Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Unveiling novel eccentric neighborhood forgotten indices for graphs and gaph operations: A comprehensive exploration of boiling point prediction

  • This paper marks a significant advancement in the field of chemoinformatics with the introduction of two novel topological indices: the forgotten eccentric neighborhood index (FENI) and the modified forgotten eccentric neighborhood index (MFENI). Uniquely developed for predicting the boiling points of various chemical substances, these indices offer groundbreaking tools in understanding and interpreting the thermal properties of compounds. The distinctiveness of our study lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing indices, they provide a nuanced capture of structural features essential for determining boiling points, a key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an extensive investigation into their various properties. We present explicit results on the behavior of these indices in relation to diverse graph types and operations, including join, disjunction, composition and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but also establish their practical versatility across a spectrum of chemical and pharmaceutical applications. Thus the introduction of FENI and MFENI represents a pivotal step forward in the predictive analysis of boiling points, setting a new standard in the field and opening avenues for future research advancements.

    Citation: Suha Wazzan, Hanan Ahmed. Unveiling novel eccentric neighborhood forgotten indices for graphs and gaph operations: A comprehensive exploration of boiling point prediction[J]. AIMS Mathematics, 2024, 9(1): 1128-1165. doi: 10.3934/math.2024056

    Related Papers:

    [1] Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261
    [2] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [3] Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280
    [4] Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation ki=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181
    [5] Fengxia Zhang, Ying Li, Jianli Zhao . A real representation method for special least squares solutions of the quaternion matrix equation (AXB,DXE)=(C,F). AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803
    [6] Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427
    [7] Vladislav N. Kovalnogov, Ruslan V. Fedorov, Igor I. Shepelev, Vyacheslav V. Sherkunov, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking. AIMS Mathematics, 2023, 8(11): 25966-25989. doi: 10.3934/math.20231323
    [8] Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
    [9] Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974
    [10] Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178
  • This paper marks a significant advancement in the field of chemoinformatics with the introduction of two novel topological indices: the forgotten eccentric neighborhood index (FENI) and the modified forgotten eccentric neighborhood index (MFENI). Uniquely developed for predicting the boiling points of various chemical substances, these indices offer groundbreaking tools in understanding and interpreting the thermal properties of compounds. The distinctiveness of our study lies in the in-depth exploration of the discriminative capabilities of FENI and MFENI. Unlike existing indices, they provide a nuanced capture of structural features essential for determining boiling points, a key factor in drug design and chemical analysis. Our comprehensive analyses demonstrate the superior predictive power of FENI and MFENI, highlighting their exceptional potential as innovative tools in the realms of chemoinformatics and pharmaceutical research. Furthermore, this study conducts an extensive investigation into their various properties. We present explicit results on the behavior of these indices in relation to diverse graph types and operations, including join, disjunction, composition and symmetric difference. These findings not only deepen our understanding of FENI and MFENI but also establish their practical versatility across a spectrum of chemical and pharmaceutical applications. Thus the introduction of FENI and MFENI represents a pivotal step forward in the predictive analysis of boiling points, setting a new standard in the field and opening avenues for future research advancements.



    Let H(U) be the class of analytic functions in the open unit disc U={zC:|z|<1} and let H[a,υ] be the subclass of H(U) including form-specific functions

    f(z)=a+aυzυ+aυ+1zυ+1+(aC),

    we denote by H=H[1,1].

    Also, A(p) should denote the class of multivalent analytic functions in U, with the power series expansion of the type:

    f(z)=zp+υ=p+1aυzυ(pN={1,2,3,..}). (1.1)

    Upon differentiating j-times for each one of the (1.1) we obtain:

    f(j)(z)=δ(p,j)zpj+υ=p+1δ(υ,j)aυzυjzU,δ(p,j)=p!(pj)!       (pN, jN0=N{0}, pj). (1.2)

    Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent functions (see [1,3,6,9,16,27,28,31]).

    For f,H, the function f is subordinate to or the function is said to be superordinate to f in U and we write f(z)(z), if there exists a Schwarz function ω in U with ω(0)=0 and |ω(z)|<1, such that f(z)=(ω(z)), zU. If is univalent in U, then f(z)(z) iff f(0)=(0) and f(U)(U). (see [7,21]).

