]. (2.17)

    If the terms of the same order in Eq (2.17) are equated,

    y0=y(0)+E1[vαE[p(t)]],y1=E1[vαE[A0]]+E1[vαE[qy0]],y2=E1[vαE[A1]]+E1[vαE[qy1]],y3=E1[vαE[A2]]+E1[vαE[qy2]], (2.18)

    Consequently, the Elzaki-Adomian decomposition approach yields the recursive relation for the solution of the ordinary differential equation (2.18) as follows:

    y0=y(0)+E1[vαE[p(t)]], (2.19)
    yn+1=E1[vαE[An]]+E1[vαE[qyn]],n=0,1,2,

    Define the Banach space C[0,T] consisting of all continuous functions on the interval [0,T] with a supremum norm. In this part, we examine the functions y(t) and yn(t)C[0,T].

    Theorem 3.1. (Theorem of uniqueness [38,39]) The unique solution for the nonlinear fractional differential Eq (2.12) derived by Elzaki-Adomian is valid for 0<γ<1.

    Proof. The resolution of nonlinear FODEs in Eq (2.12) is delineated as follows:

    y(t)=n=0yn(t), (3.1)
    {n=0;y0=y(0)+E1[vαE[p(t)]],n0;yn+1=E1[vαE[An]]+E1[vαE[qyn]]. (3.2)

    Assuming that y and z are two distinct solutions of Eq (3.2), we may derive the following using the previously described equation:

    |yz|=|E1{[vαE[p(t)+q(t)(yz)+r(t)(y2z2)]]}|. (3.3)

    Utilizing the convolution theory for the Elzaki transform, it is derived as

    |yz|t0(|q(yz)|+|r(y2z2)|)(tτ)βΓ(1+β)dτt0(|q||(yz)|+|r||(yz)(y+z)|)(tτ)βΓ(1+β)dτ. (3.4)

    Subsequently, applying the integral mean-value theorem, it results in

    |yz|(|q||(yz)|+|r||(yz)(Φ+Ω)|)T,
    γ=(|q|+|r||(Φ+Ω)|)T,
    |yz|γ|(yz)|,(1γ)|yz|0.

    Therefore, |yz|=0, as 0<γ<1. Consequently, y=z. This demonstrates the solution's distinctiveness.

    Theorem 3.2. (Convergence teorem [40,41]) Let X be a Banach space and H:XX be a nonlinear mapping. Should the inequality

    H(y)H(z)γyz,y,zX. (3.5)

    If it exists, then H possesses a fixed point according to Banach's fixed point theorem [41]. Moreover, for the arbitrary selection of y0 and y1 in X, the sequence generated by the Elzaki-ADM converges to a fixed point of H.

    ymynγn1γy1y0,Ψ,ΦX. (3.6)

    Proof. Consider a Banach space (C[J],.) comprising all continuous functions on J, with the norm defined as h(ξ)=maxξJ|h(ξ)|.

    We now illustrate that the sequence {yn} constitutes a Cauchy sequence within the Banach space:

    ymyn=maxξJ|ymyn|=maxξJ|E1{[vαE[p(t)+q(t)(ym1yn1)+r(t)(y2m1y2n1)]]}|maxξJ[E1{[vαE[p(t)+q(t)|ym1yn1|+r(t)|y2m1y2n1|]]}].

    Currently, the convolution theorem for Laplace transform is employed to provide the following:

    ymynmaxξJ[ξ0[p(t)+q(τ)|ym1yn1|+r(τ)|y2m1y2n1|](tτ)βΓ(1+β)dτ]maxξJ[ξ0(p(t)+q(τ)|ym1yn1|+r(τ)|(ym1yn1)(Φ+Ω)|)(tτ)βΓ(1+β)dτ].

    Next, we obtain the result by employing the integral mean value theorem [41].

    ymynmaxξJ[(p+q|ym1yn1|+r|(ym1yn1)(Φ+Ω)|)T],
    ymynγym1yn1.

    Let m=n+1, then we have

    yn+1ynγynyn1γ2yn1yn2γny1y0.

    Utilizing the triangular inequality, it generates the following:

    ymynyn+1yn+yn+2yn+1++ymym1[γn+γn+1++γm1]y1y0γn[1+γ+γ2++γmn1]y1y0γn[1γmn11γ]y1y0.

    Because γ(0,1), so 1γmn1<1, then we have

    ymynγn1γy1y0.

    Although y1y0<, as m approaches infinity, ymyn approaches zero.

    Consequently, the sequence {yn} is a Cauchy sequence in C[J] and is therefore convergent.

    Example 1.

    CDαty(t)=y2(t)+1,0<α1,y(0)=B, (3.7)
    B U(ξ=2,η=4),

    in this context, where B denotes a random variable with a uniform distribution, solve the local fractional order Riccati differential equation given the initial condition using the Elzaki-Adomian decomposition method and examine the probabilistic characteristics.

    Solution:

    Once the Elzaki-Adomian decomposition method was used on Eq (3.7), the following results were obtained:

    y0=y(0)+E1[vαE[1]],yn+1=E1[vαE[An]],
    y0=B+E1[vαv2]=B+E1[vα+2]=B+tαГ(α+1).

    For n=0,

    y1=E1[vαE[A0]],
    A0=N(y0)=y02=B2+2BtαГ(α+1)+t2αГ2(α+1),
    y1=E1[vαE[B2+2BtαГ(α+1)+t2αГ2(α+1)]]=E1[vα{B2v2+2Bvα+2+1Г2(α+1)Г(2α+1)v2α+2}]=E1[B2vα+2+2Bv2α+2+v3α+2Г(2α+1)Г2(α+1)]=B2tαГ(α+1)2Bt2αГ(2α+1)Г(2α+1)Г2(α+1)Г(3α+1)t3α.

    For n=1,

    y2=E1[vαE[A1]],
    A1=y1N'(y0)=2y0y1=2(B+tαГ(α+1))(B2tαГ(α+1)2Bt2αГ(2α+1)Г(2α+1)Г2(α+1)Г(3α+1)t3α)=2B3tαГ(α+1)4B2t2αГ(2α+1)2BГ(2α+1)t3αГ2(α+1)Г(3α+1)2B2t2αГ(α+1)24Bt3αГ(2α+1)Г(α+1)2Г(2α+1)t4αГ2(α+1)Г(3α+1)Г(α+1),
    y2=E1[vαE[2B3tαГ(α+1)4B2t2αГ(2α+1)2BГ(2α+1)t3αГ2(α+1)Г(3α+1)2B2t2αГ(α+1)24Bt3αГ(2α+1)Г(α+1)2Г(2α+1)t4αГ2(α+1)Г(3α+1)Г(α+1)]]=E1[2B3Г(α+1)v2α+2Г(α+1)4B2Г(2α+1)v3α+2Г(2α+1)2BГ(2α+1)Г(3α+1)v4α+2Г2(α+1)Г(3α+1)2B2Г(2α+1)v3α+2Г(α+1)24BГ(3α+1)v4α+2Г(2α+1)Г(α+1)2Г(2α+1)Г(4α+1)v5α+2Г2(α+1)Г(3α+1)Г(α+1)]=E1[2B3v2α+24B2v3α+22BГ(2α+1))v4α+2Г2(α+1)2B2Г(2α+1)v3α+2Г(α+1)24BГ(3α+1)v4α+2Г(2α+1)Г(α+1)2Г(2α+1)Г(4α+1)v5α+2Г2(α+1)Г(3α+1)Г(α+1)]=2B3t2αГ(2α+1)+4B2t3αГ(3α+1)+2BГ(2α+1))t4αГ2(α+1)Г(4α+1)+2B2Г(2α+1)t3αГ(α+1)2Г(3α+1)+4BГ(3α+1)t4αГ(2α+1)Г(α+1)Г(4α+1)+2Г(2α+1)Г(4α+1)t5αГ2(α+1)Г(5α+1)Г(3α+1)Г(α+1),
    y(t)=y0+y1+y2+=B+tαГ(α+1)B2tαГ(α+1)2Bt2αГ(2α+1)Г(2α+1)Г2(α+1)Г(3α+1)t3α+2B3t2αГ(2α+1)+4B2t3αГ(3α+1)+2BГ(2α+1))t4αГ2(α+1)Г(4α+1)+2B2Г(2α+1)t3αГ(α+1)2Г(3α+1)+4BГ(3α+1)t4αГ(2α+1)Г(α+1)Г(4α+1)+2Г(2α+1)Г(4α+1)t5αГ2(α+1)Г(5α+1)Г(3α+1)Г(α+1)+

    A solution is achieved. In particular, the absolute error diagrams and the comparison of the exact solution with the Elzaki-Adomian solution for B=0 and α=1 are provided below.

    The characteristics of the random variable X follow a uniform distribution, denoted as X U(ξ,η). Employing the moment generating function of the uniform distribution

    MX(t)=E[etX]=eηteξt(ηξ)t,

    the first moment and variance of the random variable B U(ξ,η) are

    E[B]=ξ+η2,E[B2]=ξ2+ξη+η23,E[B3]=ξ3+ξ2η+ξη2+η34,
    Var[B]=(ξη)212,Var[B2]=(4ξ4ξ3η6ξ2η2ξη3+4η4)45,
    Var[B3]=9ξ6+2ξ5η5ξ4η212ξ3η35ξ2η4+2ξη5+9η6112

    is found [42,43]. Let us find the expected value and variance of the expression (3.8).

    E(y(t))=E(B)+tαГ(α+1)E(B2)tαГ(α+1)2E(B)t2αГ(2α+1)Г(2α+1)Г2(α+1)Г(3α+1)t3α+2E(B3)t2αГ(2α+1)+4E(B2)t3αГ(3α+1)+2E(B)Г(2α+1))t4αГ2(α+1)Г(4α+1)+2E(B2)Г(2α+1)t3αГ(α+1)2Г(3α+1)+4E(B)Г(3α+1)t4αГ(2α+1)Г(α+1)Г(4α+1)+2Г(2α+1)Г(4α+1)t5αГ2(α+1)Г(5α+1)Г(3α+1)Г(α+1)+
    =(ξ+η2)+tαГ(α+1)(ξ2+ξη+η23)tαГ(α+1)2(ξ+η2)t2αГ(2α+1)Г(2α+1)Г2(α+1)Г(3α+1)t3α+2(ξ3+ξ2η+ξη2+η34)t2αГ(2α+1)+4(ξ2+ξη+η23)t3αГ(3α+1)+2(ξ+η2)Г(2α+1))t4αГ2(α+1)Г(4α+1)+2(ξ2+ξη+η23)Г(2α+1)t3αГ(α+1)2Г(3α+1)+4(ξ+η2)Г(3α+1)t4αГ(2α+1)Г(α+1)Г(4α+1)+2Г(2α+1)Г(4α+1)t5αГ2(α+1)Г(5α+1)Г(3α+1)Г(α+1)+

    Expected value for special values ξ=2 and η=4,

    E(y(t))=3+tαГ(α+1)28tα3Г(α+1)6t2αГ(2α+1)Г(2α+1)t3αГ2(α+1)Г(3α+1)+60t2αГ(2α+1)+112t3α3Г(3α+1)+6Г(2α+1))t4αГ2(α+1)Г(4α+1)+56Г(2α+1)t3α3Г(α+1)2Г(3α+1)+12Г(3α+1)t4αГ(2α+1)Г(α+1)Г(4α+1)+2Г(2α+1)Г(4α+1)t5αГ2(α+1)Г(5α+1)Г(3α+1)Г(α+1)+
    Var(y(t))=Var(B)+Var(B2)t2αГ(α+1)2+4Var(B)t4αГ(2α+1)2+4Var(B3)t4αГ(2α+1)2+16Var(B2)t6αГ(3α+1)2+4Var(B)Г(2α+1)2t8αГ4(α+1)Г(4α+1)2+2Var(B2)Г(2α+1)2t6αГ(α+1)4Г(3α+1)2+16Var(B)Г(3α+1)2t8αГ(2α+1)2Г(α+1)2Г(4α+1)2=((ξη)212)+((4ξ4ξ3η6ξ2η2ξη3+4η4)45)t2αГ(α+1)2+4((ξη)212)t4αГ(2α+1)2+4(9ξ6+2ξ5η5ξ4η212ξ3η35ξ2η4+2ξη5+9η6112)t4αГ(2α+1)2+16((4ξ4ξ3η6ξ2η2ξη3+4η4)45)t6αГ(3α+1)2+4((ξη)212)Г(2α+1)2t8αГ4(α+1)Г(4α+1)2+2((4ξ4ξ3η6ξ2η2ξη3+4η4)45)Г(2α+1)2t6αГ(α+1)4Г(3α+1)2+16((ξη)212)Г(3α+1)2t8αГ(2α+1)2Г(α+1)2Г(4α+1)2.

    For special values of ξ=2andη=4, the variance is

    Var(y(t))=13+12.0889t2αГ(α+1)2+43t4αГ(2α+1)2+1044.6t4αГ(2α+1)2+193.4222t6αГ(3α+1)2+43Г(2α+1)2t8αГ4(α+1)Г(4α+1)2+24.1778Г(2α+1)2t6αГ(α+1)4Г(3α+1)2+163Г(3α+1)2t8αГ(2α+1)2Г(α+1)2Г(4α+1)2.

    Example 2.

    CDαty(t)=y(t)y2(t),0<α1,y(0)=B, (3.9)
    B Exp(λ=3).

    In this context, where B denotes a random variable with an exponential distribution, solve the local fractional order Riccati differential equation given the initial condition by utilizing the Elzaki-Adomian decomposition method and examine the probabilistic features.

    Solution:

    Should the Elzaki-Adomian decomposition technique be employed on Eq (3.9),

    y0=y(0)+E1[vαE[0]],yn+1=E1[vαE[An]],
    y0=B+E1[vα0]=B+0=B.

    For n=0,

    y1=E1[vαE[A0]],
    A0=N(y0)=y02=B2,
    y1=E1[vαE[B2]]=E1[vα+2B2]=B2E1[vα+2]=B2tαГ(α+1),
    A1=y1N'(y0)=2y0y1=2(B)(B2tαГ(α+1))=2B3tαГ(α+1).

    For n=1,

    y2=E1[vαE[A1]]=E1[vαE[2B3tαГ(α+1)]]=E1[vα(2B3Г(α+1)Г(α+1)vα+2)]=E1[2B3v2α+2]=2B3t2αГ(2α+1),
    A2=y2N'(y0)+y122!N''(y0)=2y0y2+y21
    =4B4t2αГ(2α+1)+B4t2αГ(α+1)2.

    For n=2,

    y3=E1[vαE[A2]]=E1[vαE[4B4t2αГ(2α+1)+B4t2αГ(α+1)2]]=E1[vα(4B4Г(2α+1)v2α+2Г(2α+1)+B4Г(2α+1)v2α+2Г(α+1)2)]=E1[(4B4v3α+2+B4Г(2α+1)v3α+2Г(α+1)2)]=4B4t3αГ(3α+1)B4Г(2α+1)t3αГ(α+1)2Г(3α+1),
    y(t)=y0+y1+y2+y3+=BB2Г(α+1)tα+2B3Г(2α+1)t2α(4B4Г(3α+1)+B4Г(2α+1)Г(α+1)2Г(3α+1))t3α+, (3.10)

    solution is obtained.X Exp(λ) is a random variable with exponential distribution, the moment generating function [42,43].

    MX(t)=E[etX]=λλt.

    The expected value and variance of the random variable B Exp(λ),

    E[B]=1λ,E[B2]=2λ2,E[B3]=6λ3,E[B4]=24λ4,
    E[B5]=120λ5,E[B6]=720λ6,E[B7]=7!λ7,E[B8]=8!λ8,

    were obtained with the help of the moment generating function.

    From the equation Var(X)=E(X2)[E(X)]2,

    Var[B]=1λ2,Var[B2]=20λ4,Var[B3]=684λ6,Var[B4]=39744λ8

    is found [42,43]. Let us find the expected value and variance of the expression (3.10).

    E(y(t))=E(B)E(B2)Г(α+1)tα+2E(B3)Г(2α+1)t2α(4Г(3α+1)+Г(2α+1)Г(α+1)2Г(3α+1))E(B4)t3α+=1λ2λ2Г(α+1)tα+12λ3Г(2α+1)t2α(4Г(3α+1)+Г(2α+1)Г(α+1)2Г(3α+1))24λ4t3α+

    The expected value for the special value λ=3 is

    E(y(t))=13232Г(α+1)tα+1233Г(2α+1)t2α(4Г(3α+1)+Г(2α+1)Г(α+1)2Г(3α+1))2434t3α+
    Var(y(t))=Var(B)+(tαГ(α+1))2Var(B2)+(2t2αГ(2α+1))2Var(B3)+(4Г(3α+1)+Г(2α+1)Г(α+1)2Г(3α+1))2t6αVar(B4)=1λ2+(tαГ(α+1))220λ4+(2t2αГ(2α+1))2684λ6+(4Г(3α+1)+Г(2α+1)Г(α+1)2Г(3α+1))239744λ8t6α.

    For the special value λ=3, the variance is

    Var(y(t))=132+(tαГ(α+1))22034+(2t2αГ(2α+1))268436+(4Г(3α+1)+Г(2α+1)Г(α+1)2Г(3α+1))23974438t6α.

    Example 3.

    CDαty(t)=y2(t)+2y(t)+1,0<α1,y(0)=C, (3.11)
    C N(μ=5,σ2=1).

    In this context, where C is a random variable following a normal distribution, solve the local fractional order Riccati differential equation given the initial condition by utilizing the Elzaki-Adomian decomposition method and examine the probabilistic characteristics.

    Solution:

    The Elzaki-Adomian decomposition method is used to Eq (3.11).

    y0=y(0)+E1[vαE[1]],
    yn+1=E1[vαE[An]]+E1[vαE[qyn]],n=0,1,2,
    y0=C+E1[vαv2]=B+E1[vα+2]=C+tαГ(α+1).

    For n=0,

    y1=E1[vαE[A0]]+E1[vαE[y0]],
    A0=N(y0)=y02=C2+2CtαГ(α+1)+t2αГ2(α+1),
    y1=E1[vαE[C2+2CtαГ(α+1)+t2αГ2(α+1)]]+E1[vαE[C+tαГ(α+1)]]=E1[vα{C2v2+2Cvα+2+1Г2(α+1)Г(2α+1)v2α+2}]+E1[vα{Cv2+vα+2}]=E1[C2vα+2+2Cv2α+2+v3α+2Г(2α+1)Г2(α+1)]+E1[Cv2+α+v2α+2]=C2tαГ(α+1)+2Ct2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α+CtαГ(α+1)+t2αГ(2α+1).

    For n=1,

    y2=E1[vαE[A1]]+E1[vαE[y1]],
    A1=y1N'(y0)=2y0y1=2(C+tαГ(α+1))((C2+C)tαГ(α+1)+(2C+1)t2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α)=2((C3+C2)tαГ(α+1)+(2C2+CГ(2α+1)+C2+CГ(α+1)2)t2α+(CГ(2α+1)Г2(α+1)Г(3α+1)+(2C+1)Г(2α+1)Г(α+1))t3α+Г(2α+1)t4αГ3(α+1)Г(3α+1)),
    y2=E1[vαE[2((C3+C2)tαГ(α+1)+(2C2+CГ(2α+1)+C2+CГ(α+1)2)t2α+(CГ(2α+1)Г2(α+1)Г(3α+1)+(2C+1)Г(2α+1)Г(α+1))t3α+Г(2α+1)t4αГ3(α+1)Г(3α+1))]]
    +E1[vαE[(C2+C)tαГ(α+1)+(2C+1)t2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α]]
    =2E1[(C3+C2)Г(α+1)v2α+2Г(α+1)+(2C2+CГ(2α+1)+C2+CГ(α+1)2)Г(2α+1)v3α+2+(CГ(2α+1)Г2(α+1)Г(3α+1)+(2C+1)Г(2α+1)Г(α+1))Г(3α+1)v4α+2+2Г(2α+1)Г(4α+1)v5α+2Г3(α+1)Г(3α+1)]
    +E1[(C2+C)v2α+2+(2C+1)v3α+2+Г(2α+1)v4α+2Г2(α+1)],
    =(2C3+2C2)t2αГ(2α+1)+(4C2+2CГ(2α+1)+2C2+2CГ(α+1)2)Г(2α+1)t3αГ(3α+1)
    +(2CГ(2α+1)Г2(α+1)Г(3α+1)+(4C+2)Г(2α+1)Г(α+1))Г(3α+1))t4αГ(4α+1)
    +4Г(2α+1)Г(4α+1)t5αГ3(α+1)Г(5α+1)Г(3α+1)
    +(C2+C)t2αГ(2α+1)+(2C+1)t3αГ(3α+1)+Г(2α+1)t4αГ2(α+1)Г(4α+1),
    y(t)=y0+y1+y2+=C+tαГ(α+1)+(C2+C)tαГ(α+1)+(2C+1)t2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α+(2C3+2C2)t2αГ(2α+1)+(4C2+2CГ(2α+1)+2C2+2CГ(α+1)2)Г(2α+1)t3αГ(3α+1)+(2CГ(2α+1)Г2(α+1)Г(3α+1)+(4C+2)Г(2α+1)Г(α+1))Г(3α+1))t4αГ(4α+1)+4Г(2α+1)Г(4α+1)t5αГ3(α+1)Г(5α+1)Г(3α+1)+(C2+C)t2αГ(2α+1)+(2C+1)t3αГ(3α+1)+Г(2α+1)t4αГ2(α+1)Г(4α+1)+ (3.12)

    The characteristics of the random variable X follow a normal distribution, denoted as X N(μ,σ2). Utilizing the moment generating function of the normal distribution

    Mx(t)=E[etX]=e(μt+12σ2t2).

    The first and second moments of the random variable C N(μ,σ2) are E[C]=μ,

    E[C2]=μ2+σ2,E[C3]=3σ2μ+μ3,E[C4]=3σ4+6σ2μ2+μ4,

    and its variance,

    Var[C]=σ2, Var[C2]=2σ4+4σ2μ2, Var[C3]=15σ6+36σ4μ2+9σ2μ44

    is found [42,43]. Let us find the expected value and variance of the expression (3.12).

    E(y(t))=E(C)+tαГ(α+1)+(E(C2)+E(C))tαГ(α+1)+(2E(C)+1)t2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α+(2E(C3)+2E(C2))t2αГ(2α+1)+(4E(C2)+2E(C)Г(2α+1)+2E(C2)+2E(C)Г(α+1)2)Г(2α+1)t3αГ(3α+1)+(2E(C)Г(2α+1)Г2(α+1)Г(3α+1)+(4E(C)+2)Г(2α+1)Г(α+1))Г(3α+1))t4αГ(4α+1)+4Г(2α+1)Г(4α+1)t5αГ3(α+1)Г(5α+1)Г(3α+1)+(E(C2)+E(C))t2αГ(2α+1)+(2E(C)+1)t3αГ(3α+1)+Г(2α+1)t4αГ2(α+1)Г(4α+1)+=μ+tαГ(α+1)+(μ2+σ2+μ)tαГ(α+1)+(2μ+1)t2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α+(2(3σ2μ+μ3)+2(μ2+σ2))t2αГ(2α+1)+(4(μ2+σ2)+2μГ(2α+1)+2(μ2+σ2)+2μГ(α+1)2)Г(2α+1)t3αГ(3α+1)+(2μГ(2α+1)Г2(α+1)Г(3α+1)+(4μ+2)Г(2α+1)Г(α+1))Г(3α+1))t4αГ(4α+1)+4Г(2α+1)Г(4α+1)t5αГ3(α+1)Г(5α+1)Г(3α+1)+(μ2+σ2+μ)t2αГ(2α+1)+(2μ+1)t3αГ(3α+1)+Г(2α+1)t4αГ2(α+1)Г(4α+1)+

    For special values of μ=5,σ2=1, the expected value is

    E(y(t))=5+tαГ(α+1)+31tαГ(α+1)+11t2αГ(2α+1)+Г(2α+1)Г2(α+1)Г(3α+1)t3α+332t2αГ(2α+1)+(114Г(2α+1)+62Г(α+1)2)Г(2α+1)t3αГ(3α+1)+(10Г(2α+1)Г2(α+1)Г(3α+1)+22Г(2α+1)Г(α+1))Г(3α+1))t4αГ(4α+1)+4Г(2α+1)Г(4α+1)t5αГ3(α+1)Г(5α+1)Г(3α+1)+31t2αГ(2α+1)+11t3αГ(3α+1)+Г(2α+1)t4αГ2(α+1)Г(4α+1).
    Var(y(t))=Var(C)+(tαГ(α+1))2(Var(C2)+Var(C))+(2t2αГ(2α+1))2Var(C)+(2t2αГ(2α+1))2(Var(C3)+Var(C2))+(16Var(C2)+4Var(C)Г(2α+1)2+4Var(C2)+4Var(C)Г(α+1)4)(Г(2α+1)t3αГ(3α+1))2+((2Г(2α+1)Г2(α+1)Г(3α+1))2Var(C)+16Var(C)Г(2α+1)2Г(α+1)2)(Г(3α+1))t4αГ(4α+1))2+(t2αГ(2α+1))2(Var(C2)+Var(C))+(2t3αГ(3α+1))2
    Var(C)=σ2+(tαГ(α+1))2(2σ4+4σ2μ2+σ2)+(2t2αГ(2α+1))2σ2+(2t2αГ(2α+1))2(15σ6+36σ4μ2+9σ2μ4+2σ4+4σ2μ2)+(16(2σ4+4σ2μ2)+4σ2Г(2α+1)2+4(2σ4+4σ2μ2)+4σ2Г(α+1)4)(Г(2α+1)t3αГ(3α+1))2+((2Г(2α+1)Г2(α+1)Г(3α+1))2σ2+16σ2Г(2α+1)2Г(α+1)2)(Г(3α+1))t4αГ(4α+1))2+(t2αГ(2α+1))2(2σ4+4σ2μ2+σ2)+(2t3αГ(3α+1))2σ2.

    For special values of μ=5,σ2=1, the variance is

    Var(y(t))=1+(tαГ(α+1))2103+(2t2αГ(2α+1))2+(2t2αГ(2α+1))26642+(1636Г(2α+1)2+412Г(α+1)4)(Г(2α+1)t3αГ(3α+1))2+((2Г(2α+1)Г2(α+1)Г(3α+1))2+16Г(2α+1)2Г(α+1)2)(Г(3α+1))t4αГ(4α+1))2+(t2αГ(2α+1))2103+(2t3αГ(3α+1))2.

    In Example 1, the graphs of the Elzaki-Adomian method, the precise answer, and the absolute error are illustrated in Figure 1. Figure 2 illustrates the binned expected value through 2D graphical representations within the interval α=0.7,0.8,0.9, with 1 and t[0,4]. Figure 3 depicts consistently organized variance using 2D graphical representations throughout the interval α=0.7,0.8,0.9, with 1 and t[0,4].

    Figure 1.  (a) Elzaki-Adomian; (b) Exact solution; (c) Absolute error |ytamyEA| for α=1.
    Figure 2.  Solution behaviors of the expected value of y(t) for α=1,0.9,0.8, and 0.7.
    Figure 3.  illustrates the solution behaviors of the variance of y(t) for α=1,0.9,0.8, and 0.7.

    Figure 4 illustrates 2D graphs of confidence intervals for the lower confidence area, expected value, and higher confidence region for the intervals α=0.7,0.8,and0.9 with 1 and t[0,4]. In Example 2, the anticipated value depicted in Figure 5 is illustrated by 2D graphical plots within the interval α=0.7,0.8,0.9 for 1 and t[0,4].

    Figure 4.  Solution behaviors of confidence intervals of y(t) for α=1,0.9,0.8, and 0.7.
    Figure 5.  Solution behaviors of the expected value of y(t) for α=1,0.9,0.8, and 0.7.

    Figure 6 illustrates the two-dimensional graphs of the systematically organized variance for α values of 0.7,0.8,0.9, and 1 with t ranging from 0 to 4. Figure 7 illustrates the two-dimensional graphs of the confidence intervals for the lower confidence bound, the anticipated value, and the upper confidence area for the intervals α=0.7,0.8,0.9, and 1, with t[0,4] in Example 3. Figure 8 illustrates the two-dimensional graphs of the systematically organized variance for α values of 0.7,0.8,0.9, and 1, across the interval t[0,4].

    Figure 6.  Variance solution behaviors of y(t) for α values of 1, 0.9, 0.8, and 0.7.
    Figure 7.  Behavior of confidence intervals for y(t) at α=1,0.9,0.8, and 0.7.
    Figure 8.  Solution behaviors of the expected value of y(t) for α=1,0.9,0.8, and 0.7.

    Figure 9 illustrates the two-dimensional graphs of the systematically organized variance for α values of 0.7,0.8,0.9, and 1, across the interval t[0,4]. Figure 10 illustrates two-dimensional plots of confidence intervals for the lower confidence, expected value, and higher confidence regions for the intervals α=0.7,0.8,0.9, and 1, with t[0,4].

    Figure 9.  Variance of y(t) solution behaviors for α=1,0.9,0.8, and 0.7.
    Figure 10.  Solution behaviors of confidence intervals of y(t) for α=1,0.9,0.8, and 0.7.

    In Example 1, the graphs of the Elzaki-Adomian method, the precise answer, and the absolute error are illustrated in Figure 1. The binned anticipated value in Figure 2 is depicted using a two-dimensional graphic. This study presents the Adomian-Elzaki method (AEM) as a novel hybrid approach for addressing random local fractional Riccati differential equations (RLFRDEs). The suggested technique effectively tackled the issues of nonlinearity, unpredictability, and fractional-order derivatives by integrating the strengths of the Adomian decomposition method (ADM) and the Elzaki transform method (ETM). The theoretical framework and numerical findings indicated that AEM is efficient and dependable in solving RLFRDEs, yielding precise approximations with low computing effort. AEM has several benefits over current methodologies, such as ease of implementation, accelerated convergence, and proficiency in managing nonlinearity and unpredictability. These attributes render it a viable contender for extensive applications in engineering, physics, and other fields where fractional modeling is significant.

    Future study may concentrate on expanding AEM to encompass systems of stochastic fractional differential equations, investigating its relevance to practical issues in engineering and the physical sciences. Moreover, the integration of AEM with machine learning methodologies or sophisticated computational instruments might enhance its scalability and efficiency, rendering it a more adaptable approach for addressing progressively intricate challenges.

    In summary, the Adomian-Elzaki Method is a notable advancement in the numerical resolution of stochastic local fractional differential equations. Its capacity to tackle complex issues with precision and computing efficiency facilitates its use across several scientific and technical domains.

    Ph.D. Aydemir contributed to the article in the areas of Conceptualization, Formal Analysis, Methodology, Software; Ph.D. Merdan contributed to the article in the areas of Funding acquisition, Investigation, Supervision, Validation, Writing–review & editing; Ph.D. Demir contributed to the article in the areas of Resources, Visualization, Writing–original draft. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that they have no conflicts of interest.



    [1] L. C. Andrews, Special functions of mathematics for engineers, 2 Eds., New York: McGraw-Hill Inc, 1992.
    [2] U. J. Choi, S. W. Kim, B. I. Yun, Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals, Int. J. Numer. Meth. Eng., 61 (2004), 496–513. http://dx.doi.org/10.1002/nme.1077 doi: 10.1002/nme.1077
    [3] K. Diethdm, Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation, Approx. Theory & its Appl., 11 (1995), 78–89. http://dx.doi.org/10.1007/BF02836832 doi: 10.1007/BF02836832
    [4] Q. K. Du, Evaluations of certain hypersingular integrals on interval, Int. J. Numer. Meth. Eng., 51 (2001), 1195–1210. http://dx.doi.org/10.1002/nme.218 doi: 10.1002/nme.218
    [5] D. Elliott, E. Venturino, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals, Numer. Math., 77 (1997), 453–465. http://dx.doi.org/10.1007/s002110050295 doi: 10.1007/s002110050295
    [6] J. Huang, Z. Wang, R. Zhu, Asymptotic error expansions for hypersingular integrals, Adv. Comput. Math., 38 (2013), 257–279. http://dx.doi.org/10.1007/s10444-011-9236-x doi: 10.1007/s10444-011-9236-x
    [7] T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative, J. Comput. Appl. Math., 163 (2004), 127–138. http://dx.doi.org/10.1016/J.CAM.2003.08.059 doi: 10.1016/J.CAM.2003.08.059
    [8] C. Y. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature, Int. J. Numer. Meth. Eng., 44 (1999), 205–214. https://dx.doi.org/10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8 doi: 10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8
    [9] N. I. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math. Comp., 44 (1985), 191–198. http://dx.doi.org/10.2307/2007802 doi: 10.2307/2007802
    [10] J. Li, J. M. Wu, D. H. Yu, Generalized extrapolation for computation of hypersingular integrals in boundary element methods, CMES-Comp. Model. Eng., 42 (2009), 151–176. https://dx.doi.org/10.3970/cmes.2009.042.151 doi: 10.3970/cmes.2009.042.151
    [11] J. Li, D. H. Yu, The superconvergence of certain two-dimensional Cauchy principal value integrals, CMES-Comp. Model. Eng., 71 (2011), 331–346. http://dx.doi.org/10.3970/cmes.2011.071.331 doi: 10.3970/cmes.2011.071.331
    [12] J. Li, D. H. Yu, The superconvergence of certain two-dimensional Hilbert singular integrals, CMES-Comp. Model. Eng., 82 (2011), 233–252. http://dx.doi.org/10.32604/cmes.2011.082.233 doi: 10.32604/cmes.2011.082.233
    [13] J. Li, D. H. Yu, The erroe estimate of Newton-Cotes methods to compute hypersingular integral, Mathematica Numerica Sinica, 33 (2011), 77–86. http://dx.doi.org/10.12286/jssx.2011.1.77 doi: 10.12286/jssx.2011.1.77
    [14] J. Li, X. P. Zhang, D. H. Yu, Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals, J. Comput. Appl. Math., 233 (2010), 2841–2854. http://dx.doi.org/10.1016/j.cam.2009.11.029 doi: 10.1016/j.cam.2009.11.029
    [15] J. Li, D. H. Yu, Error expansion of classical trapezoidal rule for computing Cauchy principal value integral, CMES-Comp. Model. Eng., 93 (2013), 47–67. http://dx.doi.org/10.3970/cmes.2013.093.047 doi: 10.3970/cmes.2013.093.047
    [16] J. Li, H. X. Rui, D. H. Yu, Trapezoidal rule for computing supersingular integral on a circle, J. Sci. Comput., 66 (2016), 740–760. http://dx.doi.org/10.1007/s10915-015-0042-3 doi: 10.1007/s10915-015-0042-3
    [17] J. Li, X. P. Zhang, D. H. Yu, Extrapolation methods to compute hypersingular integral in boundary element methods, Sci. China Math., 56 (2013), 1647–1660. http://dx.doi.org/10.1007/s11425-013-4593-1 doi: 10.1007/s11425-013-4593-1
    [18] J. Li, J. E. Yang, D. H. Yu, Error expansion of mid-rectangle rule for computation Cauchy Principal Value integral on interval, Int. J. Comput. Math., 91 (2014), 2294–2306. http://dx.doi.org/10.1080/00207160.2013.873123 doi: 10.1080/00207160.2013.873123
    [19] P. Linz, On the approximate computation of certain strongly singular integrals, Computing, 35 (1985), 345–353. http://dx.doi.org/10.1007/BF02240199 doi: 10.1007/BF02240199
    [20] T. Lv, Extrapolation for hypersingular integrals, Scientia Sinica Mathematica, 45 (2015), 1345–1360. http://dx.doi.org/10.1360/N012014-00210 doi: 10.1360/N012014-00210
    [21] P. Kim, U. J. Choi, Two trigonometric quadrature formulae for evaluating hypersingular integrals, Int. J. Numer. Meth. Eng., 56 (2003), 469–486. http://dx.doi.org/10.1002/nme.582 doi: 10.1002/nme.582
    [22] H. R. Kutt, The numerical evaluation of principal value integrals by finite-part integration, Numer. Math., 24 (1975), 205–210. http://dx.doi.org/10.1007/BF01436592 doi: 10.1007/BF01436592
    [23] J. M. Wu, Y. X. Wang, W. Li, W. W. Sun, Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems, Appl. Numer. Math., 58 (2008), 101–121. http://dx.doi.org/10.1016/j.apnum.2006.11.003 doi: 10.1016/j.apnum.2006.11.003
    [24] J. M. Wu, W. W. Sun, The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals, Numer. Math., 102 (2005), 343–363. http://dx.doi.org/10.1007/s00211-005-0647-9 doi: 10.1007/s00211-005-0647-9
    [25] J. M. Wu, W. W. Sun, The superconvergence of Newton-Cotes rules for the Hadamard finite-part integral on an interval, Numer. Math., 109 (2008), 143–165. http://dx.doi.org/10.1007/s00211-007-0125-7 doi: 10.1007/s00211-007-0125-7
    [26] D. H. Yu, Natural boundary integrals method and its applications, Dordrecht: Springer, 2002
    [27] D. H. Yu, The approximate computation of hypersingular integrals on interval, Numerical Mathematics: A Journal of Chinese Universities (English Series), 1 (1992), 114–127.
    [28] X. P. Zhang, J. M. Wu, D. H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87 (2010), 855–876. http://dx.doi.org/10.1080/00207160802226517 doi: 10.1080/00207160802226517
  • This article has been cited by:

    1. J. K. Liu, B. Tang, N. Zhang, J. Xiong, P. T. Gao, X. L. Dong, A subspace derivative-free projection method for convex constrained nonlinear equations, 2024, 0916-7005, 10.1007/s13160-024-00675-1
    2. Jinkui Liu, Ning Zhang, Bing Tang, An inertia projection method for nonlinear pseudo-monotone equations with convex constraints, 2024, 1017-1398, 10.1007/s11075-024-01934-5
    3. Yong Zhao, Mengjiao Niu, Jinkui Liu, A three-term subspace projection method for solving systems of nonlinear monotone equations, 2024, 0, 1547-5816, 0, 10.3934/jimo.2024156
    4. Xueyong Wang, Gang Wang, Ping Yang, Novel Pareto Z-eigenvalue inclusion intervals for tensor eigenvalue complementarity problems and its applications, 2024, 9, 2473-6988, 30214, 10.3934/math.20241459
    5. Zihang Yuan, Hu Shao, Xiaping Zeng, Pengjie Liu, Xianglin Rong, Jianhao Zhou, An improved Dai‐Liao‐style hybrid conjugate gradient‐based method for solving unconstrained nonconvex optimization and extension to constrained nonlinear monotone equations, 2024, 0170-4214, 10.1002/mma.10396
    6. J.K. Liu, B. Tang, T. Liu, Z.T. Yang, S. Liang, An accelerated double-step derivative-free projection method based algorithm using Picard–Mann iterative process for solving convex constrained nonlinear equations, 2025, 464, 03770427, 116541, 10.1016/j.cam.2025.116541
    7. J. K. Liu, N. Zhang, B. Tang, J. Xiong, Y. M. Feng, An accelerated derivative-free method for solving large-scale nonlinear non-monotone equations, 2025, 0233-1934, 1, 10.1080/02331934.2025.2473426
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(657) PDF downloads(55) Cited by(0)

Figures and Tables

Tables(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog