
The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to M-norm, where M is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the M-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature.
Citation: Anjali, Seema Mehra, Renu Chugh, Salma Haque, Nabil Mlaiki. Iterative algorithm for solving monotone inclusion and fixed point problem of a finite family of demimetric mappings[J]. AIMS Mathematics, 2023, 8(8): 19334-19352. doi: 10.3934/math.2023986
[1] | Ali N. A. Koam, Adnan Khalil, Ali Ahmad, Muhammad Azeem . Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph. AIMS Mathematics, 2024, 9(4): 10078-10094. doi: 10.3934/math.2024493 |
[2] | Ali N. A. Koam . Metric based resolvability of cycle related graphs. AIMS Mathematics, 2024, 9(4): 9911-9925. doi: 10.3934/math.2024485 |
[3] | Naila Mehreen, Rashid Farooq, Shehnaz Akhter . On partition dimension of fullerene graphs. AIMS Mathematics, 2018, 3(3): 343-352. doi: 10.3934/Math.2018.3.343 |
[4] | Suliman Khan, Sakander Hayat, Asad Khan, Muhammad Yasir Hayat Malik, Jinde Cao . Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications. AIMS Mathematics, 2021, 6(4): 3947-3973. doi: 10.3934/math.2021235 |
[5] | Moussa Benoumhani . Restricted partitions and convex topologies. AIMS Mathematics, 2025, 10(4): 10187-10203. doi: 10.3934/math.2025464 |
[6] | Li Liu, Long Zhang, Huaxiang Zhang, Shuang Gao, Dongmei Liu, Tianshi Wang . A data partition strategy for dimension reduction. AIMS Mathematics, 2020, 5(5): 4702-4721. doi: 10.3934/math.2020301 |
[7] | Sakander Hayat, Bagus Imanda, Asad Khan, Mohammed J. F. Alenazi . Three infinite families of Hamilton-connected convex polytopes and their detour index. AIMS Mathematics, 2025, 10(5): 12343-12387. doi: 10.3934/math.2025559 |
[8] | Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854 |
[9] | Ahmed Alamer, Hassan Zafar, Muhammad Javaid . Study of modified prism networks via fractional metric dimension. AIMS Mathematics, 2023, 8(5): 10864-10886. doi: 10.3934/math.2023551 |
[10] | Jesús Gómez-Gardeñes, Ernesto Estrada . Network bipartitioning in the anti-communicability Euclidean space. AIMS Mathematics, 2021, 6(2): 1153-1174. doi: 10.3934/math.2021070 |
The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to M-norm, where M is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the M-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature.
Let ψ be a simple, connected graph with vertex set V(ψ) and edge set E(ψ). The distance d(ρ1,ρ2), ρ1,ρ2∈V(ψ) is the length of shortest path between ρ1 and ρ2. Let Q={v1,v2,…,vj} be an ordered set of vertices of ψ. Let ρ1∈V(ψ), the representations denoted by r(ρ1|Q) is the j-tuple distances as (d(ρ1|v1),d(ρ1|v2),…,d(ρ1|vj)). If distinct vertices of ψ have distinct representation w.r.t. Q then Q is called the resolving set. The minimum number of j in the resolving set is known as the metric dimension of ψ and written as dim(ψ). Motivated by the problem of determining an intruder's location in a network in a unique way, Slater introduced the definition of metric dimension in [27] and later independently by Harary and Melter in [11]. The concept of resolving set, metric basis and metric dimension appeared in the literature [4,6,8,9,10,12,15,19,28,30,31].
A partition of a set is collection of its subsets, no pair of which overlap, such that the union of all the subsets is the whole set and partition dimension is related to the partitioning of the vertex set V(Ω) and resolvability. The partition dimension is a generalized variant of matric dimension. Another type of dimension of a graph, is called partition dimension. Let Γ={Γ1,Γ2…,Γj} and r(ρ1|Γ)={d(ρ1,Γ1),d(ρ1,Γ2),…,d(ρ1,Γj)} are named as j-ordered partition of vertices and j-tuple representations respectively. If the representations of every ρ1 in V(ψ) w.r.t. Γ is different, then Γ is the resolving partition of the vertex set and the minimum count of the resolving partition set of V(ψ) is named as the partition dimension of ψ and it is represented by pd(ψ) [7]. The problem of determining the resolving set of a graph is NP-hard [20]. As, the problem of finding the partition dimension is a generalize version of metric dimension, therefore partition dimension is also a NP-complete problem. It is natural to think that there is a relation between metric and partition dimension, [7] proved for any non-trivial connected graph ψ,
pd(ψ)≤dim(ψ)+1. | (1.1) |
In [22], fullerene graph of chemical structure is discussed and proved that the graph has constant and bounded partition dimension. For more and interesting results on constant partition dimension can see [16,21,24]. To find the exact value of partition dimension of a graph is not easy therefore, various results on the bounds of the partition dimension are discussed in literature, such as the partition dimension of Cartesian product operation on different graphs are studies and provided extensive bounds on partition dimension [29]. In [1] different bounds of partition dimension of subdivision of different graphs are discussed. In [25,26] provide bounds of partition dimension of tree and uni-cyclic graphs in the form of subgraphs.
The applications of partition resolving sets can be found in different fields such as robot navigation [19], Djokovic-Winkler relation [9], strategies for the mastermind game [10], network discovery and verification [5], in chemistry for representing chemical compounds [17,18] and in problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [23] for more applications see [6,11]. Following theorems are very helpful in finding the partition dimension of a graph.
Theorem 1.1. [7] Let Γ be a resolving partition of V(ψ) and ρ1,ρ2∈V(ψ). If d(ρ1,z)=d(ρ2,z) for all vertices z∈V(ψ)∖(ρ1,ρ2), then ρ1,ρ2 belong to different classes of Γ.
Theorem 1.2. [7] Let ψ be a simple and connected graph, then
● pd(ψ) is 2 iff ψ is a path graph
● pd(ψ) is n iff ψ is a complete graph,
Let R be a family of connected graphs Gn:R=(Gn)n≥1, where |V(ψ)|=λ(n) and limn→∞λ(n)=∞. If there exists a constant α≥1 such that pd(ψ)≤α,n≥1, then R has bounded partition dimension otherwise unbounded. Imran et al. [14] studied the metric dimension of Rpn, Dpn, and Qpn, convex polytopes which motivates us to find the partition dimension of same families of convex polytopes. In this paper, the partition dimension of same families of convex polytopes are studied. We determine the partition dimension of Rpn, in second section. In the third section, the partition dimension of the graph Dpn of a convex polytope with pendent edges is presented. The fourth section remains for the partition dimension of the graph Qpn.
The convex polytope Rpn (p for pendant edges) is a planar graph and obtained from the convex polytope Rn defined in [13]. If we attach a pendant edge at each vertex of outer layer of Rn then we obtained a new planer graph Rpn as shown in Figure 1. The vertex set of Rpn, V(RPn)={V(Rn)}∪{xα:1≤α≤n} and edge set of Rpn, E(RPn)={E(Rn)}∪{wαxα:1≤α≤n}.
For calculation, {uα:1≤α≤n} represents the inner cycle, the cycle induced by {vα:1≤α≤n} is interior cycle, exterior cycle containing {wα:1≤α≤n} set of vertices and pendant vertices named {xα:1≤α≤n}.
Theorem 2.1. Let Rpn be a polytopes with n≥6. Then pd(Rpn)≤4.
Proof. We splits the proof into following two cases.
Case 1: When n=2β,β≥3,β∈N. We partition the vertices of Rpn into four partition resolving sets Θ={Γ1,Γ2,Γ3,Γ4} where Γ1={u1}, Γ2={u2}, Γ3={uβ+1} and Γ4={∀V(Rpn)|∉{Γ1,Γ2,Γ3}}. It suffice to show that if every vertex of Rpn have different representation w.r.t. resolving set Γ, then pd(Rpn)≤4. We give the representations of all vertices w.r.t. resolving partition set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3≤α≤β, then r(uβ|Γ)=(α−1,α−2,β−α+1,0). If β+2≤α≤2β, then r(uβ|Γ)=(2β−α+1,2β−α+2,α−β−1,0). There are no two vertices have same representation in inner cycle of Rpn.
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α=1, then r(vβ|Γ)=(1,1,β,0). If 2≤α≤β, then r(vβ|Γ)=(α,α−1,β−α+1,0). If α=β+1, then r(vβ|Γ)=(β,β,1,0). If β+2≤α≤2β, then r(vβ|Γ)=(2β−α+1,2β−α+2,α−β,0). There are also no two vertices have same representation in interior cycle of Rpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If α=1, then r(wβ|Γ)=(2,2,β+1,0). If 2≤α≤β+1, then r(wβ|Γ)=(α+1,α,β−α+2,0). If α=β+2, then r(wβ|Γ)=(β+1,β+1,2,0). If β+3≤α≤2β, then r(wβ|Γ)=(2β−α+2,2β−α+3,α−β+1,0). Again there are no two vertices have same representation also in exterior cycle of Rpn. The representations of pendant vertices w.r.t. Γ are shown in Table 1. Again we can see that there are no two vertices have same representation of pendant vertices of Rpn.
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β | 2β−α+3 | 2β−α+4 | α−β+2 | 0 |
It is easy to verify that all the vertices of Rpn have unique representation w.r.t. resolving partition Γ. Its means we can resolve the vertices of Rpn into four partition resolving sets, when n is even.
Case 2: When n=2β+1,β≥3,β∈N. Again we resolve the vertices of Rpn into four partition resolving sets Γ={Γ1,Γ2,Γ3,Γ4} where Γ1={u1}, Γ2={u2}, Γ3={uβ+1} and Γ4={∀V(Rpn)|∉{Γ1,Γ2,Γ3}}. It suffice to show that if every vertices of Rpn have different representation w.r.t. resolving set Γ, then pd(Rpn)≤4. {We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3≤α≤β, then r(uβ|Γ)=(α−1,α−2,β−α+1,0). If α=β+2, then r(uβ|Γ)=(β,β,1,0). If β+3≤α≤2β+1, then r(uβ|Γ)=(2β−α+2,2β−α+3,α−β−1,0). There are no two vertices have same representation in inner cycle of Rpn.
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α=1, then r(vβ|Γ)=(1,1,β,0). If 2≤α≤β, then r(vβ|Γ)=(α,α−1,β−α+1,0). If α=β+1, then r(vβ|Γ)=(β+1,β,1,0). If β+2≤α≤2β+1, then r(vβ|Γ)=(2β−α+2,2β−α+3,α−β,0). There are also no two vertices have same representation in interior cycle of Rpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are: If α=1, then r(wβ|Γ)=(2,2,β+1,0). If 2≤α≤β, then r(wβ|Γ)=(α+1,α,β−α+2,0). If α=β+1, then r(wβ|Γ)=(β+2,β+1,2,0). If β+2≤α≤2β+1, then r(wβ|Γ)=(2β−α+3,2β−α+4,α−β+1,0). Again there are no two vertices have same representation also in exterior cycle of Rpn.
The pendant vertices having the representations w.r.t. Γ shown in Table 2. Again we can see that there are no two vertices have same representation of pendant vertices of Rpn.
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+3 | β+2 | 3 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+4 | 2β−α+5 | α−β+2 | 0 |
It is easy to verify that all the vertices of Rpn have unique representation w.r.t. resolving partition Γ. Its means we can also resolve the vertices of Rpn into four partition resolving sets, when n is odd.
We note that from Case 1 and 2, there are no two vertices having the same representations implying that pd(Rpn)≤4.
The convex polytope DPn is a planar graph and if we attach a pendant edge at each vertex of outer cycle of Dn [2] then we obtained a new plane graph DPn as shown in Figure 2. The vertex and edge set V(DPn)={V(Dn)}∪{yα:1≤α≤n}, E(DPn)={E(Dn)}∪{xαyα:1≤α≤n} are respectively. For calculation, {uα:1≤α≤n} represents the inner cycle, the cycle induced by {vα:1≤α≤n} is interior cycle, exterior cycle containing {wα:1≤α≤n} set of vertices, {xα:1≤α≤n} labeled as outer cycle and pendant vertices named for {yα:1≤α≤n}.
Theorem 3.1. Let DPn be a polytopes with n≥6. Then pd(DPn)≤4.
Proof. We split the proof of above theorem into following two cases.
Case 1: When n=2β,β≥3,β∈N. We partition the vertices of Dpn into four partition sets Γ={Γ1,Γ2,Γ3,Γ4} where Γ1={u1}, Γ2={u2}, Γ3={uβ+1} and Γ4={∀V(Dpn)|∉{Γ1,Γ2,Γ3}}. It suffice to show that if every vertices of Dpn have different representation w.r.t. resolving set Γ, then pd(Dpn)≤4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3≤α≤β, then r(uβ|Γ)=(α−1,α−2,β−α+1,0). If β+2≤α≤2β, then r(uβ|Γ)=(2β−α+1,2β−α+2,α−β−1,0). There are no two vertices have same representation in inner cycle of Dpn.
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α=1, then r(vβ|Γ)=(1,2,β+1,0). If 2≤α≤β, then r(vβ|Γ)=(α,α−1,β−α+2,0). If α=β+1, then r(vβ|Γ)=(β,β,1,0). If β+2≤α≤2β, then r(vβ|Γ)=(2β−α+2,2β−α+3,α−β,0). There are also no two vertices have same representation in interior cycle of Dpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If α=1, then r(wβ|Γ)=(2,2,β+1,0). If 2≤α≤β, then r(wβ|Γ)=(α+1,α,β−α+2,0). If α=β+1, then r(wβ|Γ)=(β+1,β+1,2,0). If β+2≤α≤2β, then r(wβ|Γ)=(2β−α+2,2β−α+3,α−β+1,0). Again there are no two vertices have same representation also in exterior cycle of Dpn.
The vertices on outer cycle and pendant vertices having the representations w.r.t. Γ as shown in Tables 3 and 4. Again we can see that there are no two vertices have same representation in outer cycle and pendant vertices of Dpn.
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β | 2β−α+3 | 2β−α+4 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+3 | β+3 | 4 | 0 |
yα: β+2≤α≤2β−1 | 2β−α+4 | 2β−α+5 | α−β+3 | 0 |
It is easy to verify that all the vertices of Dpn have unique representation w.r.t. resolving partition Γ. Its means we can resolve the vertices of Dpn into four partition resolving sets, when n is even.
Case 2: When n=2β+1,β≥3,β∈N. Again we resolve the vertices of Dpn into four partition resolving sets Γ={Γ1,Γ2,Γ3,Γ4} where Γ1={u1}, Γ2={u2}, Γ3={uβ+1} and Γ4={∀V(Dpn)|∉{Γ1,Γ2,Γ3}}. It suffice to show that if every vertices of Dpn have different representation w.r.t. resolving set Γ, then pd(Dpn)≤4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3≤α≤β, then r(uβ|Γ)=(α−1,α−2,β−α+1,0). If α=β+2, then r(uβ|Γ)=(β,β,1,0). If β+3≤α≤2β+1, then r(uβ|Γ)=(2β−α+1,2β−α+2,α−β−1,0). There are no two vertices have same representation in inner cycle of Dpn.
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α=1, then r(vβ|Γ)=(1,2,β+1,0). If 2≤α≤β+1, then r(vβ|Γ)=(α,α−1,β−α+2,0). If α=β+2, then r(vβ|Γ)=(β+1,β+1,2,0). If β+3≤α≤2β+1, then r(vβ|Γ)=(2β−α+2,2β−α+3,α−β,0). There are also no two vertices have same representation in interior cycle of Dpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If α=1, then r(wβ|Γ)=(2,2,β+1,0). If 2≤α≤β, then r(wβ|Γ)=(α+1,α,β−α+2,0). If α=β+1, then r(wβ|Γ)=(β+2,β+1,2,0). If β+2≤α≤2β+1, then r(wβ|Γ)=(2β−α+3,2β−α+4,α−β+1,0). Again there are no two vertices have same representation also in exterior cycle of Dpn.
The vertices on outer cycle and pendant vertices having the representations w.r.t. Γ as shown in Tables 5 and 6. Again we can see that there are no two vertices have same representation in outer cycle and pendant vertices of Dpn.
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+4 | 2β−α+5 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 4 | 4 | β+3 | 0 |
xα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
xα: α=β+1 | β+3 | β+3 | 4 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+5 | 2β−α+6 | α−β+3 | 0 |
It is easy to verify that all the vertices of Dpn have unique representation w.r.t. resolving partition Γ. Its means we can also resolve the vertices of Dpn into four partition resolving sets, when n is odd.
We note that from Case 1 and 2, there are no two vertices having the same representations implying that pd(Tpn)≤4.
The convex polytope QPn is a planar graph and If we attach a pendant edge at each vertex of outer cycle of Qn [3] then we obtained a new plane graph QPn as shown in Figure 3. The vertex and edge set V(QPn)={V(αn)}∪{yα:1≤α≤n}, E(QPn)={E(Qn)}∪{xαyα:1≤α≤n} are respectively.
For convenience, {uα:1≤α≤n} represents the inner cycle, the cycle induced by {vα:1≤α≤n} is interior cycle, exterior cycle containing {wα:1≤α≤n} set of vertices, {xα:1≤α≤n} are exterior vertices, and pendant vertices named for {yα:1≤α≤n}.
Theorem 4.1. Let QPn be a polytopes with n≥6. Then pd(QPn)≤4.
Proof. Case 1: When n=2β,β≥3,β∈N. We partition the vertices of Qpn into four partition resolving sets Γ={Γ1,Γ2,Γ3,Γ4} where Γ1={u1}, Γ2={u2}, Γ3={uβ+1} and Γ4={∀V(Qpn)|∉{Γ1,Γ2,Γ3}}. It suffice to show that if every vertices of Qpn have different representation w.r.t. resolving set Γ, then pd(Qpn)≤4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3≤α≤β, then r(uβ|Γ)=(α−1,α−2,β−α+1,0). If β+2≤α≤2β, then r(uβ|Γ)=(2β−α+1,2β−α+2,α−β−1,0). There are no two vertices have same representation in inner cycle of Qpn.
The vertices on interior cycle having the representations w.r.t. Γ which are:
If β=1, then r(vβ|Γ)=(1,2,α+1,0). If 2≤α≤β, then r(vβ|Γ)=(α,α−1,β−α+2,0). If β+2≤α≤2β, then r(vβ|Γ)=(2β−α+2,2β−α+3,α−β,0). There are also no two vertices have same representation in interior cycle of Qpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β=1, then r(vβ|Γ)=(2,2,α+1,0). If 2≤α≤β, then r(wβ|Γ)=(α+1,α,β−α+2,0). If α=β+1, then r(vβ|Γ)=(α+1,α+1,2,0). If β+2≤α≤2β, then r(wβ|Γ)=(2β−α+2,2β−α+3,α−β+1,0). Again there are no two vertices have same representation also in exterior cycle of Qpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β=1, then r(vβ|Γ)=(3,3,α+2,0). If 2≤α≤β, then r(wβ|Γ)=(α+2,α+1,β−α+3,0). If α=β+1, then r(vβ|Γ)=(α+2,α+2,3,0). If β+2≤α≤2β, then r(wβ|Γ)=(2β−α+3,2β−α+4,α−β+2,0). Again there are no two vertices have same representation also in exterior cycle of Qpn.
The pendant vertices having the representations w.r.t. Γ as shown in Table 7. Again we can see that there are no two vertices have same representation in pendant vertices of Qpn.
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+3 | β+3 | 4 | 0 |
yα: β+2≤α≤2β | 2β−α+4 | 2β−α+5 | α−β+3 | 0 |
It is easy to verify that all the vertices of Qpn have unique representation w.r.t. resolving partition Γ. Its means we can resolve the vertices of Qpn into four partition resolving sets, when n is even.
Case 2: When n=2β+1,β≥3,β∈N. Again we resolve the vertices of Qpn into four partition resolving sets Γ={Γ1,Γ2,Γ3,Γ4} where Γ1={u1}, Γ2={u2}, Γ3={uβ+1} and Γ4={∀V(Qpn)|∉{Γ1,Γ2,Γ3}}. It suffice to show that if every vertices of Qpn have different representation w.r.t. resolving set Γ, then pd(Qpn)≤4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3≤α≤β, then r(uβ|Γ)=(α−1,α−2,β−α+1,0). If α=β+2, then r(uβ|Γ)=(β,β,1,0). If β+3≤α≤2β+1, then r(uβ|Γ)=(2β−α+1,2β−α+2,α−β−1,0). There are no two vertices have same representation in inner cycle of Qpn.
The vertices on interior cycle having the representations w.r.t. Γ which are:
If β=1, then r(vβ|Γ)=(1,2,α+1,0). If 2≤α≤β, then r(vβ|Γ)=(α,α−1,β−α+2,0). If α=β+2, then r(vβ|Γ)=(β+1,β+1,2,0). If β+3≤α≤2β+1, then r(vβ|Γ)=(2β−α+2,2β−α+3,α−β,0). There are also no two vertices have same representation in interior cycle of Qpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β=1, then r(vβ|Γ)=(2,2,α+1,0). If 2≤α≤β, then r(wβ|Γ)=(α+1,α,β−α+2,0). If α=β+1, then r(wβ|Γ)=(β+2,β+1,2,0). If β+2≤α≤2β+1, then r(wβ|Γ)=(2β−α+3,2β−α+4,α−β+1,0). Again there are no two vertices have same representation also in exterior cycle of Qpn.
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β=1, then r(vβ|Γ)=(3,3,α+2,0). If 2≤α≤β, then r(wβ|Γ)=(α+2,α+1,β−α+3,0). If α=β+1, then r(wβ|Γ)=(β+2,β+2,3,0). If β+2≤α≤2β+1, then r(wβ|Γ)=(2β−α+4,2β−α+5,α−β+2,0). Again there are no two vertices have same representation also in exterior cycle of Qpn.
The pendant vertices having the representations w.r.t. Γ as shown in Table 8. Again we can see that there are no two vertices have same representation in pendant vertices of Qpn.
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+4 | β+3 | 4 | 0 |
yα: β+2≤α≤2β+1 | 2β−α+5 | 2β−α+6 | α−β+3 | 0 |
It is easy to verify that all the vertices of Qpn have unique representation w.r.t. resolving partition Γ. Its means we can also resolve the vertices of Qpn into four partition resolving sets, when n is odd.
We note that from Case 1 and 2, there are no two vertices having the same representations implying that pd(Upn)≤4.
The core of the problem of the partition dimension is deciding the resolving partition set for a graph. In this paper, we have studies the partition dimension of some families of convex polytopes graph such as Rpn, Dpn and Qpn, which are obtained from the convex polytopes by adding a pendant edge at each vertex of outer cycle. In this research work, we have proved that partition dimension of these convex polytopes are bounded. Consequently, we propose the following open problems.
Conjecture 5.1. The following equalities hold:
pd(Rpn)=pd(Dpn)=pd(Qpn)=4 |
The authors declare there is no conflict of interest.
[1] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, A. B. Muhammad, L. O. Jolaoso, K. O. Aremu, A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration, IEEE Access, 9 (2021), 18262–18277. https://doi.org/10.1109/ACCESS.2021.3053141 doi: 10.1109/ACCESS.2021.3053141
![]() |
[2] |
P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
![]() |
[3] |
V. Dadashi, M. Postolache, Forward–backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, Arab. J. Math., 9 (2020), 89–99. https://doi.org/10.1007/s40065-018-0236-2 doi: 10.1007/s40065-018-0236-2
![]() |
[4] |
A. Dixit, D. R. Sahu, P. Gautam, T. Som, J. C. Yao, An accelerated forward-backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5 (2021), 79–101. https://doi.org/10.23952/jnva.5.2021.1.06 doi: 10.23952/jnva.5.2021.1.06
![]() |
[5] |
A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization method, Mathematics, 8 (2020), 378. https://doi.org/10.3390/math8030378 doi: 10.3390/math8030378
![]() |
[6] | K. Janngam, S. Suantai, An accelerated forward-backward algorithm with applications to image restoration problems, Thai J. Math., 19 (2021), 325–339. |
[7] | D. Kitkuan, K. Muangchoo, Inertial relaxed CQ algorithm with an application to signal processing, Thai J. Math., 18 (2020), 1091–1103. |
[8] |
D. Kitkuan, P. Kumam, J. Martínez-Moreno, Generalized Halpern-type forward–backward splitting methods for convex minimization problems with application to image restoration problems, Optimization, 69 (2020), 1557–1581. 10.1080/02331934.2019.1646742 doi: 10.1080/02331934.2019.1646742
![]() |
[9] |
G. López, V. Martín-Márquez, F. Wang, H. K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstract Appl. Anal., 2012 (2012), 109236. https://doi.org/10.1155/2012/109236 doi: 10.1155/2012/109236
![]() |
[10] |
D. A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), 311–325. https://doi.org/10.1007/s10851-014-0523-2 doi: 10.1007/s10851-014-0523-2
![]() |
[11] |
D. R. Sahu, A. Pitea, M. Verma, A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems, Numer. Algor., 83 (2020), 421–449. https://doi.org/10.1007/s11075-019-00688-9 doi: 10.1007/s11075-019-00688-9
![]() |
[12] |
K. Sitthithakerngkiet, J. Deepho, P. Kumam, A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems, Appl. Math. Comput., 250 (2015), 986–1001. https://doi.org/10.1016/j.amc.2014.10.130 doi: 10.1016/j.amc.2014.10.130
![]() |
[13] | S. Sra, S. Nowozin, S. J. Wright, Optimization for machine learning, 2012. |
[14] |
P. Sunthrayuth, P. Cholamjiak, Iterative methods for solving quasi-variational inclusion and fixed point problem in q-uniformly smooth Banach spaces, Numer. Algor., 78 (2018), 1019–1044. https://doi.org/10.1007/s11075-017-0411-0 doi: 10.1007/s11075-017-0411-0
![]() |
[15] |
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
![]() |
[16] | G. I. Usurelu, M. Postolache, Algorithm for generalized hybrid operators with numerical analysis and applications, J. Nonlinear Var. Anal., 6 (2022), 255–277. |
[17] |
Y. Dong, X. Zhu, An inertial splitting method for monotone inclusions of three operators, Int. J. Math. Stat. Oper. Res., 2 (2022), 43–60. https://DOI:10.47509/IJMSOR.2022.v02i01.04 doi: 10.47509/IJMSOR.2022.v02i01.04
![]() |
[18] |
P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071
![]() |
[19] |
A. Gibali, D. V.Thong, Tseng type method for solving inclusion problems and its applications, Calcolo, 55 (2018), 49. https://doi.org/10.1007/s10092-018-0292-1 doi: 10.1007/s10092-018-0292-1
![]() |
[20] |
A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. https://doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8
![]() |
[21] |
E. Altiparmak, I. Karahan, A new preconditioning algorithm for finding a zero of the sum of two monotone operators and its application to image restoration problems, Int. J. Comput. Math., 99 (2022), 2482–2498. https://doi.org/10.1080/00207160.2022.2068146 doi: 10.1080/00207160.2022.2068146
![]() |
[22] | E. Altiparmak, I. Karahan, A Modified Preconditioning Algorithm for solving monotone inclusion problem and application to image restoration problem, U. Politeh. Buch. Ser. A, 84 (2022), 81–92. |
[23] |
W. Shatanawi, T. A. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468
![]() |
[24] |
A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via Aν-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
![]() |
[25] |
M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Math., 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
![]() |
[26] |
P. Debnath, Z. D. Mitrović, S. Y. Cho, Common fixed points of Kannan, Chatterjea and Reich type pairs of self-maps in a complete metric space, São Paulo J. Math. Sci., 15 (2021), 383–391. https://doi.org/10.1007/s40863-020-00196-y doi: 10.1007/s40863-020-00196-y
![]() |
[27] |
P. Debnath, Banach, Kannan, Chatterjea and Reich‐type contractive inequalities for multivalued mappings and their common fixed points, Math. Method. Appl. Sci., 45 (2022), 1587–1596. https://doi.org/10.1002/mma.7875 doi: 10.1002/mma.7875
![]() |
[28] |
P. Debnath, New common fixed point theorems for Gornicki-type mappings and enriched contractions, São Paulo J. Math. Sci., 16 (2022), 1401–1408. https://doi.org/10.1007/s40863-022-00283-2 doi: 10.1007/s40863-022-00283-2
![]() |
[29] |
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comp. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
![]() |
[30] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011. |
[31] | A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Springer, 2012. |
[32] | B. V. Limaye, Functional Analysis, New Age International, 1996. |
[33] | K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[34] |
S. Takahashi, W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, Optimization, 65 (2016), 281–287. https://doi.org/10.1080/02331934.2015.1020943 doi: 10.1080/02331934.2015.1020943
![]() |
[35] |
H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
![]() |
[36] |
P. E. Maingé, A hybrid extra gradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499–1515. https://doi.org/10.1137/060675319 doi: 10.1137/060675319
![]() |
[37] |
W. Takahashi, C. F. Wen, J. C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theor., 19 (2018), 407-419. 10.24193/fpt-ro.2018.1.32 doi: 10.24193/fpt-ro.2018.1.32
![]() |
1. | Xiujun Zhang, Muhammad Salman, Anam Rani, Rashna Tanveer, Usman Ali, Zehui Shao, Metric Identification of Vertices in Polygonal Cacti, 2023, 136, 1526-1506, 883, 10.32604/cmes.2023.025162 | |
2. | Kamran Azhar, Sohail Zafar, Agha Kashif, Amer Aljaedi, Umar Albalawi, The Application of Fault-Tolerant Partition Resolvability in Cycle-Related Graphs, 2022, 12, 2076-3417, 9558, 10.3390/app12199558 | |
3. | Wajdi Alghamdi, Muhammad Ahsan Asim, Akbar Ali, On the Bounded Partition Dimension of Some Generalised Graph Structures, 2022, 2022, 2314-4785, 1, 10.1155/2022/9531182 | |
4. | Ali Al Khabyah, Ali N. A. Koam, Ali Ahmad, Niansheng Tang, Partition Resolvability of Nanosheet and Nanotube Derived from Octagonal Grid, 2024, 2024, 2314-4785, 1, 10.1155/2024/6222086 | |
5. | Syed Waqas Shah, Muhammad Yasin Khan, Gohar Ali, Irfan Nurhidayat, Soubhagya Kumar Sahoo, Homan Emadifar, Ram Jiwari, On Partition Dimension of Generalized Convex Polytopes, 2023, 2023, 2314-4785, 1, 10.1155/2023/4412591 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β | 2β−α+3 | 2β−α+4 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+3 | β+2 | 3 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+4 | 2β−α+5 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β | 2β−α+3 | 2β−α+4 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+3 | β+3 | 4 | 0 |
yα: β+2≤α≤2β−1 | 2β−α+4 | 2β−α+5 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+4 | 2β−α+5 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 4 | 4 | β+3 | 0 |
xα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
xα: α=β+1 | β+3 | β+3 | 4 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+5 | 2β−α+6 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+3 | β+3 | 4 | 0 |
yα: β+2≤α≤2β | 2β−α+4 | 2β−α+5 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+4 | β+3 | 4 | 0 |
yα: β+2≤α≤2β+1 | 2β−α+5 | 2β−α+6 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β | 2β−α+3 | 2β−α+4 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+3 | β+2 | 3 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+4 | 2β−α+5 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β | 2β−α+3 | 2β−α+4 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+3 | β+3 | 4 | 0 |
yα: β+2≤α≤2β−1 | 2β−α+4 | 2β−α+5 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 3 | 3 | β+2 | 0 |
xα: 2≤α≤β | α+2 | α+1 | β−α+3 | 0 |
xα: α=β+1 | β+2 | β+2 | 3 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+4 | 2β−α+5 | α−β+2 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
xα: α=1 | 4 | 4 | β+3 | 0 |
xα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
xα: α=β+1 | β+3 | β+3 | 4 | 0 |
xα: β+2≤α≤2β+1 | 2β−α+5 | 2β−α+6 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+3 | β+3 | 4 | 0 |
yα: β+2≤α≤2β | 2β−α+4 | 2β−α+5 | α−β+3 | 0 |
Representation | Γ1 | Γ2 | Γ3 | Γ4 |
yα: α=1 | 4 | 4 | β+3 | 0 |
yα: 2≤α≤β | α+3 | α+2 | β−α+4 | 0 |
yα: α=β+1 | β+4 | β+3 | 4 | 0 |
yα: β+2≤α≤2β+1 | 2β−α+5 | 2β−α+6 | α−β+3 | 0 |