    In the concepts and common uses of fractional calculus (see, for example, [14,15] see also [2]; the Riemann-Liouville fractional integral operator of order αC ((α)>0) is one of the most widely used operators (see [29]) given by:

    (Iα0+f)(x)=1Γ(α)x0(xμ)α1f(μ)dμ(x>0;(α)>0) (1.3)

    applying the well-known (Euler's) Gamma function Γ(α). The Erd élyi-Kober fractional integral operator of order αC((α)>0) is an interesting alternative to the Riemann-Liouville operator Iα0+, defined by:

    (Iα0+;σ,ηf)(x)=σxσ(α+η)Γ(α)x0μσ(η+1)1(xσμσ)α1f(μ)dμ (1.4)
    (x>0;(α)>0),

    which corresponds essentially to (1.3) when σ1=η=0, since

    (Iα0+;1,0f)(x)=xα(Iα0+f)(x)(x>0;(α)>0).

    Mainly motivated by the special case of the definition (1.4) when x=σ=1, η=ν1 and α=ρν, here, we take a look at the integral operator p(ν,ρ,μ) with fA(p) by (see [11])

    p(ν,ρ;)f(z)=Γ(ρ+p)Γ(ν+p)Γ(ρν)10μν1(1μ)ρν1f(zμ)dμ
    (>0;ν,ρR;ρ>ν>p;pN).

    Evaluating (Euler's) Gamma function by using the Eulerian Beta-function integral as following:

    B(α,β):={10μα1(1μ)β1dμ(min{(α),(β)}>0)Γ(α)Γ(β)Γ(α+β)(α,βCZ0),

    we readily find that

    p(ν,ρ;)f(z)={zp+Γ(ρ+p)Γ(ν+p)υ=p+1Γ(ν+υ)Γ(ρ+υ)aυzυ(ρ>ν)f(z)(ρ=ν). (1.5)

    It is readily to obtain from (1.5) that

    z(p(ν,ρ;)f(z))=(ν+p)(p(ν+1,ρ;)f(z))ν(p(ν,ρ;)f(z)). (1.6)

    The integral operator p(ν,ρ;)f(z) should be noted as a generalization of several other integral operators previously discussed for example,

    (ⅰ) If we set p=1, we get ˜I(ν,ρ;)f(z) defined by Ŕaina and Sharma ([22] with m=0);

    (ⅱ) If we set ν=β,ρ=β+1 and  =1, we obtain βpf(z)(β>p) it was presented by Saitoh et al.[24];

    (ⅲ) If we set ν=β,ρ=α+βδ+1, =1, we obtain α,δβ,pf(z)(δ>0; αδ1; β>p) it was presented by Aouf et al. [4];

    (ⅳ) If we put ν=β,ρ=α+β, =1, we get Qαβ,pf(z)(α0;β>p) it was investigated by Liu and Owa [18];

    (ⅴ) If we put p=1, ν=β,ρ=α+β, =1, we obtain αβf(z)(α0;β>1) it was introduced by Jung et al. [13];

    (ⅵ) If we put p=1, ν=α1, ρ=β1, =1, we obtain L(α,β)f(z)(α,βCZ0,Z0={0,1,2,...}) which was defined by Carlson and Shaffer [8];

    (ⅶ) If we put p=1, ν=ν1, ρ=j, =1 we obtain Iν,jf(z)(ν>0;j1) it was investigated by Choi et al. [10];

    (ⅷ) If we put p=1, ν=α,ρ=0, =1, we obtain Dαf(z)(α>1) which was defined by Ruscheweyh [23];

    (ⅸ) If we put p=1, ν=1, ρ=m, =1, we obtain Imf(z)(mN0) which was introduced by Noor [21];

    (ⅹ) If we set p=1, ν=β,ρ=β+1, =1 we obtain βf(z) which was studied by Bernadi [5];

    (ⅹⅰ) If we set p=1, ν=1, ρ=2, =1 we get f(z) which was defined by Libera [17].

    We state various definition and lemmas which are essential to obtain our results.

    Definition 1. ([20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic and univalent on ¯UE(f), where

    E(f)={ζ:ζU  and  limzζf(z)=},

    and satisfy f(ζ)0 for ζUE(f).

    Lemma 1. ([12]; see also ([19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function in U with h(0)=1, and let φ(z)H, is analytic in U. If

    φ(z)+1γzφ(z)h(z)(zU),

    where γ0 and Re(γ)0. Then

    φ(z)Ψ(z)=γzγz0tγ1h(t)dth(z)(zU),

    and Ψ(z) is the best dominant.

    Lemma 2. ([26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let  ψC with ϰC=C{0} with

    Re(1+zq(z)q(z))>max{0;Reψϰ},zU.

    If λ(z) is analytic in U, and

    ψλ(z)+ϰzλ(z)ψq(z)+ϰzq(z),

    therefore λ(z)q(z), and q is the best dominant.

    Lemma 3. ([20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose δC, with Re(δ)>0. If λH[q(0),1]Q and λ(z)+δzλ(z) is univalent in U, then

    q(z)+δzq(z)λ(z)+δzλ(z),

    implies

    q(z)λ(z)     (zU)

    and q is the best subordinant.

    For a,ϱ,c and c(cZ0) real or complex number the Gaussian hypergeometric function is given by

    2F1(a,ϱ;c;z)=1+aϱc.z1!+a(a+1)ϱ(ϱ+1)c(c+1).z22!+....

    The previous series totally converges for zU to a function analytical in U (see, for details, ([30], Chapter 14)) see also [19].

    Lemma 4. For a,ϱ and c (cZ0), real or complex parameters,

    10tϱ1(1t)cϱ1(1zt)xdt=Γ(ϱ)Γ(ca)Γ(c)2F1(a,ϱ;c;z)(Re(c)>Re(ϱ)>0); (2.1)
    2F1(a,ϱ;c;z)=2F1(ϱ,a;c;z); (2.2)
    2F1(a,ϱ;c;z)=(1z)a2F1(a,cϱ;c;zz1); (2.3)
    2F1(1,1;2;azaz+1)=(1+az)ln(1+az)az; (2.4)
    2F1(1,1;3;azaz+1)=2(1+az)az(1ln(1+az)az). (2.5)

    Throughout the sequel, we assume unless otherwise indicated 1D<C1, δ>0, >0, ν,ρR, ν>p, pN and (ρj)0. We shall now prove the subordination results stated below:

    Theorem 1. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU, (3.1)

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=(1α)((p(ν,ρ;)f(z))(j)zpj)δ+α(p(ν+1,ρ;)f(z))(j)zpj((p(ν,ρ;)f(z))(j)zpj)δ1,

    such that the powers are all the principal ones, i.e., log1 = 0. Whether

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r, (3.2)

    then

    ((p(ν,ρ;)f(z))(j)zpj)δ[p!(pj)!]δp(z), (3.3)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz)                                     (D=0),

    and [p!(pj)!]δp(z) is the best dominant of (3.3). Moreover, there are

    ((p(ν,ρ;)f(z))(j)zpj)δ>[p!(pj)!]δζ,     zU, (3.4)

    where ζ is given by:

    ζ={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δ(ν+p)α;DD1)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;C)                                     (D=0),

    then (3.4) is the best possible.

    Proof. Let

    ϕ(z)=((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ,   (zU). (3.5)

    It is observed that the function ϕ(z)H, which is analytic in U and ϕ(0)=1. Differentiating (3.5) with respect to z, applying the given equation, the hypothesis (3.2), and the knowing that

    z(p(ν,ρ;)f(z))(j+1)=(ν+p)(p(ν+1,ρ;)f(z))(j)(ν+j)(p(ν,ρ;)f(z))(j)   (0j<p), (3.6)

    we get

    ϕ(z)+zϕ(z)δ(ν+p)α(1+Cz1+Dz )r=q(z)     (zU).

    We can verify that the above equation q(z) is analytic and convex in U as following

    Re(1+zq(z)q(z))=1+(1r)(11+Cz)+(1+r)(11+Dz)>1+1r1+|C|+1+r1+|D|0   (zU).

    Using Lemma 1, there will be

    ϕ(z)p(z)=δ(ν+p)αzδ(ν+p)αz0tδ(ν+p)α1(1+Ct1+Dt)rdt.

    In order to calculate the integral, we define the integrand in the type

    tδ(ν+p)α1(1+Ct1+Dt)r=tδ(ν+p)α1(CD)r(1CDC+CDt)r,

    using Lemma 4 we obtain

    p(z)=(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0).

    On the other hand if D=0 we have

    p(z)=2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz),

    where the identities (2.1)–(2.3), were used after changing the variable, respectively. This proof the inequality (3.3).

    Now, we'll verify it

    inf{p(z):|z|<1}=p(1). (3.7)

    Indeed, we have

    (1+Cz1+Dz )r(1Cσ1Dσ)r   (|z|<σ<1).

    Setting

    (s,z)=(1+Csz1+Dsz)r   (0s1; zU)

    and

    dv(s)=δ(ν+p)αsδ(ν+p)α1ds

    where dv(s) is a positive measure on the closed interval [0, 1], we get that

    p(z)=10(s,z)dv(s),

    so that

    p(z)10(1Csσ1Dsσ)rdv(s)=p(σ)   (|z|<σ<1).

    Now, taking σ1 we get the result (3.7). The inequality (3.4) is the best possible since [p!(pj)!]δp(z) is the best dominant of (3.3).

    If we choose j=1 and α=δ=1 in Theorem 1, we get:

    Corollary 1. Let 0<r1. If

    (p(ν+1,ρ;)f(z))zp1p(1+Cz1+Dz )r,

    then

    ((p(ν,ρ;)f(z))zp1)>pζ1,     zU, (3.8)

    where ζ1 is given by:

    ζ1={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+(ν+p);DD1)(D0);2F1(r,(ν+p);1+(ν+p);C)                                     (D=0),

    then (3.8) is the best possible.

    If we choose ν=ρ=0 and  =1 in Theorem 1, we get:

    Corollary 2. Let 0j<p, 0<r1 and as fA(p) assume that

    f(j)(z)zpj0,    zU,

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=[1α(1jp)](f(j)(z)zpj)δ+α(zf(j+1)(z)pf(j)(z))(f(j)(z)zpj)δ, (3.9)

    such that the powers are all the principal ones, i.e., log1 = 0. If

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r,

    then

    (f(j)(z)zpj)δ[p!(pj)!]δp1(z), (3.10)

    where

    p1(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δpα;Dz1+Dz)(D0);2F1(r,δpα;1+δpα;Cz)                                     (D=0),

    and [p!(pj)!]δp1(z) is the best dominant of (3.10). Morover, there are

    (f(j)(z)zpj)δ>[p!(pj)!]δζ2,     zU, (3.11)

    where ζ2 is given by

    ζ2={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δpα;DD1)(D0);2F1(r,δpα;1+δpα;C)                                     (D=0),

    then (3.11) is the best possible.

    If we put δ=1 and  r=1 in Corollary 2, we get:

    Corollary 3. Let 0j<p, and for fA(p) say it

    f(j)(z)zpj0,    zU.

    Let define the function Φj by

    Φj(z)=[(1α(1jp)]f(j)(z)zpj+αf(j+1)(z)pzpj1.

    If

    Φj(z)p!(pj)!1+Cz1+Dz,

    then

    f(j)(z)zpjp!(pj)!p2(z), (3.12)

    where

    p2(z)={CD+(1CD)(1+Dz)1 2F1(1,1;1+pα;Dz1+Dz)(D0);1+pp+αCz,                                                    (D=0),

    and p!(pj)!p2(z) is the best dominant of (3.12). Morover there will be

    (f(j)(z)zpj)>p!(pj)!ζ3,     zU, (3.13)

    where ζ3 is given by:

    ζ3={CD+(1CD)(1D)1 2F1(1,1;1+pα;DD1)(D0);1pp+αC,                                                    (D=0),

    then (3.13) is the best possible.

    For C=1,D=1 and j=1 Corollary 3, leads to the next example:

    Example 1. (i) For fA(p) suppose that

    f(z)zp10,    zU.

    Let define the function Φj by

    Φj(z)=[1(ααp)]f(z)zp1+αf(z)pzp2p1+z1z,

    then

    f(z)zp1p1+z1z, (3.14)

    and

    (f(z)zp1)>pζ4,     zU, (3.15)

    where ζ4 is given by:

    ζ4=1+ 2F1(1,1;p+αα;12),

    then (3.15) is the best possible.

    (ii) For p=α=1, (i) leads to:

    For fA suppose that

    f(z)0,    zU.

    Let define the function Φj by

    Φj(z)=f(z)+zf(z)1+z1z,

    then

    (f(z))>1+2ln2,     zU.

    So the estimate is best possible.

    Theorem 2. Let 0j<p, 0<r1 as for fA(p). Assume that Fα is defined by

    Fα(z)=α(ν+p)(p(ν+1,ρ;)f(z))+(1αα(ν))(p(ν,ρ;)f(z)).  (3.16)

    If

    F(j)α(z)zpj(1α+αp)p!(pj)!(1+Cz1+Dz )r, (3.17)

    then

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!p(z), (3.18)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+(1α+αp)α;Dz1+Dz)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.18). Moreover, there will be

    ((p(ν,ρ;)f(z))(j)zpj)>p!(pj)!η,  zU, (3.19)

    where η is given by:

    η={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+(1α+αp)α;DD1)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;C)                                     (D=0),

    then (3.19) is the best possible.

    Proof. By using the definition (3.16) and the inequality (3.6), we have

    F(j)α(z)=αz(p(ν,ρ;)f(z))(j+1)+(1α+αj)(p(ν,ρ;)f(z))(j),  (3.20)

    for 0j<p. Putting

    ϕ(z)=(pj)!p!(p(ν,ρ;)f(z))(j)zpj,   (zU), (3.21)

    we have that ϕH. Differentiating (3.21), and using (3.17), (3.20), we get

    ϕ(z)+zϕ(z)(1α+αp)α(1+Cz1+Dz )r     (zU).

    Following the techniques of Theorem 1, we can obtain the remaining part of the proof.

    If we choose j=1 and r=1 in Theorem 2, we get:

    Corollary 4. For fA(p) let the function Fα define by 3.16. If

    Fα(z)zp1p(1α+αp)1+Cz1+Dz ,

    then

    ((p(ν,ρ;)f(z))zp1)>pη1,  zU, (3.22)

    where η1 is given by:

    η1={CD+(1CD)(1D)1 2F1(1,1;1+1α+αpα;DD1)(D0);11α+αp1+αpC                                                         (D=0),

    then (3.22) is the best possible.

    Example 2. If we choose p=C=α=1 and D=1 in Corollary 4, we obtain:

    For

    F(z)=(ν+1)((ν+1,ρ;)f(z))(ν)((ν,ρ;)f(z)).

    If

    F(z)1+z1z,

    then

    (((ν,ρ;)f(z)))>1+2ln2,  zU,

    the result is the best possible.

    Theorem 3. Let 0j<p, 0<r1 as for θ>p assume that Jp,θ:A(p)A(p) defined by

    Jp,θ(f)(z)=p+θzθz0tθ1f(t)dt,    zU. (3.23)

    If

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!(1+Cz1+Dz )r, (3.24)

    then

    (p(ν,ρ;)Jp,θ(f)(z))(j)zpjp!(pj)!p(z), (3.25)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+θ+p;Dz1+Dz)(D0);2F1(r,θ+p;1+θ+p;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.25). Moreover, there will be

    ((p(ν,ρ;)Jp,θ(f)(z))(j)zpj)>p!(pj)!β,      zU, (3.26)

    where β is given by:

    β={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+θ+p;DD1)(D0);2F1(r,θ+p;1+θ+p;C)                                     (D=0),

    then (3.26) is the best possible.

    Proof. Suppose

    ϕ(z)=(pj)!p!(p(ν,ρ;)Jp,θ(f)(z))(j)zpj,   (zU),

    we have that ϕH. Differentiating the above definition, by using (3.24) and

    z(p(ν,ρ;)Jp,θ(f)(z))(j+1)=(θ+p)(p(ν,ρ;)f(z))(j)(θ+j)(p(ν,ρ;)Jp,θ(f)(z))(j)   (0j<p),

    we get

    ϕ(z)+zϕ(z)θ+p(1+Cz1+Dz )r.

    Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1.

    If we set j=1 and r=1 in Theorem 3, we get:

    Corollary 5. For θ>p, let the operator Jp,θ:A(p)A(p) defined by (3.25). If

    (p(ν,ρ;)f(z))zp1p1+Cz1+Dz ,

    then

    ((p(ν,ρ;)Jp,θ(f)(z))zp1)>pβ1,     zU, (3.27)

    where β1 is given by:

    β1={CD+(1CD)(1D)1 2F1(1,1;1+θ+p;DD1)(D0);1θ+p1+θ+pC                                                   (D=0),

    then (3.27) is the best possible.

    Example 3. If we choose p=C=θ=1 and D=1 in Corollary 5, we get:

    If

    ((ν,ρ;)f(z))1+z1z,

    then

    (((ν,ρ;)J1,1(f)(z)))>1+4(1ln2),

    the result is the best possible.

    Theorem 4. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δ(ν+p)α},  zU. (3.28)

    Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδ(ν+p)zq(z). (3.29)

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq(z), (3.30)

    and q(z) is the best dominant of (3.30).

    Proof. Let ϕ(z) is defined by (3.5), from Theorem 1 we get

    [(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z). (3.31)

    Combining (3.29) and (3.31) we find that

    ϕ(z)+αδ(ν+p)zϕ(z)q(z)+αδ(ν+p)zq(z). (3.32)

    The proof of Theorem 4 follows by using Lemma 2 and (3.32).

    Taking q(z)=(1+Cz1+Dz)r in Theorem 4, we obtain:

    Corollary 6. Suppose that

    Re(1Dz1+Dz+(r1)(CD)z(1+Dz)(1+Cz))>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)(1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz).

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+Cz1+Dz )r, (3.33)

    so (1+Cz1+Dz)r is the best dominant of (3.33).

    Taking q(z)=1+Cz1+Dz in Theorem 4, we get:

    Corollary 7. Suppose that

    Re(1Dz1+Dz)>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+Cz1+Dz , (3.34)

    so 1+Cz1+Dz is the best dominant of (3.34).

    If we put ν=ρ=0 and  =1 in Theorem 4, we get:

    Corollary 8. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δpα},  zU.

    For fA(p) satisfies

    f(j)(z)zpj0,    zU.

    Let the function Φj defined by (3.9), satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδpzq(z). (3.35)

    Then,

    ((pj)!p!f(j)(z)zpj)δq(z), (3.36)

    so q(z) is the best dominant of (3.36).

    Taking C=1 and D=1 in Corollaries 6 and 7 we get:

    Example 4. (i) For fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)(1+z1z)r+αδ(ν+p)(1+z1z)r2rz1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+z1z)r, (3.37)

    so (1+z1z)r is the best dominant of (3.37).

    (ii) For fA(p) say it

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)1+z1z+αδ(ν+p)2z1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+z1z, (3.38)

    so 1+z1z is the best dominant of (3.38).

    If we put p=C=α=δ=1, D=1 and j=0 in Corollary 8 we get:

    Example 5. For fA suppose that

    f(z)z0,    zU,

    and

    f(z)(1+z1z)r+(1+z1z)r2rz1z2.

    Then,

    f(z)z(1+z1z)r, (3.39)

    and (1+z1z)r is the best dominant of (3.39).

    Remark 1. For  ν=ρ=0, =p=r=1 and j=0 in Theorem 4, we get the results investigated by Shanmugam et al. ([25], Theorem 3.1).

    Theorem 5. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If q is convex (univalent) function in U, and

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z),

    then

    q(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.40)

    so q(z) is the best subordinate of (3.40).

    Proof. Let ϕ is defined by (3.5), from (3.31) we get

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z).

    The proof of Theorem 5 followes by an application of Lemma 3.

    Taking q(z)=(1+Cz1+Dz)r in Theorem 5, we get:

    Corollary 9. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    (1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz)[(pj)!p!]δΦj(z),

    then

    (1+Cz1+Dz )r((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.41)

    so (1+Cz1+Dz)r is the best dominant of (3.41).

    Taking q(z)=1+Cz1+Dz and r=1 in Theorem 5, we get:

    Corollary 10. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Assume that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2[(pj)!p!]δΦj(z),

    then

    1+Cz1+Dz ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.42)

    so 1+Cz1+Dz is the best dominant of (3.42).

    Combining results of Theorems 4 and 5, we have

    Theorem 6. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δH[q(0),1]Q

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). Let q1 is convex (univalent) function in U, and assume that q2 is convex in U, that q2 satisfies (3.28). If

    q1(z)+αδ(ν+p)zq1(z)[(pj)!p!]δΦj(z)q2(z)+αδ(ν+p)zq2(z),

    then

    q1(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq2(z)

    and q1(z) and q2(z) are respectively the best subordinate and best dominant of the above subordination.

    We used the application of higher order derivatives to obtained a number of interesting results concerning differential subordination and superordination relations for the operator p(ν,ρ;)f(z) of multivalent functions analytic in U, the differential subordination outcomes are followed by some special cases and counters examples. Differential sandwich-type results have been obtained. Our results we obtained are new and could help the mathematicians in the field of Geometric Function Theory to solve other special results in this field.

    This research has been funded by Deputy for Research & innovation, Ministry of Education through initiative of institutional funding at university of Ha'il, Saudi Arabia through project number IFP-22155.

    The authors declare no conflict of interest.



    [1] M. Randic̀ , Generalized molecular descriptors. J. Math. Chem., 7 (1991), 155–168. https://doi.org/10.1007/BF01200821 doi: 10.1007/BF01200821
    [2] S. Nikolić, N. Trinajstić, The Wiener index: Development and applications, Croat. Chem. Acta, 68 (1995), 105–129.
    [3] I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
    [4] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157 (2009), 804–811. https://doi.org/10.1016/j.dam.2008.06.015 doi: 10.1016/j.dam.2008.06.015
    [5] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2013), 213–220.
    [6] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
    [7] A. A. Khabyah, S. Zaman, A. N. A. Koam, A. Ahmad, A. Ullah, Minimum Zagreb eccentricity indices of two-mode network with applications in boiling point and benzenoid hydrocarbons, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10091393 doi: 10.3390/math10091393
    [8] X. J. Wang, M. F. Hanif, H. Mahmood, S. Manzoor, M. K. Siddiqui, M. Cancan, On computation of entropy measures and their statistical analysis for complex benzene systems, Polycycl. Aromat. Comp., 43 (2023), 7754–7768. https://doi.org/10.1080/10406638.2022.2139734 doi: 10.1080/10406638.2022.2139734
    [9] F. Arjmand, F. Shafiei, Prediction of the normal boiling points and enthalpy of vaporizations of alcohols and phenols using topological indices, J. Struct. Chem., 59 (2018), 748–754. https://doi.org/10.1134/S0022476618030393 doi: 10.1134/S0022476618030393
    [10] I. Redžepović, B. Furtula, Predictive potential of eigenvalue-based topological molecular descriptors, J. Comput. Aided Mol. Des., 34 (2020), 975–982. https://doi.org/10.1007/s10822-020-00320-2 doi: 10.1007/s10822-020-00320-2
    [11] A. Rauf, M. Naeem, S. U. Bukhari, Quantitative structure-property relationship of Ev-degree and Ve-degree based topological indices: Physico-chemical properties of benzene derivatives, Int. J. Quantum Chem., 122 (2022), e26851. https://doi.org/10.1002/qua.26851 doi: 10.1002/qua.26851
    [12] Y. L. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881
    [13] M. Rizwan, A. A. Bhatti, M. Javaid, Y. L. Shang, Conjugated tricyclic graphs with maximum variable sum exdeg index, Heliyon, 9 (2023), E15706. https://doi.org/10.1016/j.heliyon.2023.e15706 doi: 10.1016/j.heliyon.2023.e15706
    [14] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z
    [15] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
    [16] E. D. Molina, J. M. Rodriguez, J. L. Sanchez, J. M. Sigarreta, Applications of the inverse degree index to molecular structures, J. Math. Chem., 2023. https://doi.org/10.1007/s10910-023-01526-z
    [17] G. F. Su, S. Wang, J. F. Du, M. J. Gao, K. C. Das, Y. L. Shang, Sufficient conditions for a graph to be -connected, -deficient, -Hamiltonian and -independent in terms of the forgotten topological index, Mathematics, 10 (2022), 1–11. https://doi.org/10.3390/math10111802 doi: 10.3390/math10111802
    [18] H. Ahmed, M. R. Salestina, A. Alwardi, N. D. Soner, Forgotten domination, hyper domination and modified forgotten domination indices of graphs, J. Discrete Math. Sci. Cryptogr., 24 (2021), 353–368. https://doi.org/10.1080/09720529.2021.1885805 doi: 10.1080/09720529.2021.1885805
    [19] N. De, S. M. A. Nayeem, A. Pal, F-index of some graph operations, Discrete Math. Algorithms Appl., 8 (2016), 1650025. https://doi.org/10.1142/S1793830916500257 doi: 10.1142/S1793830916500257
    [20] H. S. Ramane, R. B. Jummannaver, Note on forgotten topological index of chemical structure in drugs, Appl. Math. Nonlinear Sci., 1 (2016), 369–374. https://doi.org/10.21042/AMNS.2016.2.00032 doi: 10.21042/AMNS.2016.2.00032
    [21] S. Mondal, N. De, A. Pal, Onsome new neighbourhood degree based indices, Acta Chem. Iasi, 27 (2019), 31–46.
    [22] F. Harary, Graph theory, New Delhi: Narosa Publishing House, 2001.
    [23] H. Ahmed, A. Saleh, R. Ismail, M. R. Salestina, A. Alameri, Computational analysis for eccentric neighborhood Zagreb indices and their significance, Heliyon, 9 (2023), E17998. https://doi.org/10.1016/j.heliyon.2023.e17998 doi: 10.1016/j.heliyon.2023.e17998
    [24] S. Wazzan, A. Saleh, New versions of locating indices and their significance in predicting the physicochemical properties of benzenoid hydrocarbons, Symmetry, 14 (2022), 1–18. https://doi.org/10.3390/sym14051022 doi: 10.3390/sym14051022
    [25] S. Wazzan, H. Ahmed, Symmetry-adapted domination indices: The enhanced domination sigma index and its applications in QSPR studies of octane and its isomers, Symmetry, 15 (2023), 1–32. https://doi.org/10.3390/sym15061202 doi: 10.3390/sym15061202
    [26] S. Wazzan, N. U. Ozalan, Exploring the symmetry of curvilinear regression models for enhancing the analysis of fibrates drug activity through molecular descriptors, Symmetry, 15 (2023), 1–22. https://doi.org/10.3390/sym15061160 doi: 10.3390/sym15061160
    [27] K. C. Das, S. Mondal, On neighborhood inverse sum indeg index of molecular graphs with chemical significance, Inform. Sci., 623 (2023), 112–131. https://doi.org/10.1016/j.ins.2022.12.016 doi: 10.1016/j.ins.2022.12.016
    [28] M. Demirci, S. Delen, A. S. Cevik, I. N. Cangul, Omega index of line and total graphs, J. Math., 2021 (2021), 1–6. https://doi.org/10.1155/2021/5552202 doi: 10.1155/2021/5552202
    [29] N. U. Özalan, Some indices over a new algebraic graph, J. Math., 2021 (2021), 1–8. https://doi.org/10.1155/2021/5510384 doi: 10.1155/2021/5510384
    [30] B. H. Xing, N. U. Ozalan, J. B. Liu, The degree sequence on tensor and cartesian products of graphs and their omega index, AIMS Math., 8 (2023), 16618–16632. https://doi.org/10.3934/math.2023850 doi: 10.3934/math.2023850
    [31] T. Doslic, M. Saheli, Eccentric connectivity index of composite graphs, Util. Math., 95 (2014), 3–22.
    [32] W. C. Chen, H. Lu, Y. N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bull. Math., 21 (1997), 337–348.
    [33] GaussView 6. Available from: https://gaussian.com/gaussview6/.
    [34] M. J. Frisch, A. B Nielsen, H. P. Hratchian, Gaussian 09 programmer's reference, 2009.
    [35] B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, et al., Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules, J. Phys. Chem. A, 106 (2002), 6102–6113. https://doi.org/10.1021/jp020124t doi: 10.1021/jp020124t
    [36] P. Y. Chan, C. M. Tong, M. C. Durrant, Estimation of boiling points using density functional theory with polarized continuum model solvent corrections, J. Mol. Graph. Model., 30 (2011), 120–128. https://doi.org/10.1016/j.jmgm.2011.06.010 doi: 10.1016/j.jmgm.2011.06.010
    [37] A. P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem., 100 (1996), 16502–16513. https://doi.org/10.1021/jp960976r doi: 10.1021/jp960976r
    [38] Z. Raza, S. Akhter, Y. L. Shang, Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network, Front. Chem., 10 (2023), 1067874. https://doi.org/10.3389/fchem.2022.1067874 doi: 10.3389/fchem.2022.1067874
    [39] S. Nikolić, A. Miličević, N. Trinajstić, A. Jurić, On use of the variable Zagreb vM2 index in QSPR: Boiling points of benzenoid hydrocarbons, Molecules, 9 (2004), 1208–1221. https://doi.org/10.3390/91201208 doi: 10.3390/91201208
    [40] Ö. C. Havare, Quantitative structure analysis of some molecules in drugs used in the treatment of COVID-19 with topological indices, Polycycl. Aromat. Comp., 42 (2022), 5249–5260. https://doi.org/10.1080/10406638.2021.1934045 doi: 10.1080/10406638.2021.1934045
    [41] G. V. Rajasekharaiah, U. P. Murthy, Hyper-Zagreb indices of graphs and its applications, J. Algebra Combin. Discrete Struct. Appl., 8 (2021), 9–22. https://doi.org/10.13069/jacodesmath.867532 doi: 10.13069/jacodesmath.867532
    [42] F. C. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, E. C. Muniz, Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: The Fi index, J. Mol. Liq., 165 (2012), 125–132. https://doi.org/10.1016/j.molliq.2011.10.019 doi: 10.1016/j.molliq.2011.10.019
    [43] S. A. K. Kirmani, P. Ali, J. Ahmad, Topological coindices and quantitative structure-property analysis of antiviral drugs investigated in the treatment of COVID-19, J. Chem., 2022 (2022), 1–15. https://doi.org/10.1155/2022/3036655 doi: 10.1155/2022/3036655
    [44] H. C. Liu, H. L. Chen, Q. Q. Xiao, X. N. Fang, Z. K. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem., 121 (2021), e26689. https://doi.org/10.1002/qua.26689 doi: 10.1002/qua.26689
  • This article has been cited by:

    1. Jian Sun, Xin Liu, Yang Zhang, Quaternion Tensor Completion via QR Decomposition and Nuclear Norm Minimization, 2024, 1070-5325, 10.1002/nla.2608
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1595) PDF downloads(51) Cited by(1)

Figures and Tables

Figures(5)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog