
Here, we provide a new method to solve the time-fractional diffusion equation (TFDE) following the spectral tau approach. Our proposed numerical solution is expressed in terms of a double Lucas expansion. The discretization of the technique is based on several formulas about Lucas polynomials, such as those for explicit integer and fractional derivatives, products, and certain definite integrals of these polynomials. These formulas aid in transforming the TFDE and its conditions into a matrix system that can be treated through a suitable numerical procedure. We conduct a study on the convergence analysis of the double Lucas expansion. In addition, we provide a few examples to ensure that the proposed numerical approach is applicable and efficient.
Citation: Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta. Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation[J]. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646
[1] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[2] | Duoduo Zhao, Kai Zhou, Fengming Ye, Xin Xu . A class of time-varying differential equations for vibration research and application. AIMS Mathematics, 2024, 9(10): 28778-28791. doi: 10.3934/math.20241396 |
[3] | Takumi Washio, Akihiro Fujii, Toshiaki Hisada . On random force correction for large time steps in semi-implicitly discretized overdamped Langevin equations. AIMS Mathematics, 2024, 9(8): 20793-20810. doi: 10.3934/math.20241011 |
[4] | Omar Bazighifan, Areej A. Al-moneef, Ali Hasan Ali, Thangaraj Raja, Kamsing Nonlaopon, Taher A. Nofal . New oscillation solutions of impulsive conformable partial differential equations. AIMS Mathematics, 2022, 7(9): 16328-16348. doi: 10.3934/math.2022892 |
[5] | Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110 |
[6] | Ahmad Qazza, Rania Saadeh, Emad Salah . Solving fractional partial differential equations via a new scheme. AIMS Mathematics, 2023, 8(3): 5318-5337. doi: 10.3934/math.2023267 |
[7] | Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237 |
[8] | Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129 |
[9] | Armin Hadjian, Juan J. Nieto . Existence of solutions of Dirichlet problems for one dimensional fractional equations. AIMS Mathematics, 2022, 7(4): 6034-6049. doi: 10.3934/math.2022336 |
[10] | Paul Bosch, José M. Rodríguez, José M. Sigarreta . Oscillation results for a nonlinear fractional differential equation. AIMS Mathematics, 2023, 8(5): 12486-12505. doi: 10.3934/math.2023627 |
Here, we provide a new method to solve the time-fractional diffusion equation (TFDE) following the spectral tau approach. Our proposed numerical solution is expressed in terms of a double Lucas expansion. The discretization of the technique is based on several formulas about Lucas polynomials, such as those for explicit integer and fractional derivatives, products, and certain definite integrals of these polynomials. These formulas aid in transforming the TFDE and its conditions into a matrix system that can be treated through a suitable numerical procedure. We conduct a study on the convergence analysis of the double Lucas expansion. In addition, we provide a few examples to ensure that the proposed numerical approach is applicable and efficient.
The theory of fractional calculus has played an important role in engineering and natural sciences. Currently, the concept of fractional calculus has been effectively used in many social, physical, signal, image processing, biological and engineering problems. Further, it has been realized that a fractional system provides a more accurate interpretation than the integer-order system in many real modeling problems. For more details, one can refer to [1,2,3,4,5,6,7,8,9,10].
Oscillation phenomena take part in different models of real world applications; see for instance the papers [11,12,13,14,15,16,17] and the papers cited therein. More precisely, we refer the reader to the papers [18,19] on bio-mathematical models where oscillation and/or delay actions may be formulated by means of cross-diffusion terms. Recently and although it is rare, the study on the oscillation of fractional partial differential equations has attracted many researchers. In [20,21,22,23], the researchers have established the requirements of the oscillation for certain kinds of fractional partial differential equations.
In [24], Luo et al. studied the oscillatory behavior of the fractional partial differential equation of the form
D1+α+,tu(y,t)+p(t)Dα+,tu(y,t)+q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ=a(t)Δu(y,t)+m∑i=1ai(t)Δu(y,t−τi),(y,t)∈Q×R+=H |
subject to either of the following boundary conditions
∂u(y,t)∂ν+β(y,t)u(y,t)=0,(y,t)∈∂Q×R+,u(y,t)=0,(y,t)∈∂Q×R+. |
They have obtained some sufficient conditions for the oscillation of all solutions of this kind of fractional partial differential equations by using the integral averaging technique and Riccati transformations.
On other hand in [25], Xu and Meng considered a fractional partial differential equation of the form
Dα+,t(r(t)Dα+,tu(y,t))+p(t)Dα+,tu(y,t)+q(y,t)f(u(y,t))=a(t)Δu(y,t)+m∑i=1bi(t)Δu(y,t−τi),(y,t)∈Q×R+=H |
with the Robin boundary condition
∂u(y,t)∂N+g(y,t)u(y,t)=0,(y,t)∈∂Q×R+, |
they obtained some oscillation criteria using the integral averaging technique and Riccati transformations.
Prakash et al. [26] considered the oscillation of the fractional differential equation
∂∂t(r(t)Dα+,tu(y,t))+q(y,t)f(∫t0(t−v)−αu(y,v)dv)=a(t)Δu(y,t),(y,t)∈Q×R+ |
with the Neumann boundary condition
∂u(y,t)∂N=0,(y,t)∈∂Q×R+, |
they obtained some oscillation criteria by using the integral averaging technique and Riccati transformations.
Furthermore in [27], Ma et al. considered the forced oscillation of the fractional partial differential equation with damping term of the form
∂∂t(r(t)Dα+,tu(y,t))+p(t)Dα+,tu(y,t)+q(y,t)f(u(y,t))=a(t)Δu(y,t)+˜g(y,t),(y,t)∈Q×R+ |
with the boundary condition
∂u(y,t)∂N+β(y,t)u(y,t)=0,(y,t)∈∂Q×R+, |
they obtained some oscillation criteria by using the integral averaging technique.
From the above mentioned literature, one can notice that the Riccati transformation method has been incorporated into the proof of the oscillation results. Unlike previous results, however, we study in this paper the forced oscillation of the fractional partial differential equation with the damping term of the form
∂∂t(a(t)∂∂t(r(t)g(Dα+,tu(y,t))))+p(t)∂∂t(r(t)g(Dα+,tu(y,t)))=b(t)Δu(y,t)+m∑i=1ai(t)Δu(y,t−τi)−q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ+f(y,t),(y,t)∈Q×R+=H | (1.1) |
via the application of the integral averaging technique only. Equation (1.1) is presented under a high degree of generality providing a general platform for many particular cases. Here, Dα+,tu(y,t) is the Riemann-Liouville fractional partial derivative of order α of u,α∈(0,1), Δ is the Laplacian in Rn, i.e.,
Δu(y,t)=∑nr=1∂2u(y,t)∂y2r, |
Q is a bounded domain of Rn with the piecewise smooth boundary ∂Q and R+:=(0,∞).
Further, we assume the Robin and Dirichlet boundary conditions
∂u(y,t)∂N+γ(y,t)u(y,t)=0,(y,t)∈∂Q×R+ | (1.2) |
and
u(y,t)=0,(y,t)∈∂Q×R+, | (1.3) |
where N is the unit outward normal to ∂Q and γ(y,t)>0 is a continuous function on ∂Q×R+. The following conditions are assumed throughout:
(H1) a(t)∈C1([t0,∞);R+) and r(t)∈C2([t0,∞);R+);
(H2) g(t)∈C2(R;R) is an increasing function and there exists a positive constant k such that yg(y)=k>0, yg(y)≠0 for y≠0;
(H3) p(t)∈C([t0,∞);R) and A(t)=∫tt0p(ζ)a(ζ)dζ;
(H4) b(t),ai(t)∈C(R+;R+) and τi are non-negative constants, i∈Im={1,2,…,m};
(H5) q(y,t)∈C(H;R+) and q(t)=miny∈Qq(y,t);
(H6) f(y,t)∈C(ˉH;R).
By a solution of the problems (1.1) and (1.2) (or (1.1)–(1.3)), we mean a function u(y,t)∈C2+α(ˉQ×[0,∞)), which satisfies (1.1) on H and the boundary condition (1.2) (or (1.3)).
A solution u(y,t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is non-oscillatory.
The rest of the paper is organized as follows. Some basic definitions and known lemmas are included in Section 2. In Sections 3 and 4, we study the oscillations of (1.1) and (1.2), and (1.1) and (1.3), respectively. Section 5 deals with some applications for the sake of showing the feasibility and effectiveness of our results. Lastly, we add a conclusion in Section 6.
Before we start the main work, we present some basic lemmas and definitions which are applied in what follows.
Definition 1. [4] The Riemann-Liouville fractional integral of order α>0 of a function y:R+→R on the half-axis R+ is defined by
(Iα+y)(t):=1Γ(α)∫t0(t−ϑ)α−1y(ϑ)dϑ,t>0 |
provided the right-hand side is pointwise defined on R+, where Γ is the gamma function.
Definition 2. [4] The Riemann-Liouville fractional derivative of order α>0 of a function y:R+→R on the half-axis R+ is defined by
(Dα+y)(t):=d⌈α⌉dt⌈α⌉(I⌈α⌉−α+y)(t),t>0 |
provided the right-hand side is pointwise defined on R+, where ⌈α⌉ is the ceiling function of α.
Definition 3. [4] The Riemann-Liouville fractional partial derivative of order 0<α<1 with respect to t of a function u(y,t) is defined by
(Dα+,tu)(y,t):=1Γ(1−α)∂∂t∫t0(t−ϑ)−αu(y,ϑ)dϑ |
provided the right-hand side is pointwise defined on R+.
Lemma 1. [4] Let y be a solution of (1.1) and
L(t):=∫t0(t−ϑ)−αy(ϑ)dϑ |
for α∈(0,1) and t>0. Then
L′(t)=Γ(1−α)(Dα+y)(t). |
Lemma 2. [4] Let α≥0,m∈N and D=ddt. If the fractional derivatives (Dαa+y)(t) and (Dα+ma+y)(t) exist, then
(DmDαa+y)(t)=(Dα+ma+y)(t). |
Lemma 3. [4] If α∈(0,1), then
(Iαa+Dαa+y)(t)=y(t)−y1−α(a)Γ(α)(t−a)α−1, |
where y1−α(t)=(I1−αa+y)(t).
Lemma 4. [5] The smallest eigenvalue β0 of the Dirichlet problem
Δω(y)+βω(y)=0 in Qω(y)=0 on ∂Q |
is positive and the corresponding eigenfunction ϕ(y) is positive in Q.
In this section, we establish the oscillation criteria for (1.1) and (1.2).
Theorem 1. If (H1)−(H6) are valid, limt→∞I1−α+U(0)=C0 and if
lim inft→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ<0 | (3.1) |
and
lim supt→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ>0 | (3.2) |
for some constants C0,C1 and C2 with F(t)=∫Qf(y,t)dy, then all solutions of (1.1) and (1.2) are oscillatory.
Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.2) then there exists a t0≥0 such that u(y,t)>0 (or u(y,t)<0),t≥t0.
Case 1. Let u(y,t)>0 for t≥t0. Integrating (1.1) over Q, we get
ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))=b(t)∫QΔu(y,t)dy+m∑i=1ai(t)∫QΔu(y,t−τi)dy−∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)dy+∫Qf(y,t)dy, | (3.3) |
where U(t)=∫Qu(y,t)dy with U(t)>0. By (1.2) and Green's formula, we have
∫QΔu(y,t)dy=∫∂Q∂u∂Ndζ=−∫∂Qγ(y,t)u(y,t)dζ<0 | (3.4) |
and
∫QΔu(y,t−τi)dy<0. | (3.5) |
Also, by (H5), one can get
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)dy≥q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)dy)dℏ=q(t)L(t), | (3.6) |
where L(t)=∫t0(t−ℏ)−αU(ℏ)dℏ. Because of the inequalities (3.4)–(3.6), (3.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))≤−q(t)L(t)+F(t)≤F(t). |
Thus, we get
(eA(t)a(t)(r(t)g(Dα+U(t)))′)′=eA(t)((a(t)(r(t)g(Dα+U(t)))′)′+p(t)(r(t)g(Dα+U(t)))′)≤eA(t)F(t). |
Integrating the above inequality over [t0,t], one can get
eA(t)a(t)(r(t)g(Dα+U(t)))′≤∫tt0eA(ζ)F(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U(t0)))′. |
Again integrating the above inequality over [t0,t], we get
r(t)g(Dα+U(t))≤C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U(t0)). Then using (H5), we obtain
Dα+U(t)k≤C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U(t)−I1−α0U(0)Γ(α)tα−1≤kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ. |
Then
lim inft→∞U(t)≤lim inft→∞C0Γ(α)tα−1+lim inft→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis, as given by (3.1), we get lim inft→∞U(t)≤0. This leads to a contradiction to U(t)>0.
Case 2. Let u(y,t)<0 for t≥t0. Just as in Case 1, we can obtain that (3.3) holds and U(t)<0. By (1.2) and Green's formula, we get
∫QΔu(y,t)dy=∫∂Q∂u∂Ndζ=−∫∂Qγ(y,t)u(y,t)dζ>0 | (3.7) |
and
∫QΔu(y,t−τi)dy>0. | (3.8) |
Also, by (H5), we have
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)dy≤q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)dy)dℏ=q(t)L(t). | (3.9) |
Because of the inequalities (3.7)–(3.9), (3.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))≥−q(t)L(t)+F(t)≥F(t), | (3.10) |
that is,
(eA(t)a(t)(r(t)g(Dα+U(t)))′)′=eA(t)((a(t)(r(t)g(Dα+U(t)))′)′+p(t)(r(t)g(Dα+U(t)))′)≥eA(t)F(t). |
Integrating the above inequality over [t0,t], we have
eA(t)a(t)(r(t)g(Dα+U(t)))′≥∫tt0eA(ζ)F(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U(t0)))′. |
Again integrating the above inequality over [t0,t], we obtain
r(t)g(Dα+U(t))≥C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U(t0)). Then using (H5), we obtain
Dα+U(t)k≥C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U(t)−I1−α0U(0)Γ(α)tα−1≥kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ. |
Then
lim supt→∞U(t)≥lim supt→∞C0Γ(α)tα−1+lim supt→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis given by (3.2), we get lim supt→∞U(t)≥0. This leads to a contradiction to U(t)<0.
In this section, we establish the oscillation criteria for (1.1) and (1.3).
Theorem 2. If (H1)−(H5) are valid, limt→∞I1−α+U1(0)=A1 and if
lim inft→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ<0 | (4.1) |
and
lim supt→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ>0 | (4.2) |
for some constants A1,C1 and C2 with
F1(t)=∫Qf(y,t)ϕ(y)dyandU1(t)=∫Qu(y,t)ϕ(y)dy, |
then all solutions of (1.1) and (1.3) are oscillatory.
Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.3) then there exists a t0≥0 such that u(y,t)>0 (or u(y,t)<0) for t≥t0.
Case 1. Let u(y,t)>0 for t≥t0. Multiplying (1.1) by ϕ(y) and then integrating over Q, we get
∫Q∂∂t(a(t)∂∂t(r(t)g(Dα+,tu(y,t))))ϕ(y)dy+∫Qp(t)∂∂t(r(t)g(Dα+,tu(y,t)))ϕ(y)dy=∫Qb(t)Δu(y,t)ϕ(y)dy+∫Qm∑i=1ai(t)Δu(y,t−τi)ϕ(y)dy−∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)ϕ(y)dy+∫Qf(y,t)ϕ(y)dy. | (4.3) |
By Lemma 4 and Green's formula, we have
∫QΔu(y,t)ϕ(y)dy=∫Qu(y,t)Δϕ(y)dy=−β0∫Qu(y,t)ϕ(y)dy<0 | (4.4) |
and
∫QΔu(y,t−τi)ϕ(y)dy<0. | (4.5) |
Also, by (H5), we get
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)ϕ(y)dℏ)dy≥q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)ϕ(y)dy)dℏ=q(t)L1(t), | (4.6) |
where
L1(t)=∫t0(t−ℏ)−αU1(ℏ)dℏ>0. |
Because of the inequalities (4.4)–(4.6), (4.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U1(t))))+p(t)ddt(r(t)g(Dα+U1(t)))≤−q(t)L1(t)+F1(t)≤F1(t), |
that is,
(eA(t)a(t)(r(t)g(Dα+U1(t)))′)′=eA(t)[(a(t)(r(t)g(Dα+U1(t)))′)′+p(t)(r(t)g(Dα+U1(t)))′]≤eA(t)F1(t). |
Integrating the above inequality over [t0,t], we have
eA(t)a(t)(r(t)g(Dα+U1(t)))′≤∫tt0eA(ζ)F1(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U1(t0)))′. |
Again integrating the above inequality over [t0,t], we have
r(t)g(Dα+U1(t))≤C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U1(t0)). Then using (H5), we obtain
Dα+U1(t)k≤C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U1(t)−I1−α0U1(0)Γ(α)tα−1≤kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ. |
Then
lim inft→∞U1(t)≤lim inft→∞A1Γ(α)tα−1+lim inft→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis given by (4.1), we get lim inft→∞U1(t)≤0. This leads to a contradiction to U1(t)>0.
Case 2. Let u(y,t)<0 for t≥t0. Multiplying (1.1) by ϕ(y) and then integrating over Q, one can get (4.3). Using Green's formula, we have
∫QΔu(y,t)ϕ(y)dy=∫Qu(y,t)Δϕ(y)dy=−β0∫Qu(y,t)ϕ(y)dy>0 | (4.7) |
and
∫QΔu(y,t−τi)ϕ(y)dy>0. | (4.8) |
Also, by (H5), we have
∫Q(q(y,t)∫t0(t−ℏ)−αu(y,ℏ)dℏ)ϕ(y)dy≤q(t)∫t0(t−ℏ)−α(∫Qu(y,ℏ)ϕ(y)dy)dℏ=q(t)L1(t), | (4.9) |
where
L1(t)=∫t0(t−ℏ)−αU1(ℏ)dℏ<0. |
Because of the inequalities (4.7)–(4.9), (4.3) becomes
ddt(a(t)ddt(r(t)g(Dα+U1(t))))+p(t)ddt(r(t)g(Dα+U1(t)))≥−q(t)L1(t)+F1(t)≥F1(t), | (4.10) |
that is,
(eA(t)a(t)(r(t)g(Dα+U1(t)))′)′=eA(t)((a(t)(r(t)g(Dα+U1(t)))′)′+p(t)(r(t)g(Dα+U1(t)))′)≥eA(t)F1(t). |
Integrating the above inequality over [t0,t], we get
eA(t)a(t)(r(t)g(Dα+U1(t)))′≥∫tt0eA(ζ)F1(ζ)dζ+C1, |
where
C1=eA(t0)a(t0)(r(t0)g(Dα+U1(t0)))′. |
Again integrating the above inequality over [t0,t], we get
r(t)g(Dα+U1(t))≥C2+∫tt0C1eA(τ)a(τ)dτ+∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ, |
where C2=r(t0)g(Dα+U1(t0)). Then using (H5), we obtain
Dα+U1(t)k≥C2r(t)+1r(t)∫tt0C1eA(τ)a(τ)dτ+1r(t)∫tt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ. |
Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain
U1(t)−I1−α0U1(0)Γ(α)tα−1≥kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ. |
Then
lim supt→∞U1(t)≥lim supt→∞A1Γ(α)tα−1+lim supt→∞{kΓ(α)∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F1(ζ)dζ)dτ]dℏ}. |
Therefore, by our hypothesis given by (4.2), we get lim supt→∞U1(t)≥0. This leads to a contradiction to U1(t)<0.
In this section, we give two examples to illustrate our main results.
Example 1. Let us consider the fractional partial differential system
D52+,tu(y,t)=1πΔu(y,t)+2tΔu(y,t−1)−(y2+1t2)∫t0(t−ℏ)−12u(y,ℏ)dℏ+e2tcos(t)sin(y),(y,t)∈(0,π)×R+ | (5.1) |
with the condition
uy(0,t)=uy(π,t)=0. | (5.2) |
In the above, a(t)=1,r(t)=1,g(t)=t,α=1/2,p(t)=0,b(t)=1/π,m=1,a1(t)=2t,τ1=1, q(y,t)=(y2+1t2),f(y,t)=e2tcos(t)sin(y),Q=(0,π),q(t)=miny∈(0,π)q(y,t)=1/t2 and t0=0.
Since F(t)=∫π0e2tcos(t)sin(y)dy=2e2tcos(t) and A(t)=0, we have
∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ=C2∫t0(t−ℏ)−1/2dℏ+C1∫t0(t−ℏ)−1/2(∫ℏ0dτ)dℏ+25∫t0(t−ℏ)−1/2(2∫ℏ0e2τcos(τ)dτ+∫ℏ0e2τsin(τ)dτ−2∫ℏ0dτ)dℏ=(C2−6/25)∫t0(t−ℏ)−1/2dℏ+(C1−4/5)∫t0ℏ(t−ℏ)−1/2dℏ+6/25∫t0e2ℏ(t−ℏ)−1/2cos(ℏ)dℏ+8/25∫t0e2ℏ(t−ℏ)−1/2sin(ℏ)dℏ. |
Fixing y2=t−ℏ, then
∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ=2(C2−6/25)√t+4/3(C1−4/5)t3/2+4/25e2t(3cos(t)∫√t0e−2y2cos(y2)dy+3sin(t)∫√t0e−2y2sin(y2)dy+4sin(t)∫√t0e−2y2cos(y2)dy−4cos(t)∫√t0e−2y2sin(y2)dy). | (5.3) |
Pointing out that
|e−2y2cos(y2)|≤e−2y2,|e−2y2sin(y2)|≤e−2y2 and limt→∞∫√t0e−2y2dy=√2π4, |
we can conclude that
limt→∞∫√t0e−2y2cos(y2)dy and limt→∞∫√t0e−2y2sin(y2)dy |
are convergent. Thus, we have that
limt→∞[cos(t)(3∫√t0e−2y2cos(y2)dy−4∫√t0e−2y2sin(y2)dy)+sint(3∫√t0e−2y2sin(y2)dy+4∫√t0e−2y2cos(y2)dy)] |
is convergent. Fixing
limt→∞∫√t0e−2y2cos(y2)dy=P,limt→∞∫√t0e−2y2sin(y2)dy=Q |
and considering the sequence
tn=3π2+2nπ−arctan(3P−4Q3Q+4P), |
we get
limn→∞{cos(tn)(3∫√tn0e−2y2cos(y2)dy−4∫√tn0e−2y2sin(y2)dy)+sin(tn)(3∫√tn0e−2y2sin(y2)dy+4∫√tn0e−2y2cos(y2)dy)}=√(3P−4Q)2+(3Q+4P)2sin(3π2+2nπ−arctan(3P−4Q3Q+4P)+arctan(3P−4Q3Q+4P))=5√P2+Q2sin(3π2+2nπ)=−5√P2+Q2. |
Since limn→∞tn=∞, from (5.3), we have
lim inft→∞∫t0(t−ℏ)α−1r(ℏ)[C2+∫ℏt0C1eA(τ)a(τ)dτ+∫ℏt01eA(τ)a(τ)(∫τt0eA(ζ)F(ζ)dζ)dτ]dℏ=lim infn→∞{2(C2−6/25)√tn+4/3(e−1C1−4/5)t3/2n+4/25e2tn[cos(tn)(3∫√tn0e−2y2cos(y2)dy−4∫√tn0e−2y2sin(y2)dy)+sin(tn)(3∫√tn0e−2y2sin(y2)dy+4∫√tn0e−2y2cos(y2)dy)]}=−∞<0. |
Similarly, fixing
\begin{align*} t_{n} = \frac{\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right), \end{align*} |
we get
\begin{align*} &\lim\limits_{n\to\infty}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right]\\ & = 5\sqrt{P^{2}+Q^{2}}. \end{align*} |
Thus, from (5.3), we can get
\limsup\limits_{ t\to\infty}\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \limsup\limits_{n\to\infty}\\ \left\{2(C_{2}-6/25)\sqrt{ t_{n}}+4/3(e^{-1}C_{1}-4/5) t_{n}^{3/2}+4/25e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right) \right]\right\}\\ = \infty > 0. |
Therefore, by referring to Theorem 1, the solutions of (5.1) and (5.2) are oscillatory.
Example 2. Let us consider the fractional partial differential system
\frac{1}{1875\sqrt{\pi}}D_{+, t}^{\frac{5}{2}}u(y, t) = \frac{1}{10^{5} t^{\frac{5}{2}}}\Delta u(y, t)+\\ \left(\frac{16}{75\times 10^{2}\pi t^{3}}-\frac{16e^{2 t}\cos (t)}{5\pi t^{3}}\right)\int_{0}^{ t}( t-\hbar)^{-\frac{1}{2}}u(y, \hbar)d\hbar\\ +e^{2 t}\cos (t)\cos(10y), \quad (y, t)\in (0, \pi)\times (0, 1.5) | (5.4) |
with the condition
\begin{align} u(0, t) = u(\pi, t) = 0. \end{align} | (5.5) |
In the above, a(t) = 1 , r(t) = \frac{1}{1875\sqrt{\pi}} , g(t) = t , \alpha = 1/2 , p(t) = 0 , b(t) = \frac{1}{2\times 10^{5} t^{\frac{5}{2}}} , m = 1 , a_{1}(t) = \frac{1}{2\times 10^{5} t^{\frac{5}{2}}} , \tau_{1} = 0 , q(y, t) = \frac{-16}{75\times 10^{2}\pi t^{3}}+\frac{16e^{2 t}\cos (t)}{5\pi t^{3}}, f(y, t) = e^{2 t}\cos (t) \sin (y), Q = (0, \pi), q(t) = \min_{y\in(0, \pi)}q(y, t) = \frac{-16}{75\times 10^{2}\pi t^{3}}+\frac{16e^{2 t}\cos (t)}{5\pi t^{3}} and t_{0} = 0 . It is obvious that \beta_{0} = 1 and \phi(y) = \sin (y). Since F_{1}(t) = \int_{0}^{\pi}e^{2 t}\cos (t) \cos(10y) \sin (y) dy = \frac{-2}{99}e^{2 t}\cos (t) and A(t) = 0, we have
\begin{align*} &\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left(C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right)d\hbar\\ & = -\frac{3750\sqrt{\pi}}{99}\int_{0}^{ t}( t-\hbar)^{\alpha-1}\left(\int_{ t_{0}}^{\hbar}\left(\int_{ t_{0}}^{\tau}e^{2\zeta}\cos (\zeta) d\zeta\right)d\tau \right)d\hbar\\ & = \frac{50\sqrt{\pi}}{11}\int_{0}^{ t}( t-\hbar)^{-1/2}d\hbar+\frac{500\sqrt{\pi}}{33}\int_{0}^{ t}\hbar( t-\hbar)^{-1/2}d\hbar\\ &\quad-\frac{50\sqrt{\pi}}{33}\left[3\int_{0}^{ t}e^{2\hbar}( t-\hbar)^{-1/2}\cos (\hbar) d\hbar+4\int_{0}^{ t}e^{2\hbar}( t-\hbar)^{-1/2}\sin( \hbar) d\hbar\right]. \end{align*} |
Fixing y^{2} = t-\hbar , then
\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \frac{10^{2}\sqrt{\pi t}}{11}+\frac{2\times 10^{3}}{99} t^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t}\left\{3\cos (t) \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\right.\\ \left.+3\sin (t)\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy+4\sin (t)\\ \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy-4\cos (t) \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy\right\}. | (5.6) |
Pointing out that
|e^{-2y^{2}}\cos (y^{2})|\le e^{-2y^{2}}, \; |e^{-2y^{2}}\sin (y^{2})|\le e^{-2y^{2}}\;\text{ and }\; \lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}dy = \frac{\sqrt{2\pi}}{4}, |
we can conclude that
\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\quad\text{ and }\quad\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy |
are convergent. Thus, we have that
\begin{align*} \lim\limits_{ t\to\infty}&\left[\cos (t) \left(3\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin t\left(3\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\right)\right] \end{align*} |
is convergent. Fixing
\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy = P\;\text{ and }\;\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy = Q |
and considering the sequence
t_{n} = \frac{3\pi}{2}+2n\pi-\arctan \biggl(\frac{3P-4Q}{3Q+4P}\biggl), |
we get
\begin{align*} \lim\limits_{n\to\infty}&\left\{\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right\}\\ & = \sqrt{(3P-4Q)^{2}+(3Q+4P)^{2}}\sin\left(\frac{3\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right)+\arctan \left(\frac{3P-4Q}{3Q+4P}\right)\right)\\ & = 5\sqrt{P^{2}+Q^{2}}\sin\left(\frac{3\pi}{2}+2n\pi\right)\\ & = -5\sqrt{P^{2}+Q^{2}}. \end{align*} |
Since \lim\limits_{n\to\infty} t_{n} = \infty , from (5.6), we have
\limsup\limits_{ t\to\infty} \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \limsup\limits_{n\to\infty}\left\{\frac{10^{2}\sqrt{\pi t_{n}}}{11}\sqrt{ t_{n}}+\frac{2\times 10^{3}}{99} t_{n}^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy \right)\right]\right\}\\ = \infty > 0. |
Similarly, fixing
\begin{align*} t_{n} = \frac{\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right), \end{align*} |
we get
\begin{align*} \lim\limits_{n\to\infty}&\left\{\cos (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right\}\\ & = 5\sqrt{P^{2}+Q^{2}}. \end{align*} |
Thus, from (5.6), we get
\liminf\limits_{ t\to\infty} \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \liminf\limits_{n\to\infty}\left\{\frac{10^{2}\sqrt{\pi t_{n}}}{11}\sqrt{ t_{n}}+\frac{2\times 10^{3}}{99} t_{n}^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy \right)\right]\right\}\\ = -\infty < 0. |
Therefore, by referring to Theorem 2, the solutions of (5.4) and (5.5) are oscillatory. In fact, u(y, t) = t^{5/2}\cos(10y) is a solution of (5.4) and (5.5) and its oscillatory behavior is demonstrated in Figure 1.
In this paper, we have obtained some new oscillation results for the fractional partial differential equation with damping and forcing terms under Robin and Dirichlet boundary conditions. The main results are proved by using only the integral averaging technique and without implementing the Riccati approach. Further, the obtained results are justified by some examples which can not be commented upon by using the previous results. Our results have been obtained for the general equation which may cover other particular cases.
A. Palanisamy was supported by the University Grants Commission (UGC-Ref. No.: 958/(CSIR-UGC NET JUNE 2018)), New Delhi, India and the third author was partially supported by the DST-FIST Scheme (Grant No. SR/FST/MST-115/2016), New Delhi, India. J. Alzabut is thankful to Prince Sultan University and Ostim Technical University for their endless support. The authors are grateful to the reviewers for their precious help in improving this manuscript.
The authors declare that they have no conflicts of interest.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | S. G. Samko, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[3] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
[4] |
D. Albogami, D. Maturi, H. Alshehri, Adomian decomposition method for solving fractional time-Klein-Gordon equations using Maple, Appl. Math., 14 (2023), 411–418. https://doi.org/10.4236/am.2023.146024 doi: 10.4236/am.2023.146024
![]() |
[5] |
K. Sadri, K. Hosseini, E. Hinçal, D. Baleanu, S. Salahshour, A pseudo-operational collocation method for variable-order time-space fractional KdV–Burgers–Kuramoto equation, Math. Methods Appl. Sci., 46 (2023), 8759–8778. https://doi.org/10.1002/mma.9015 doi: 10.1002/mma.9015
![]() |
[6] |
S. M. Sivalingam, V. Govindaraj, A novel numerical approach for time-varying impulsive fractional differential equations using theory of functional connections and neural network, Expert Syst. Appl., 238 (2024), 121750. https://doi.org/10.1016/j.eswa.2023.121750 doi: 10.1016/j.eswa.2023.121750
![]() |
[7] |
W. M. Abd-Elhameed, H. M. Ahmed, Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials, AIMS Math., 9 (2024), 2137–2166. https://doi.org/10.3934/math.2024107 doi: 10.3934/math.2024107
![]() |
[8] |
M. Izadi, Ş. Yüzbaşı W. Adel, A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential equations with error analysis, Math. Sci., 17 (2023), 267–284. https://doi.org/10.1007/s40096-022-00468-y doi: 10.1007/s40096-022-00468-y
![]() |
[9] |
H. Alrabaiah, I. Ahmad, R. Amin, K. Shah, A numerical method for fractional variable order pantograph differential equations based on Haar wavelet, Eng. Comput., 38 (2022), 2655–2668. https://doi.org/10.1007/s00366-020-01227-0 doi: 10.1007/s00366-020-01227-0
![]() |
[10] |
Kamran, S. Ahmad, K. Shah, T. Abdeljawad, B. Abdalla, On the approximation of fractal-fractional differential equations using numerical inverse Laplace transform methods, Comput. Model. Eng. Sci., 135 (2023), 3. https://doi.org/10.32604/cmes.2023.023705 doi: 10.32604/cmes.2023.023705
![]() |
[11] |
L. Qing, X. Li, Meshless analysis of fractional diffusion-wave equations by generalized finite difference method, Appl. Math. Lett., 157 (2024), 109204. https://doi.org/10.1016/j.camwa.2024.08.008 doi: 10.1016/j.camwa.2024.08.008
![]() |
[12] |
L. Qing, X. Li, Analysis of a meshless generalized finite difference method for the time-fractional diffusion-wave equation, Comput. Math. Appl., 172 (2024), 134–151. https://doi.org/10.1016/j.camwa.2024.08.008 doi: 10.1016/j.camwa.2024.08.008
![]() |
[13] | T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, 2011. |
[14] |
I. Ali, S. Haq, S. F. Aldosary, K. S. Nisar, F. Ahmad, Numerical solution of one-and two-dimensional time-fractional Burgers equation via Lucas polynomials coupled with finite difference method, Alex. Eng. J., 61 (2022), 6077–6087. https://doi.org/10.1016/j.aej.2021.11.032 doi: 10.1016/j.aej.2021.11.032
![]() |
[15] |
I. Ali, S. Haq, K. S. Nisar, S. U. Arifeen, Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and Fibonacci polynomials, Arab. J. Math., 10 (2021), 513–526. https://doi.org/10.1007/s40065-021-00330-4 doi: 10.1007/s40065-021-00330-4
![]() |
[16] |
M. N. Sahlan, H. Afshari, Lucas polynomials based spectral methods for solving the fractional order electrohydrodynamics flow model, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106108. https://doi.org/10.1016/j.cnsns.2021.106108 doi: 10.1016/j.cnsns.2021.106108
![]() |
[17] |
P. K. Singh, S. S. Ray, An efficient numerical method based on Lucas polynomials to solve multi-dimensional stochastic Itô-Volterra integral equations, Math. Comput. Simul., 203 (2023), 826–845. https://doi.org/10.1016/j.matcom.2022.06.029 doi: 10.1016/j.matcom.2022.06.029
![]() |
[18] |
A. M. S. Mahdy, D. Sh. Mohamed, Approximate solution of Cauchy integral equations by using Lucas polynomials, Comput. Appl. Math., 41 (2022), 403. https://doi.org/10.1007/s40314-022-02116-6 doi: 10.1007/s40314-022-02116-6
![]() |
[19] |
B. P. Moghaddam, A. Dabiri, A. M. Lopes, J. A. T. Machado, Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials, Comput. Appl. Math., 38 (2019), 1–12. https://doi.org/10.1007/s40314-019-0813-9 doi: 10.1007/s40314-019-0813-9
![]() |
[20] |
O. Oruç, A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation, Comput. Math. Appl., 74 (2017), 3042–3057. https://doi.org/10.1016/j.camwa.2017.07.046 doi: 10.1016/j.camwa.2017.07.046
![]() |
[21] | M. Çetin, M. Sezer, H. Kocayiğit, An efficient method based on Lucas polynomials for solving high-order linear boundary value problems, Gazi Univ. J. Sci., 28 (2015), 483–496. |
[22] |
P. Roul, V. Goura, R. Cavoretto, A numerical technique based on B-spline for a class of time-fractional diffusion equation, Numer. Methods Partial Differ. Equ., 39 (2023), 45–64. https://doi.org/10.1002/num.22790 doi: 10.1002/num.22790
![]() |
[23] |
Y. H. Youssri, A. G. Atta, Petrov-Galerkin Lucas polynomials procedure for the time-fractional diffusion equation, Contemp. Math., 4 (2023), 230–248. https://doi.org/10.37256/cm.4220232420 doi: 10.37256/cm.4220232420
![]() |
[24] |
P. Lyu, S. Vong, A fast linearized numerical method for nonlinear time-fractional diffusion equations, Numer. Algorithms, 87 (2021), 381–408. https://doi.org/10.1007/s11075-020-00971-0 doi: 10.1007/s11075-020-00971-0
![]() |
[25] |
X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
![]() |
[26] |
A. Khibiev, A. Alikhanov, C. Huang, A second-order difference scheme for generalized time-fractional diffusion equation with smooth solutions, Comput. Methods Appl. Math., 24 (2024), 101–117. https://doi.org/10.1515/cmam-2022-0089 doi: 10.1515/cmam-2022-0089
![]() |
[27] |
J. L. Zhang, Z. W. Fang, H. W. Sun, Exponential-sum-approximation technique for variable-order time-fractional diffusion equations, J. Appl. Math. Comput., 68 (2022), 323–347. https://doi.org/10.1007/s12190-021-01528-7 doi: 10.1007/s12190-021-01528-7
![]() |
[28] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Springer-Verlag, 1988. |
[29] | J. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral methods for time-dependent problems, Cambridge University Press, 2007. |
[30] | J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001. |
[31] |
W. M. Abd-Elhameed, M. M. Alsyuti, Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials, Fractal Fract., 7 (2023), 74. https://doi.org/10.3390/fractalfract7010074 doi: 10.3390/fractalfract7010074
![]() |
[32] |
M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. https://doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
![]() |
[33] |
R. M. Hafez, M. A. Zaky, M. A. Abdelkawy, Jacobi spectral Galerkin method for distributed-order fractional Rayleigh–Stokes problem for a generalized second grade fluid, Front. Phys., 7 (2020), 240. https://doi.org/10.3389/fphy.2019.00240 doi: 10.3389/fphy.2019.00240
![]() |
[34] |
W. M. Abd-Elhameed, A. M. Al-Sady, O. M. Alqubori, A. G. Atta, Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials, AIMS Math., 9 (2024), 25457–25481. https://doi.org/10.3934/math.20241243 doi: 10.3934/math.20241243
![]() |
[35] |
A. A. El-Sayed, S. Boulaaras, N. H. Sweilam, Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method, Math. Methods Appl. Sci., 46 (2023), 8004–8017. https://doi.org/10.1002/mma.7345 doi: 10.1002/mma.7345
![]() |
[36] |
H. Hou, X. Li, A meshless superconvergent stabilized collocation method for linear and nonlinear elliptic problems with accuracy analysis, Appl. Math. Comput., 477 (2024), 128801. https://doi.org/10.1016/j.amc.2024.128801 doi: 10.1016/j.amc.2024.128801
![]() |
[37] |
A. G. Atta, Two spectral Gegenbauer methods for solving linear and nonlinear time fractional cable problems, Int. J. Mod. Phys. C, 35 (2024), 2450070. https://doi.org/10.1142/S0129183124500700 doi: 10.1142/S0129183124500700
![]() |
[38] |
M. M. Khader, M. Adel, Numerical and theoretical treatment based on the compact finite difference and spectral collocation algorithms of the space fractional-order Fisher's equation, Int. J. Mod. Phys. C, 31 (2020), 2050122. https://doi.org/10.1142/S0129183120501223 doi: 10.1142/S0129183120501223
![]() |
[39] |
A. Z. Amin, M. A. Abdelkawy, I. Hashim, A space-time spectral approximation for solving nonlinear variable-order fractional convection-diffusion equations with nonsmooth solutions, Int. J. Mod. Phys. C, 34 (2023), 2350041. https://doi.org/10.1142/S0129183123500419 doi: 10.1142/S0129183123500419
![]() |
[40] |
H. M. Ahmed, New generalized Jacobi polynomial Galerkin operational matrices of derivatives: An algorithm for solving boundary value problems, Fractal Fract., 8 (2024), 199. https://doi.org/10.3390/fractalfract8040199 doi: 10.3390/fractalfract8040199
![]() |
[41] |
İ. Avcı Spectral collocation with generalized Laguerre operational matrix for numerical solutions of fractional electrical circuit models, Math. Model. Numer. Simul. Appl., 4 (2024), 110–132. https://doi.org/10.53391/mmnsa.1428035 doi: 10.53391/mmnsa.1428035
![]() |
[42] |
H. Singh, Chebyshev spectral method for solving a class of local and nonlocal elliptic boundary value problems, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 899–915. https://doi.org/10.1515/ijnsns-2020-0235 doi: 10.1515/ijnsns-2020-0235
![]() |
[43] |
M. Abdelhakem, A. Ahmed, D. Baleanu, M. El-Kady, Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVP: Applications to certain types of real-life problems, Comput. Appl. Math., 41 (2022), 253. https://doi.org/10.1007/s40314-022-01940-0 doi: 10.1007/s40314-022-01940-0
![]() |
[44] |
Priyanka, S. Sahani, S. Arora, An efficient fourth order Hermite spline collocation method for time fractional diffusion equation describing anomalous diffusion in two space variables, Comput. Appl. Math., 43 (2024), 193. https://doi.org/10.1007/s40314-024-02708-4 doi: 10.1007/s40314-024-02708-4
![]() |
[45] |
W. M. Abd-Elhameed, A. Napoli, Some novel formulas of Lucas polynomials via different approaches, Symmetry, 15 (2023), 185. https://doi.org/10.3390/sym15010185 doi: 10.3390/sym15010185
![]() |
[46] |
W. M. Abd-Elhameed, N. A. Zeyada, New formulas including convolution, connection and radicals formulas of k-Fibonacci and k-Lucas polynomials, Indian J. Pure Appl. Math., 53 (2022), 1006–1016. https://doi.org/10.1007/s13226-021-00214-5 doi: 10.1007/s13226-021-00214-5
![]() |
[47] |
W. M. Abd-Elhameed, A. K. Amin, Novel identities of Bernoulli polynomials involving closed forms for some definite integrals, Symmetry, 14 (2022), 2284. https://doi.org/10.3390/sym14112284 doi: 10.3390/sym14112284
![]() |
[48] |
W. M. Abd-Elhameed, Y. H. Youssri, Generalized Lucas polynomial sequence approach for fractional differential equations, Nonlinear Dynam., 89 (2017), 1341–1355. https://doi.org/10.1007/s11071-017-3519-9 doi: 10.1007/s11071-017-3519-9
![]() |
[49] |
Y. H. Youssri, W. M. Abd-Elhameed, A. G. Atta, Spectral Galerkin treatment of linear one-dimensional telegraph type problem via the generalized Lucas polynomials, Arab. J. Math., 11 (2022), 601–615. https://doi.org/10.1007/s40065-022-00374-0 doi: 10.1007/s40065-022-00374-0
![]() |
[50] |
G. J. O. Jameson, The incomplete gamma functions, Math. Gaz., 100 (2016), 298–306. https://doi.org/10.1017/mag.2016.67 doi: 10.1017/mag.2016.67
![]() |
[51] |
F. Zeng, C. Li, A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation, Appl. Numer. Math., 121 (2017), 82–95. https://doi.org/10.1016/j.apnum.2017.06.011 doi: 10.1016/j.apnum.2017.06.011
![]() |
1. | Jehad Alzabut, Said R. Grace, Jagan Mohan Jonnalagadda, Shyam Sundar Santra, Bahaaeldin Abdalla, Higher-Order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-Oscillatory Solutions, 2023, 12, 2075-1680, 325, 10.3390/axioms12040325 | |
2. | Abdullah Özbekler, Kübra Uslu İşler, Jehad Alzabut, Sturmian comparison theorem for hyperbolic equations on a rectangular prism, 2024, 9, 2473-6988, 4805, 10.3934/math.2024232 | |
3. | Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal, Piecewise mABC fractional derivative with an application, 2023, 8, 2473-6988, 24345, 10.3934/math.20231241 | |
4. | Jehad Alzabut, Said R. Grace, Shyam Sundar Santra, Mohammad Esmael Samei, Oscillation Criteria for Even-Order Nonlinear Dynamic Equations with Sublinear and Superlinear Neutral Terms on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-00961-w | |
5. | Osama Moaaz, Asma Al-Jaser, Functional differential equations of the neutral type: Oscillatory features of solutions, 2024, 9, 2473-6988, 16544, 10.3934/math.2024802 | |
6. | S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property \bar{A} of third-order noncanonical functional differential equations with positive and negative terms, 2023, 8, 2473-6988, 14167, 10.3934/math.2023724 |