This paper presents a partial block randomized extended Kaczmarz (PBREK) method for solving large overdetermined inconsistent linear system of equations Ax=b. The convergence theorem of the PBREK method is derived. Several examples are given to illustrate the effectiveness of the proposed PBREK method compared with the prevuious PREK method and the randomized extended Kaczmarz (REK) method.
Citation: Feng Yin, Bu-Yue Zhang, Guang-Xin Huang. A partially block randomized extended Kaczmarz method for solving large overdetermined inconsistent linear systems[J]. AIMS Mathematics, 2023, 8(8): 18512-18527. doi: 10.3934/math.2023941
[1] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[2] | Ibtehal Alazman, Mohamed Jleli, Bessem Samet . On the absence of global solutions to two-times-fractional differential inequalities involving Hadamard-Caputo and Caputo fractional derivatives. AIMS Mathematics, 2022, 7(4): 5830-5843. doi: 10.3934/math.2022323 |
[3] | Karmina K. Ali, Resat Yilmazer . Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator. AIMS Mathematics, 2020, 5(2): 894-903. doi: 10.3934/math.2020061 |
[4] | Ikram Ullah, Muhammad Bilal, Aditi Sharma, Hasim Khan, Shivam Bhardwaj, Sunil Kumar Sharma . A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation. AIMS Mathematics, 2024, 9(11): 32674-32695. doi: 10.3934/math.20241564 |
[5] | Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764 |
[6] | Ibtisam Aldawish, Mohamed Jleli, Bessem Samet . Blow-up of solutions to fractional differential inequalities involving ψ-Caputo fractional derivatives of different orders. AIMS Mathematics, 2022, 7(5): 9189-9205. doi: 10.3934/math.2022509 |
[7] | Limin Guo, Lishan Liu, Ying Wang . Maximal and minimal iterative positive solutions for p-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term. AIMS Mathematics, 2021, 6(11): 12583-12598. doi: 10.3934/math.2021725 |
[8] | Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793 |
[9] | Ahmed Hussein Msmali . Positive solutions for a system of Hadamard fractional (ϱ1,ϱ2,ϱ3)-Laplacian operator with a parameter in the boundary. AIMS Mathematics, 2022, 7(6): 10564-10581. doi: 10.3934/math.2022589 |
[10] | Said Mesloub, Faten Aldosari . Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions. AIMS Mathematics, 2021, 6(9): 9786-9812. doi: 10.3934/math.2021569 |
This paper presents a partial block randomized extended Kaczmarz (PBREK) method for solving large overdetermined inconsistent linear system of equations Ax=b. The convergence theorem of the PBREK method is derived. Several examples are given to illustrate the effectiveness of the proposed PBREK method compared with the prevuious PREK method and the randomized extended Kaczmarz (REK) method.
The singularity phenomenon exists in a large number of physical models and biological processes, for instance, viscoelasticity, aerodynamics, hydrodynamics, rheology, and infectious diseases. In nonlinear elastic fracture mechanics, there is a singular relationship between the range q and the stress near the crack tip; the stress shows that the power singularity is q−12, where q is the range determined from the crack tip [1]. As is well known, fractional differential equations have significant advantages in describing local limitations and long-term, large-scale physical phenomena. Westerland [2] depicts the transmission of electromagnetic waves in the following model:
ϑς∂2B(u,s)∂u2+ϑςχDνsB(u,s)+∂2B(u,s)∂s2=0, |
here ϑ,ς,χ are constants, and DνsB(u,s)=∂νB(u,s)∂tν is a fractional derivative. The authors in article [3] constructed a fractional Maxwell model
Υ+λρdρσdtρ=Eλϱdϱεdtϱ |
with fractional parameters ρ and ϱ satisfying 0<ρ≤ϱ<1.
This work treats the singular fractional order system:
{Dα10+w(t)+λ1f1(t,w(t),v(t))=0,Dα20+v(t)+λ2f2(t,w(t),v(t))=0, 0<t<1,w(0)=w′(0)=⋅⋅⋅w(n1−2)=0, Dp10+w(1)=μ1∫η10h1(s)Dq10+w(s)ds,v(0)=v′(0)=⋅⋅⋅v(n2−2)=0, Dp20+v(1)=μ2∫η20h2(s)Dq20+v(s)ds, | (1.1) |
where λi>0 (i=1,2) is a parameter, and Dαi0+ is the Riemann-Liouville derivative. ni−1<αi≤ni, ni≥3, 1≤pi≤ni−2, 0≤qi≤pi, μi>0, 0<ηi≤1, h∈L1[0,1] is nonnegative, Λi=Γ(αi)/Γ(αi−pi)(1−μi∫ηi0h1(s)sai−qi−1ds)>0, fi:(0,1)×[0,+∞)2∖{(0,0)}→[0,+∞) is continuous, fi(t,x,y) may have singularity at t=0, 1 and (x,y)=(0,0).
Fractional calculus has attracted widespread attention from scholars in various fields. Additionally, a large number of theories and arguments have been concentrated on that can be utilized to characterize various differential equations, such as operator theory [4,5,6], space theory [7,8,9,10], variational methods [11,12,13], fixed point theorems [14,15,16,17], etc. For instance, employing the fixed index theory, Xu et al. [18] talked over the fractional boundary value problem (BVP):
{Dα0+u(t)+h(t)f(t,u(t))=0, 0<t<1, n−1<α≤n, n>3,uk(0)=0, 0≤k≤n−2, [Dβ0+u]t=1=0,1≤β≤n−2, | (1.2) |
where Dα0+ is the Riemann-Liouville derivative. f∈C([0,1]×[0,+∞),(0,+∞)), h∈C(0,1)∩L(0,1), h is nonnegative. By adopting the famous Krasnosel'skii fixed-point theorem, the author in [19] also researched BVP (1.2) with f:[0,1]×[0,+∞)→[0,+∞)) being continuous and h≡1.
Henderson and Luca [20] focus on the following equation:
Dα0+u(t)+¯μf(t,u(t))=0, 0<t<1, n−1<α≤n, n≥3, | (1.3) |
with multi-point boundary value conditions of fractional order
uj(0)=0, j=0,1,2,...,n−2, Dp0+u(1)=m∑i=1aiDq0+u(ξi), | (1.4) |
where ¯μ>0 is a parameter and Dα0+ is the Riemann-Liouville derivative. 0<ξ1<⋯<ξm<1, 1≤p≤n−2, 0≤q≤p, the sign of f can be changed, and it can be singular when t=0, 1. Existence results for at least one positive solution are given in [20] according to Krasnosel'skii fixed-point theorem.
Wang and Jiang [21] also studied Eq (1.3) with the parameter ¯μ=1, and the boundary condition is
uj(0)=0, j=0,1,2,...,n−2, Dp0+u(1)=¯μ∫η0h(s)Dq0+u(s)ds. | (1.5) |
They determined that there exist two positive solutions on the basis of the Leray-Schauder nonlinear alternative and the fixed-point theory of cone tension and compression.
Motivated by the aforementioned works, in this article, we consider the system (1.1), under the argument of fixed-point theory, whose existence will be gained. What is more, we obtain the exact interval in which the positive solution exists under the confinement of the singularity in nonlinear term. The remaining parts of this article are arranged as below: In Section 2, we put forward some preliminary and necessary lemmas. The proof of system (1.1) will be constructed under the fixed-point theory in Section 3. In the following section, an example for demonstrating the applicability of the primary conclusions will be given. In Section 5, we draw conclusions from this article.
Please refer to [22,23] for the related definitions and lemmas of fractional derivative and integral. We put in several lemmas for the rest of the paper. The following Lemmas 2.1 and 2.2 have been proved in [20,24,25].
Lemma 2.1. Assume that Λi≠0, yi∈C[0,1] (i=1,2), the boundary value problems
{Dαi0+¯z(t)+yi(t)=0, 0<t<1,¯z(0)=¯z′(0)=⋅⋅⋅¯z(ni−2)=0, Dpi0+¯z(1)=μi∫ηi0hi(s)Dqi0+¯z(s)ds, |
has the representation
¯z(t)=∫10Gi(t,s)yi(s)ds, |
in which
Gi(t,s)=Gi1(t,s)+Gi2(t,s), i=1,2, | (2.1) |
Gi1(t,s)=1Γ(αi){tαi−1(1−s)αi−pi−1−(t−s)αi−pi−1, 0≤s≤t≤1,tαi−1(1−s)αi−pi−1, 0≤t≤s≤1, |
Gi2(t,s)=μitαi−1Λi∫ηi0hi(t)Hi(t,s)dt, |
Hi(t,s)=1Γ(αi−qi){tαi−qi−1(1−s)αi−pi−1−(t−s)αi−pi−1, 0≤s≤t≤1,tαi−qi−1(1−s)αi−pi−1, 0≤t≤s≤1. |
Lemma 2.2. Gi(t,s) (i=1,2) labeled (2.1) has the following properties:
(1) Gi(t,s)∈C([0,1]×[0,1],[0,+∞)).
(2) Gi(t,s)≤ξi(s), 0≤t,s≤1,
ξi(s)=ˉhi(s)+μiΛi∫ηi0hi(t)Hi(t,s)dt, ˉhi(s)=(1−s)αi−pi−1(1−(1−s)pi)Γ(αi). |
(3) ˆω(t)ξi(s)≤Gi(t,s)≤σˉω(t), 0≤t,s≤1,
ˆω(t)=min |
\begin{aligned} \sigma = &\max\left\{\frac{1}{\Gamma(\alpha_1)}+ \mu_1 \int_0^{\eta_1}h_1(t)t^{\alpha_1-q_1-1}dt/\Lambda_1\Gamma(\alpha_1-q_1)\right.\\ &\ \ \ \ \ \ \ \ \ \left.\frac{1}{\Gamma(\alpha_2)}+ \mu_2 \int_0^{\eta_2}h_2(t)t^{\alpha_2-q_2-1}dt/\Lambda_2\Gamma(\alpha_2-q_2)\right\}. \end{aligned} |
Denote the Banach space X = C[0, 1]\times C[0, 1] with norms:
\|(w, v)\| = \|w\|+ \|v\|, \ \|w\| = \max\limits_{0\leq t \leq 1}|w(t)|, \ \|v\| = \max\limits_{0\leq t \leq 1}|v(t)|. |
Let
\mathcal K = \{(w, v)\in X: w(t)\geq \widehat{\omega}(t)\| w\|, \ v(t)\geq \widehat{\omega}(t)\| v\|, \ 0\leq t\leq 1\}, |
then \mathcal K\subset X is a positive cone. For any real number 0 < \overline{r} < \overline{R} , let
\mathcal K_{[\overline{r}, \overline{R}]} = \{(w, v)\in \mathcal K: \overline{r}\leq \|(w, v)\|\leq \overline{R}\}, \ \mathcal K_{\overline{r}} = \{(w, v)\in \mathcal K: \|(w, v)\| < \overline{r}\}. |
For i = 1, 2 , the assumption through the work must hold.
(\boldsymbol{H}_1) f_i: (0, 1)\times[0, +\infty)^2\setminus\{(0, 0)\} \rightarrow [0, +\infty) is continuous and
|f_i(t, x, y)|\leq \verb"b"_i(t)\digamma_i(t, x, y), \ (t, x, y)\in (0, 1)\times[0, +\infty)^2\setminus\{(0, 0)\}, |
\verb"b"_i\in C(0, 1) , \verb"b"_i is singular at t = 0 and/or t = 1 , \verb"b"_i(t)\not\equiv 0 on [0, +\infty) , \digamma_i:[0, 1]\times[0, +\infty)^2\setminus\{(0, 0)\}\rightarrow [0, +\infty) is continuous,
\lim\limits_{\widetilde{m}\rightarrow +\infty} \sup\limits_{(w, v)\in \mathcal K_{[r^*_1, r^*_2]}}\int_{H(\widetilde{m})}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds = 0, \ 0 < r^*_1 < r^*_2 < +\infty, |
where H(\widetilde{m}) = \left[0, \frac{1}{\widetilde{m}}\right]\cup\left [\frac{\widetilde{m}-1}{\widetilde{m}}, 1\right] .
(\boldsymbol{H}_2) \int_0^1\xi_i(s)\verb"b"_i(s)ds < +\infty .
Remark 2.1. (\textbf{H}_1) can be inferred from (\textbf{H}_2) . As a matter of fact, by (\textbf{H}_1) , for 0 < r_1 < r_2 < +\infty , choose (w(t), v(t))\equiv\left(\frac{r_1}{2}, \frac{r_1}{2}\right)\in \mathcal K_{[r_1, r_2]} , for any fixed \widetilde{m} > 0 , we have
\int_{H(\widetilde{m})}\xi_i(s)\verb"b"_i(s)\digamma_i\left(s, \frac{r_1}{2}, \frac{r_1}{2}\right)ds < +\infty, \ i = 1, 2. |
Since \digamma_i:[0, 1]\times[0, +\infty)^2\setminus\{(0, 0)\}\rightarrow [0, +\infty) is continuous, we have
\int_{H(\widetilde{m})}\xi_i(s)\verb"b"_i(s)ds < +\infty. |
As \verb"b"_i, \ \xi_i:\left[\frac{1}{\widetilde{m}}, \frac{\widetilde{m}-1}{\widetilde{m}}\right]\rightarrow [0, +\infty) is continuous, we see that
\int_{\frac{1}{\widetilde{m}}}^{\frac{\widetilde{m}-1}{\widetilde{m}}}\xi_i(s)\verb"b"_i(s)ds < +\infty, |
and so
\int_0^1\xi_i(s)\verb"b"_i(s)ds = \int_{H(\widetilde{m})}\xi_i(s)\verb"b"_i(s)ds +\int_{\frac{1}{\widetilde{m}}}^{\frac{\widetilde{m}-1}{\widetilde{m}}}\xi_i(s)\verb"b"_i(s)ds < +\infty, \ i = 1, 2. |
According to conditions (\textbf{H}_1) and (\textbf{H}_2) , for any (w, v)\in \mathcal K\setminus\{(0, 0)\} , define \mathcal T: \mathcal K\setminus\{(0, 0)\}\to X ,
\begin{align} \mathcal T(w, v)(t) = ( \mathcal T_1(w, v)(t), \mathcal T_2(w, v)(t)), \ 0\leq t \leq 1, \end{align} | (2.2) |
\mathcal T_i(w, v)(t) = \lambda_i\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds, \ i = 1, 2. |
It can be declared that \mathcal T(w, v) is well defined. Actually, for any fixed (w_0, v_0)\in \mathcal K\setminus\{(0, 0)\} , there exists r > 0 , such that \|(w_0, v_0)\| = r . In (\textbf{H}_1) and (\textbf{H}_2) , we will show that
\begin{align} \mathcal T_i(w_0, v_0)(t) = \lambda_i\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w_0(s), v_0(s))ds < +\infty, \ 0\leq t \leq 1, \ i = 1, 2. \end{align} | (2.3) |
By (\textbf{H}_1) , there exists \widetilde{l}\in \text{N} (N represents the set of natural numbers) such that
\sup\limits_{(w, v)\in \partial \mathcal K_{r}}\lambda_i\int_{H(\widetilde{l})}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds < 1, \ i = 1, 2. |
For each (w, v)\in \partial \mathcal K_{r} , t\in\left[\frac{1}{\widetilde{l}}, \frac{\widetilde{l}-1}{\widetilde{l}}\right] ,
{\omega}^* r\leq w(t)+v(t)\leq r, \ {\omega}^* = \min\left\{\widehat{\omega}(t): t\in\left[\frac{1}{\widetilde{l}}, \frac{\widetilde{l}-1}{\widetilde{l}}\right]\right\}. |
Let
M = \max\left\{g_i(t, x, y): \frac{1}{\widetilde{l}}\leq t\leq \frac{\widetilde{l}-1}{\widetilde{l}}, \ {\omega}^* r\leq x+y\leq r, \ x\geq 0, \ y\geq 0, \ i = 1, 2\right\}. |
So, by (\textbf{H}_1), (\textbf{H}_2) and Lemma 2.2, for 0\leq t\leq 1, \ i = 1, 2 , we have
\begin{aligned}& \mathcal T_i(w_0, v_0)(t)\\\leq&\sup\limits_{(w, v)\in\partial \mathcal K_{r}}\lambda_i\int_{0}^1 \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\\leq&\sup\limits_{(w, v)\in\partial \mathcal K_{r}}\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\\leq& \sup\limits_{(w, v)\in\partial \mathcal K_{r}}\lambda_i\int_{H(\widetilde{l})}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\&+\sup\limits_{(w, v)\in\partial \mathcal K_{r}}\lambda_i\int_{\frac{1}{\widetilde{l}}}^\frac{\widetilde{l}-1}{\widetilde{l}}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\\leq& 1+M\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)ds < +\infty. \end{aligned} |
Then, we know (2.3) holds. In combination with the continuity of \mathcal G_i(t, s) , \mathcal T_i(w_0, v_0)\in C[0, 1] , \mathcal T_i: \mathcal K\setminus\{(0, 0)\}\to C[0, 1] is well defined. Therefore, \mathcal T = (\mathcal T_1, \mathcal T_2): \mathcal K\setminus\{(0, 0)\}\to X is well defined. The fixed point of operator \mathcal T in \mathcal K\setminus\{(0, 0)\} is the solution of the system (1.1).
Lemma 2.3. Assume that (\boldsymbol{H}_1) (\boldsymbol{H}_2) hold. Then \mathcal T: \mathcal K_{[r_1, r_2]}\to \mathcal K is completely continuous.
Proof. Firstly, we illustrate \mathcal T\left(\mathcal K_{[r_1, r_2]}\right)\subseteq \mathcal K . For i = 1, 2 , (w, v)\in \mathcal K_{[r_1, r_2]}, 0\leq t\leq1 , as for the proof of (2.3), we know
\lambda_i\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds \leq\lambda_i\int_0^1\xi_i(s)f_i(s, w(s), v(s))ds < +\infty. |
So, by (\textbf{H}_2) and Lemma 2.2,
\begin{aligned} \| \mathcal T _i(w, v)\|& = \max\limits_{0\leq t\leq 1} |T_i(w, v)(t)| = \max\limits_{0\leq t\leq 1} \left|\lambda_i\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\right| \\&\leq \lambda_i\int_{0}^{1}\xi_i (s)f_i(s, w(s), v(s))ds < +\infty.\end{aligned} |
By (\textbf{H}_2) and Lemma 2.2, for any (w, v)\in \mathcal K_{[r_1, r_2]}, 0\leq t\leq1 ,
\begin{aligned} \mathcal T_i(w, v)(t) = &\lambda_i\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\ \geq & \lambda_i\int_{0}^{1}\omega(t)\xi_i (s)f_i(s, w(s), v(s))ds.\end{aligned} |
Then \mathcal T_i(w, v)(t)\geq \widehat{\omega}(t) \| \mathcal T_i(w, v)\| , T\left(\mathcal K_{[r_1, r_2]}\right)\subseteq \mathcal K.
Next, we explain \mathcal T: \mathcal K_{[r_1, r_2]}\to \mathcal K is a continuous operator. Let (w_n, v_n), (w, v)\in \mathcal K_{[r_1, r_2]} , such that \|(w_n, v_n)-(w, v)\|\rightarrow 0\ (n\rightarrow +\infty) , we will prove that \| \mathcal T(w_n, v_n)- \mathcal T(w, v)\|\rightarrow 0 \ (n\rightarrow +\infty) . By (\textbf{H}_1) , for any \varepsilon > 0 , there exists \ell\in \text{N} satisfying
\begin{align} \sup\limits_{(u, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{H(\ell)}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds < \frac{\varepsilon}{4}, \ i = 1, 2. \end{align} | (2.4) |
For each (w, v)\in \mathcal K_{[r_1, r_2]} , t\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right] , we have
\omega' r_1\leq w(t)+v(t)\leq r_2, \ \omega' = \min\left\{\widehat{\omega}(t): t\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right]\right\}. |
For t\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right] , \omega' r_1\leq w(t)+v(t)\leq r_2 , w(t) , v(t) meet one of the following three cases:
(1) \frac{\omega' r_1}{2}\leq w(t)\leq r_2 , \frac{\omega' r_1}{2}\leq v(t)\leq r_2 .
(2) \frac{\omega' r_1}{2}\leq w(t)\leq r_2 , 0\leq v(t)\leq\frac{\omega' r_1}{2} .
(3) 0\leq w(t)\leq\frac{\omega' r_1}{2} , \frac{\omega' r_1}{2}\leq v(t)\leq r_2 .
Since for (t, x, y)\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right]\times\left[\frac{\omega' r_1}{2}, r_2\right]\times\left[\frac{\omega' r_1}{2}, r_2\right] or (t, x, y)\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right]\times\left[\frac{\omega' r_1}{2}, r_2\right]\times\left[0, \frac{\omega' r_1}{2}\right] or (t, x, y)\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right]\times\left[0, \frac{\omega' r_1}{2}\right]\times\left[\frac{\omega' r_1}{2}, r_2\right] , f_i(t, x, y) is uniformly continuous, we have
\lim\limits_{n\rightarrow +\infty}|f_i(s, w_n(s), v_n(s))-f_i(s, w(s), v(s))| = 0, \ i = 1, 2 |
holds uniformly on s\in\left[\frac{1}{\ell}, \frac{\ell-1}{\ell}\right] . Then the Lebesgue-dominated convergence theorem yields that
\lambda_i\int_{\frac{1}{\ell}}^\frac{\ell-1}{\ell}\xi_i(s)|f_i(s, w_n(s), v_n(s))-f_i(s, w(s), v(s))|ds\rightarrow 0, \ \ n\rightarrow +\infty, \ i = 1, 2. |
So, for the above \varepsilon > 0 , there exists a sufficiently large N_0 (N_0\in \text{N}) , when n > N_0 ,
\begin{align} \lambda_i\int_{\frac{1}{\ell}}^\frac{\ell-1}{\ell}\xi_i(s)|f_i(s, w_n(s), v_n(s))-f_i(s, w(s), v(s))|ds < \frac{\varepsilon}{2}, \ i = 1, 2. \end{align} | (2.5) |
It follows from (2.4) and (2.5) that, when n > N_0 ,
\begin{aligned} &\| \mathcal T_i(w_n, v_n)- \mathcal T_i(w, v)\|\\\leq&\lambda_i\int_0^1| \mathcal G_i(t, s)f_i(s, w_n(s), v_n(s))- \mathcal G_i(t, s)f_i(s, w(s), v(s))|ds\\ \leq&\lambda_i\int_{\frac{1}{\ell}}^\frac{\ell-1}{\ell}\xi_i(s)|f_i(s, w_n(s), v_n(s))-f_i(s, w(s), v(s))|ds\\ &+\sup\limits_{(u, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{H(\ell)}\xi_i(s)\verb"b"_i(s)|\digamma_i(s, w_n(s), v_n(s))+\digamma_i(s, w(s), v(s))|ds \\ < &\varepsilon, \ i = 1, 2.\end{aligned} |
That is, \mathcal T: \mathcal K_{[r_1, r_2]}\rightarrow \mathcal K is a continuous operator.
Then, we show \mathcal T: \mathcal K_{[r_1, r_2]}\rightarrow \mathcal K is compact. Let \mathcal A\subset \mathcal K_{[r_1, r_2]} be any bounded set. For (w, v)\in \mathcal A , we have r_1\leq \|(w, v)\|\leq r_2 . By (\textbf{H}_1) , there exists \jmath\in \text{N} satisfying
\sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{H(\jmath)}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds < 1, \ i = 1, 2. |
For each (w, v)\in \mathcal K_{[r_1, r_2]} , t\in\left[\frac{1}{\jmath}, \frac{\jmath-1}{\jmath}\right] , we can see
\omega'' r_1\leq w(t)+v(t)\leq r_2, \ \omega'' = \min\left\{\widehat{\omega}(t): t\in\left[\frac{1}{\jmath}, \frac{\jmath-1}{\jmath}\right]\right\}. |
Let
M'' = \max\left\{\digamma_i(t, x, y): \frac{1}{\jmath}\leq t\leq \frac{\jmath-1}{\jmath}, \ \omega'' r_1\leq x+y\leq r_2, \ x\geq 0, \ y\geq 0, \ i = 1, 2\right\}. |
So, by (\textbf{H}_1) and (\textbf{H}_2) , we have
\begin{aligned}&\sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{0}^1 \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\ &\leq\sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\&\leq \sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{H(\jmath)}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\&\ \ \ \ +\sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{\frac{1}{\jmath}}^\frac{\jmath-1}{\jmath}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\&\leq 1+M''\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)ds < +\infty, \ i = 1, 2. \end{aligned} |
Therefore, for any (w, v)\in \mathcal A , 0\leq t\leq 1 , we have
\begin{aligned}& \lambda_i\int_{0}^1 \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\\leq&\sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{0}^1 \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\\leq& 1+M''\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)ds < +\infty, \ i = 1, 2.\end{aligned} |
So, \mathcal T(\mathcal A) is bounded in X .
Finally, we explain that \mathcal T_i(\mathcal A) is equicontinuous. By (\textbf{H}_1) , for any \varepsilon > 0 , there exists \hbar\in \text{N} , we have
\sup\limits_{(w, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{H(\hbar)}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds < \frac{\varepsilon}{4}, \ i = 1, 2. |
Let
M_0 = \max\left\{\digamma_i(t, x, y): \frac{1}{\hbar}\leq t\leq \frac{\hbar-1}{\hbar}, \ \omega_0 r_1\leq x+y\leq r_2, \ x\geq0, \ y\geq 0, \ i = 1, 2\right\}, |
\omega_0 = \min\left\{\widehat{\omega}(t): t\in\left[\frac{1}{\hbar}, \frac{\hbar-1}{\hbar}\right]\right\}. The uniform continuity of \mathcal G_i(t, s) on [0, 1]\times [0, 1] means, for the above \varepsilon > 0 , there exists \delta_0 > 0 such that for any t_1, t_2 \in [0, 1] , |t_1-t_2| < \delta_0 , s\in \left[\frac{1}{\hbar}, \frac{\hbar-1}{\hbar}\right] , we have
| \mathcal G_i(t_1, s)- \mathcal G_i(t_2, s)| < \frac{\varepsilon}{2}\left(M_0\lambda_i\int_{\frac{1}{\hbar}}^{\frac{\hbar-1}{\hbar}}\verb"b"_i(s)ds\right)^{-1}, \ i = 1, 2. |
Thus, when t_1, t_2 \in [0, 1] , |t_1-t_2| < \delta_0 , for any (w, v)\in \mathcal A ,
\begin{aligned} &|T_i(w, v)(t_1)-T_i(w, v)(t_2)|\\ \leq&\lambda_i\int_{\frac{1}{\hbar}}^{\frac{\hbar-1}{\hbar}}| \mathcal G_i(t_1, s)- \mathcal G_i(t_2, s)|f_i(s, w(s), v(s))ds\\& +\sup\limits_{(u, v)\in \mathcal K_{[r_1, r_2]}}\lambda_i\int_{H(\hbar)}| \mathcal G_i(t_1, s)- \mathcal G_i(t_2, s)|\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\\leq&\frac{\varepsilon}{2}+2M_0\lambda_i\int_{\frac{1}{\hbar}}^{\frac{\hbar-1}{\hbar}}\xi_i(s)\verb"b"_i(s)ds < \varepsilon, \ i = 1, 2.\end{aligned} |
This means that T_i(\mathcal A) is equicontinuous. By the Arzela-Ascoli theorem, T_i(\mathcal A) is a relatively compact set. So \mathcal T = (\mathcal T_1, \mathcal T_2): \mathcal K_{[r_1, r_2]}\rightarrow \mathcal K is compact. Combining with the continuity of T: \mathcal K_{[r_1, r_2]}\rightarrow \mathcal K , \mathcal T: \mathcal K_{[r_1, r_2]}\rightarrow \mathcal K is a completely continuous operator.
The following Lemmas 2.4 and 2.5 can be used to explain the existence of the fixed point, that is, the existence of positive solutions to the system (1.1).
Lemma 2.4. [26] Let \mathcal P be a positive cone in a Banach space E , \Omega_1 and \Omega_2 are bounded open sets in E , \theta\in\Omega_1 , \overline {\Omega}_1\subset\Omega_2 , \verb"A" : \mathcal P\cap\overline {\Omega}_{2}\backslash\Omega_{1} \rightarrow \mathcal P is a completely continuous operator. If the following conditions are satisfied:
\| \verb"A"x \| \leq \| x \| , \forall{x}\in{ \mathcal P\cap\partial\Omega_1} , \| \verb"A"x \| \geq \| x \| , \forall{x}\in{ \mathcal P\cap\partial\Omega_2} ,
or
\| \verb"A"x \| \geq \| x \| , \forall{x}\in{ \mathcal P\cap\partial\Omega_1} , \| \verb"A"x \| \leq \| x \| , \forall{x}\in{ \mathcal P\cap\partial\Omega_2} ,
then \verb"A" has at least one fixed point in \mathcal P\cap(\overline{\Omega}_{2}\backslash\Omega_{1}) .
Lemma 2.5. [27] Let \mathcal P be a positive cone in a real Banach space E . Denote \mathcal P_r = \{x\in \mathcal P:\|x\| < r\} , \overline{ \mathcal P}_{r, R} = \{x\in \mathcal P: r\leq\|x\|\leq R\} , 0 < r < R < +\infty . Let \verb"A":\overline{ \mathcal P}_{r, R}\rightarrow \mathcal P be a completely continuous operator. If the following conditions are satisfied:
(1) \|\verb"A"x\|\leq \|x\| , \forall x \in \partial \mathcal P_{R} ,
(2) There exists a x_0\in\partial \mathcal P_{1} , such that x\neq \verb"A"x+mx_0, \ \forall x\in \partial \mathcal P_{r} , m > 0 ,
then \verb"A" has fixed points in \overline{ \mathcal P}_{r, R} .
Remark 2.2. If (1) and (2) are satisfied for x\in\partial \mathcal P_r and x\in \partial \mathcal P_R , respectively, then Lemma 2.6 still holds.
Theorem 3.1. Assume that (\boldsymbol{H}_1) (\boldsymbol{H}_2) (\boldsymbol{H}_3) hold.
(\boldsymbol{H}_3)
0\leq \digamma_i^\infty = \limsup\limits_{x+y\to+\infty\atop (x, y)\neq(0, 0)}\max\limits_{t\in [0, 1]}\frac{\digamma_i(t, x, y)}{x+y} < L_i, |
0 < l_i < f_{i0} = \liminf\limits_{x+y\to 0^+\atop (x, y)\neq(0, 0)}\min\limits_{t\in [a, b]\subset(0, 1)}\frac{|f_i(t, x, y)|}{x+y}\leq+\infty, i = 1, 2, |
where L_i = \left(4\int_{0}^{1}\xi_i(s)\verb"b"_i(s)ds\right)^{-1} , l_i = \left(2\overline{\omega} ^2\int_{a}^{b} \mathcal \xi_i(s)ds\right)^{-1}. \overline{\omega} = \min_{t\in[a, b]}\widehat{\omega}(t) . For any
\begin{align} \lambda_1\in\left(\frac{l_1}{f_{10}}, \frac{L_1}{\digamma_1^{\infty}}\right), \ \lambda_2\in\left(\frac{l_2}{f_{20}}, \frac{L_2}{\digamma_2^{\infty}}\right), \end{align} | (3.1) |
system (1.1) has at least one positive solution.
Proof. For i = 1, 2 , let \lambda_i satisfy (3.1) and let \varepsilon_0 > 0 be chosen such that L_i-\varepsilon_0 > 0 and \lambda_ig_i^\infty\leq L_i-\varepsilon_0. From the first inequality in (\textbf{H}_3) , it can be inferred that there exists \overline{r} > 0 , making
\begin{align} \digamma_i(t, x, y)\leq\frac{1}{\lambda_i}(L_i-\varepsilon_0)(x+y), \ x+y > \overline{r}, \ t\in[0, 1]. \end{align} | (3.2) |
Let
\overline{M} = \max\limits_{i = 1, 2}\sup\limits_{(w, v)\in \partial \mathcal K_{\overline{r}}}\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds. |
As for the proof of (2.3), we obtain \overline{M} < +\infty . Take
R_1 > \max\left\{\overline{r}, \ \frac{4\overline{M}L_1}{1+\varepsilon_0}, \ \frac{4\overline{M}L_2}{1+\varepsilon_0}\right\}, \ \mathcal K_{R_1} = \{(w, v)\in \mathcal K: \|(w, v)\| < R_1\}. |
For any (w, v)\in \partial \mathcal K_{R_1} , let
D(w, v) = \{t\in[0, 1]: w(t)+v(t) > \overline{r}\}. |
So, for any t\in D(w, v) , we receive
\overline{r} < w(t)+v(t)\leq \|(w, v)\| = R_1. |
Thus, by (3.2),
\begin{align} \digamma_i(t, w(t), v(t))\leq\frac{1}{\lambda_i}(L_i-\varepsilon_0)(w(t)+v(t)), \ (w, v)\in \partial \mathcal K_{R_1}, \ t\in D(w, v). \end{align} | (3.3) |
For any (w, v)\in \partial \mathcal K_{R_1} , let
w_1(t) = \min\left\{\frac{w(t)+v(t)}{2}, \ \frac{\overline{r}}{2}\right\}, \ v_1(t) = \min\left\{\frac{w(t)+v(t)}{2}, \ \frac{\overline{r}}{2}\right\}, |
then we have
\|(w_1, v_1)\| = \max\limits_{t\in[0, 1]}|w_1(t)|+\max\limits_{t\in[0, 1]}|v_1(t)| = \overline{r}, \ (w_1, v_1)\in \partial \mathcal K_{\overline{r}}. |
So for any (w, v)\in \partial \mathcal K_{R_1} , by (3.3),
\begin{aligned}&\| \mathcal T_i(w, v)\|\\ = &\max\limits_{t\in[0, 1] }\lambda_i\left|\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\right|\\ \leq&\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\ \leq&\lambda_i\int_{D(w, v)}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\& +\lambda_i\int_{[0, 1]\backslash D(w, v)}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\ \leq&\frac{1}{\lambda_i}(L_i-\varepsilon_0)\lambda_i\int_{0}^1\xi_i(s)\verb"b"_i(s)(w(s)+ v(s))ds\\& +\lambda_i\int_0^1\xi_i(s)\verb"b"_i(s)\digamma_i(s, w_1(s), v_1(s))ds\\ \leq&\frac{(L_i-\varepsilon_0)R_1}{4L_i}+\overline{M} < \frac{R_1}{2} = \frac{\|w\|+\|v\|}{2}.\end{aligned} |
Thus
\begin{align} \| \mathcal T(w, v)\| = \| \mathcal T_1(w, v)\|+\| \mathcal T_2(w, v)\|\leq \|w\|+\|v\| = \|(w, v)\|, \ (w, v)\in \partial \mathcal K_{R_1}. \end{align} | (3.4) |
For i = 1, 2 , let \lambda_i satisfy (3.1) and let \overline{\varepsilon} > 0 be chosen so that l_i+\overline{\varepsilon}\leq\lambda_if_{i0}. By the second inequality of (\textbf{H}_3) , there exists R_2 < R_1 meeting
\begin{align} |f_i(t, x, y)|\geq\frac{1}{\lambda_i}(l_i+\overline{\varepsilon})(x+y), \ \ 0 < x+y\leq R_2, \ t\in[a, b]. \end{align} | (3.5) |
Choose \mathcal K_{R_2} = \left\{(w, v)\in \mathcal K: \|(w, v)\| < R_2\right\} . For any (w, v)\in \partial \mathcal K_{R_2} ,
R_2\geq w(t)+v(t)\geq\widehat{\omega}(t)\|w\|+\widehat{\omega}(t)\|v\|\geq\overline{\omega} R_2 > 0, \ t\in[a, b]. |
Combining with (3.5), we gain
\begin{align} |f_i(t, w(t), v(t))|\geq\frac{1}{\lambda_i}(l_i+\overline{\varepsilon})(w(t)+ v(t)), \ (w, v)\in \partial \mathcal K_{R_2}, \ t\in[a, b]. \end{align} | (3.6) |
Therefore, for any (w, v)\in \partial \mathcal K_{R_2} , by (3.6),
\begin{aligned} & \mathcal T_i(w, v)(t)\\ = & \lambda_i\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\ \geq&\lambda_i\int_{a}^b \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\\ \geq&\frac{1}{\lambda_i}(l_i+\overline{\varepsilon})\lambda_i\int_a ^b\widehat{\omega}(t)\xi_i(s)(w(s)+ v(s))ds\\ \geq&\frac{1}{\lambda_i}(l_i+\overline{\varepsilon})\lambda_i\overline{\omega}\int_a ^b\xi_i(s)(w(s)+ v(s))ds\\ > &\frac{R_2}{2} = \frac{\|w\|+\|v\|}{2}.\end{aligned} |
Thus
\begin{align} \| \mathcal T(w, v)\| = \| \mathcal T_1(w, v)\|+\| \mathcal T_2(w, v)\|\geq \|w\|+\|v\| = \|(w, v)\|, \ (w, v)\in \partial \mathcal K_{R_2}. \end{align} | (3.7) |
As can be seen by (3.4), (3.7), and Lemmas 2.3 and 2.4, \mathcal T has a fixed point (w, v) with 0 < R_2\leq \|(w, v)\|\leq R_1 . Then system (1.1) has a positive solution (w, v) .
Remark 3.1. From Theorem 3.1, the superlinear and sublinear conditions of f_i(t, x, y) and \digamma_i(t, x, y) are not necessary. In reality, Theorem 3.1 still applies to the following situations:
(1) \digamma_i^\infty < L_i , f_{i0} = +\infty , \lambda_i\in\left(0, \frac{L_i}{\digamma_i^\infty}\right) .
(2) \digamma_i^\infty = 0 , f_{i0} = +\infty , \lambda_i\in(0, +\infty) .
(3) \digamma_i^\infty = 0 , f_{i0} > l_i > 0 , \lambda_i\in\left(\frac{l_i}{f_{i0}}, +\infty\right) .
Remark 3.2. For i = 1, 2 , since 0 < \frac{l_i}{f_{i0}} < 1 , \frac{L_i}{\digamma_i^{\infty}} > 1 , we have 1\in\left(\frac{l_i}{f_{i0}}, \frac{L_i}{\digamma_i^{\infty}}\right) , so when \lambda_1 = \lambda_2 = 1 , Theorem 3.1 is true.
Theorem 3.2. Assume that (\boldsymbol{H}_1) (\boldsymbol{H}_2) (\boldsymbol{H}_4) hold.
(\boldsymbol{H}_4)
0\leq \digamma_i^0 = \limsup\limits_{{x+y\to 0^+}\atop {(x, y)\neq(0, 0)} }\max\limits_{t\in[0, 1]}\frac{\digamma_i(t, x, y)}{x+y} < L_i, |
0 < l'_i < f_{i\infty} = \liminf\limits_{{x+y\to +\infty}\atop {(x, y)\neq(0, 0)} }\min\limits_{t\in[a, b]\subset(0, 1) }\frac{|f_i(t, x, y)|}{x+y}\leq+\infty, \ i = 1, 2, |
the definitions of L_i is the same in Theorem 3.1: l'_i = \left(2\min_{t\in[a, b]}\int_{a}^{b} \mathcal G_i(t, s)ds\right)^{-1} . For any
\lambda_1\in\left(\frac{l'_1}{f_{1\infty}}, \frac{L_1}{\digamma_1^0}\right), \ \lambda_2\in\left(\frac{l'_2}{f_{2\infty}}, \frac{L_2}{\digamma_2^0}\right), |
system (1.1) has at least one positive solution.
Proof. For i = 1, 2 , for any \lambda_i\in\left(\frac{l'_i}{f_{i\infty}}, \frac{L_i}{\digamma_i^0}\right) , there exists \varepsilon' > 0 so that
\frac{l'_i}{f_{i\infty}-\varepsilon'}\leq\lambda_i\leq\frac{L_i}{\digamma_i^{0}+\varepsilon'}, \ f_{i\infty}-\varepsilon' > 0. |
According to the first inequality of (\textbf{H}_4) , there exists r > 0 ,
\begin{align} \digamma_i(t, x, y)\leq(\digamma_i^0+\varepsilon')(x+y), \ \ 0 < x+y\leq r, \ t\in [0, 1]. \end{align} | (3.8) |
Set
\mathcal K_{r_1} = \{(w, v)\in \mathcal K: \|(w, v)\| < r_1\}, \ (r_1\leq r). |
From (\textbf{H}_1) , there exists m' (m'\in \text{N}) ,
\begin{align} \sup\limits_{(w, v)\in \partial \mathcal K_{r_1}}\lambda_i\int_{H(m')}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds < \frac{r_1}{4}. \end{align} | (3.9) |
For any (w, v)\in \partial \mathcal K_{r_1} , we can acquire
0 < w'r_1\leq w(t)+v(t)\leq r_1\leq r, \ t\in \left[\frac{1}{m'}, \frac{m'-1}{m'}\right], |
where \omega' = \min\left\{\widehat{\omega}(t): t\in\left[\frac{1}{m'}, \frac{m'-1}{m'}\right]\right\} . From (3.8), we know
\begin{align} \digamma_i(t, w(t), v(t))\leq(\digamma_i^0+\varepsilon_i')(w(t)+v(t)), \ (u, v)\in \partial \mathcal K_{r_1}, \ t\in \left[\frac{1}{m'}, \frac{m'-1}{m'}\right]. \end{align} | (3.10) |
Equations (3.9) and (3.10) can be introduced so that, for any (u, v)\in \partial \mathcal K_{r_1} ,
\begin{aligned}&\| \mathcal T_i(w, v)\|\\ = &\max\limits_{t\in[0, 1] }\lambda_i\left|\int_{0}^{1} \mathcal G_i(t, s)f_i(s, w(s), v(s))ds\right|\\ \leq&\sup\limits_{(w, v)\in \partial \mathcal K_{r_1}}\lambda_i\int_{H(m')}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\& +\lambda_i\int_\frac{1}{m'}^\frac{m'-1}{m'}\xi_i(s)\verb"b"_i(s)\digamma_i(s, w(s), v(s))ds\\ \leq&\frac{r_1}{4}+(g^0+\varepsilon')\lambda_i\int_\frac{1}{m'}^\frac{m'-1}{m'}\xi_i(s)\verb"b"_i(s)(w(s)+v(s))ds\\ \leq&\frac{r_1}{2} = \frac{\|w\|+\|v\|}{2}.\end{aligned} |
Thus
\begin{align} \| \mathcal T(w, v)\| = \| \mathcal T_1(w, v)\|+\| \mathcal T_2(w, v)\|\leq \|w\|+\|v\| = \|(w, v)\|, \ (w, v)\in \partial \mathcal K_{r_1}. \end{align} | (3.11) |
For i = 1, 2 , for the above \varepsilon' > 0 , on the basis of the second inequality of (\textbf{H}_5) ,
r_0 > \overline{\omega} r_1 > 0, \ \overline{\omega} = \min\limits_{t\in[a, b]}\widehat{\omega}(t) |
satisfying
\begin{align} |f_i(t, x, y)|\geq(f_{i\infty}-\varepsilon')(x+y), \ \ x+y\geq r_0, \ t\in[a, b]. \end{align} | (3.12) |
Let
r_2 = {r_0}/\overline{\omega} > r_1, \ \mathcal K_{r_2} = \{(w, v)\in \mathcal K:\|(w, v)\| < r_2\}, \ (u_0. v_0) = \left(\frac{1}{2}, \frac{1}{2}\right)\in \partial \mathcal K_1. |
Then, we demonstrate
\begin{align} (w, v)\neq \mathcal T(u, v)+\mu (w_0. v_0), \forall (u, v)\in\partial \mathcal K_{r_2}, \forall\mu > 0. \end{align} | (3.13) |
Otherwise, there exists (w_2, v_2)\in\partial \mathcal K_{r_2} and \mu_2 > 0 such that
(w_2, v_2) = \mathcal T(w_2, v_2)+\mu_2(w_0, v_0). |
Owing to the fact that
w_2(t)+v_2(t)\geq\overline{\omega}\|w_2\|+\overline{\omega}\|v_2\| = \overline{\omega} r_2 = r_0, \ a\leq t\leq b, |
by (3.12), we can find that
\begin{align} |f_i(t, w_2(t), v_2(t))|\geq(f_{i\infty}-\varepsilon')(w_2(t)+ v_2(t)), \ (w_2, v_2)\in\partial \mathcal K_{r_2}, \ a\leq t\leq b. \end{align} | (3.14) |
Suppose
\begin{align} \xi = \min\{w_2(t)+v_2(t):\ a\leq t\leq b\}. \end{align} | (3.15) |
Then w_2(t)+v_2(t)\geq \xi > 0 , a\leq t\leq b . Therefore, for any a\leq t\leq b , by (3.14),
\begin{aligned} &w_2(t)+v_2(t)\\ = & \mathcal T_1(w_2, v_2)+ \mathcal T_2(w_2, v_2)+\mu_2(w_0+v_0)\\ = &\lambda_1\int_{0}^{1} \mathcal G_1(t, s)f_1(s, w_2(s), v_2(s))ds\\& +\lambda_2\int_{0}^{1} \mathcal G_2(t, s)f_2(s, w_2(s), v_2(s))ds+\mu_2(w_0+v_0)\\ \geq&\lambda_1\int_{a}^{b} \mathcal G_1(t, s)f_1(s, w_2(s), v_2(s))ds\\& +\lambda_2\int_{a}^{b} \mathcal G_2(t, s)f_2(s, w_2(s), v_2(s))ds+\mu_2\\ \geq&\min\limits_{s\in[a, b]}( w_2(s)+v_2(s))(f_{1\infty}-\varepsilon')\lambda_1\min\limits_{t\in[a, b]}\int_{a}^{b} \mathcal G_1(t, s)ds \\&+\min\limits_{s\in[a, b]}( w_2(s)+v_2(s))(f_{2\infty}-\varepsilon')\lambda_2 \min\limits_{t\in[a, b]}\int_{a}^{b} \mathcal G_2(t, s)ds+\mu_2\\ \geq&\xi+\mu_2 > \xi.\end{aligned} |
Thus
\begin{align} w_2(t)+v_2(t)\geq\xi+\mu_2, \ t\in[a, b]. \end{align} | (3.16) |
Obviously, (3.16) and (3.15) yield contradiction, thus (3.13) holds. It follows from (3.11), (3.13), and Lemmas 2.3 and 2.5 that \mathcal T has a fixed point (w, v) with 0 < r_1\leq \|(w, v)\|\leq r_2 . Then system (1.1) has a positive solution (w, v) .
Remark 3.3. Similar to Remark 3.1, for i = 1, 2 , Theorem 3.2 holds to the situations:
(1) f_{i\infty} = +\infty , \digamma_i^0 < L_i , \lambda_i\in\left(0, \frac{L_i}{\digamma_i^0}\right) .
(2) f_{i\infty} = +\infty , \digamma_i^0 = 0 , \lambda_i\in(0, +\infty) .
(3) f_{i\infty} > l'_i , \digamma_i^0 = 0 , \lambda_i\in\left(\frac{l'_i}{f_{i\infty}}, +\infty\right) .
Remark 3.4. Since 0 < \frac{l'_i}{f_{i\infty}} < 1 , \frac{L_i}{\digamma_i^{0}} > 1 , we have 1\in\left(\frac{l'_i}{f_{i\infty}}, \frac{L_i}{\digamma_i^{0}}\right) , so when \lambda_1 = \lambda_2 = 1 , Theorem 3.2 also holds.
Example 4.1. Take account of the fractional system
\begin{align} \left\{\begin{array}{l} & \mathcal D^{\frac{5}{2}}_{0^+}w(t)+f_1(t, w(t), v(t)) = 0, \\ & \mathcal D^{\frac{7}{2}}_{0^+}v(t)+f_2(t, w(t), v(t)) = 0, \ 0 < t < 1, \\ &w(0) = w'(0) = 0, \ w'(1) = \frac{1}{3}\int_0^{\frac{1}{3}}t^{-\frac{1}{4}} \mathcal D^{\frac{1}{2}}_{0^+}w(t)dt, \\ &v(0) = v'(0) = v''(0) = 0, \ \mathcal D^{\frac{5}{4}}_{0^+}v(1) = \frac{1}{2}\int_0^{\frac{4}{5}}t^{-\frac{3}{4}} \mathcal D^{\frac{5}{4}}_{0^+}v(t)dt, \end{array}\right. \end{align} | (4.1) |
where
f_1(t, x, y) = 3+t\sin\frac{1}{x+y}+|\ln(x+y)|, |
f_2(t, x, y) = 12-t+\sqrt{x+y}+|\ln(x+y)|. |
Obviously,
\alpha_1 = \frac{5}{2}, \ \alpha_2 = \frac{7}{2}, \ \verb"b"_i(t) = 1, \ \digamma_i(t, x, y) = f_i(t, x, y), \ i = 1, 2. |
By computation
\Gamma(\alpha_1) = 1.3294, \ \Gamma(\alpha_2) = 3.3237, \ \Lambda_1 = 0.7714, \ \Lambda_2 = 0.8485, \ \xi_1\approx1.1843, \ \xi_2\approx0.8901. |
For \widehat{\omega}(t) = t^ \frac{7}{2} , define a cone
\mathcal K = \left\{(w, v)\in X: w(t)\geq t^ \frac{7}{2}\|w\|, \ v(t)\geq t^ \frac{7}{2} \|v\|, \ 0\leq t\leq 1\right\}. |
For any 0 < r^*_1 < r^*_2 < +\infty and (w, v)\in \mathcal K_{[{r^*_1}, r^*_2]} , \widehat{\omega}(t)r^*_1\leq w(t)+v(t)\leq r^*_2 . So
\begin{align} &\digamma_1(t, w(t), v(t)) \leq 4+|\ln r^*_1|+|\ln r^*_2|+|\ln\widehat{\omega}(t)|, \\&\digamma_2(t, w(t), v(t))\leq12+\sqrt{r^*_2}+|\ln r^*_1|+|\ln r^*_2|+|\ln\widehat{\omega}(t)|. \end{align} | (4.2) |
\begin{align} \int_0^1|\ln\widehat{\omega}(t)|dt < 4. \end{align} | (4.3) |
The absolute continuity of the integral gives
\lim\limits_{\widetilde{m}\rightarrow +\infty}\int_{H(\widetilde{m})}|\ln\widehat{\omega}(t)|dt = 0. |
By (4.2) (4.3), we obtain
\begin{aligned}0&\leq\sup\limits_{(w, v)\in \mathcal K_{[r^*_1, r^*_2]}}\int_{H(\widetilde{m})} \xi_1(s)\verb"b"_1(s)\digamma_1(s, w(s), v(s))ds\\&\leq 1.1843 \int_{H(\widetilde{m})} (4+|\ln r^*_1|+|\ln r^*_2|+|\ln\widehat{\omega}(s)|)ds\\ & < 1.1843(4+|\ln r^*_1|+|\ln r^*_2|)\int_{H(\widetilde{m})}ds+ 2\int_{H(\widetilde{m})} |\ln\widehat{\omega}(s)|ds\\& = \frac{ 2.3686\left(4+|\ln r^*_1|+|\ln r^*_2|\right)}{\widetilde{m}}+ \int_{H(\widetilde{m})} |\ln\widehat{\omega}(s)|ds.\end{aligned} |
By
\lim\limits_{\widetilde{m}\rightarrow +\infty}\frac{1}{\widetilde{m}} = 0, \ \lim\limits_{\widetilde{m}\rightarrow +\infty}\int_{H(\widetilde{m})}|\ln\widehat{\omega}(t)|dt = 0, |
we know
\lim\limits_{\widetilde{m}\rightarrow +\infty}\frac{ 2.3686(4+|\ln r^*_1|+|\ln r^*_2|)}{\widetilde{m}}+ \int_{H(\widetilde{m})} |\ln\widehat{\omega}(s)|ds = 0, |
so, we have
\begin{align} \lim\limits_{\widetilde{m}\rightarrow +\infty}\sup\limits_{(w, v)\in \mathcal K_{[r^*_1, r^*_2]}}\int_{H(\widetilde{m})} \xi_1(s)\verb"b"_1(s)\digamma_1(s, w(s), v(s))ds = 0. \end{align} | (4.4) |
Similar to (4.4), we also have
\lim\limits_{\widetilde{m}\rightarrow +\infty}\sup\limits_{(w, v)\in \mathcal K_{[r^*_1, r^*_2]}}\int_{H(\widetilde{m})} \xi_1(s)\verb"b"_2(s)\digamma_2(s, w(s), v(s))ds = 0. |
These imply that condition (\textbf{H}_1) holds.
By calculation, \begin{aligned} \digamma_1^\infty = \digamma_2^\infty = 0, \end{aligned} and f_{10} = f_{20} = +\infty. Therefore, by Theorem 3.1, for each \lambda_i\in (0, +\infty) (i = 1, 2) , we get that system (4.1) has at least one positive solution.
In this article, we investigate a singular fractional differential system involving integral boundary value conditions. The existence and explicit interval can be acquired under the argument of fixed-point theory. Since f_i \ (i = 1, 2) is the abstract function, in the actual world, there are quantities of functions that satisfy the requirements of this article, which proves the effectiveness and feasibility of these theorems.
Ying Wang: Writing original draft, methodology, proof of conclusions; Linmin Guo: Methodology, proof of conclusions; Yumei Zi: Validation, writing review, editing; Jing Li: Validation, writing review, editing. All the authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication. This work is supported by NSFC (12271232, 12101086), the Science Research Foundation for Doctoral Authorities of Linyi University (LYDX2016BS080).
The authors declare no conflicts of interest.
[1] |
Z. Z. Bai, W. T. Wu, On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems, Linear Algebra Appl., 578 (2019), 225–250. https://doi.org/10.1016/j.laa.2019.05.005 doi: 10.1016/j.laa.2019.05.005
![]() |
[2] |
B. Dumitrescu, On the relation between the randomized extended Kaczmarz algorithm and coordinate descent, BIT Numer. Math., 55 (2015), 1005–1015. https://doi.org/10.1007/s10543-014-0526-9 doi: 10.1007/s10543-014-0526-9
![]() |
[3] |
K. Du, W. T. Si, X. H. Sun, Randomized extended average block Kaczmarz for solving least squares, SIAM J. Sci. Comput., 42 (2020), A3541–A3559. https://doi.org/10.1137/20M1312629 doi: 10.1137/20M1312629
![]() |
[4] |
P. P. B. Eggermont, G. T. Herman, A. Lent, Iterative algorithms for large partitioned linear systems, with applications to image reconstruction, Linear Algebra Appl., 40 (1981), 37–67. http://doi.org/10.1016/0024-3795(81)90139-7 doi: 10.1016/0024-3795(81)90139-7
![]() |
[5] |
T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. Math., 35 (1980), 1–12. http://doi.org/10.1007/BF01396365 doi: 10.1007/BF01396365
![]() |
[6] |
S. G. Shafiei, M. Hajarian, Developing Kaczmarz method for solving Sylvester matrix equations, J. Franklin I., 359 (2022), 8991–9005. https://doi.org/10.1016/j.jfranklin.2022.09.028 doi: 10.1016/j.jfranklin.2022.09.028
![]() |
[7] | S. Kaczmarz, Angenaherte auflosung von systemen linearer glei-chungen, Bull. Int. Acad. Pol. Sci. Lett. A, 35 (1937), 335–357 |
[8] |
J. Liu, S. J. Wright, An accelerated randomized Kaczmarz algorithm, Math. Comput., 85 (2016), 153-178. https://doi.org/10.1090/mcom/2971 doi: 10.1090/mcom/2971
![]() |
[9] |
D. Needell, J. A. Tropp, Paved with good intentions: analysis of a randomized block Kaczmarz method, Linear Algebra Appl., 441 (2014), 199–221. https://doi.org/10.1016/j.laa.2012.12.022 doi: 10.1016/j.laa.2012.12.022
![]() |
[10] |
D. Needell, R. Zhao, A. Zouzias, Randomized block Kaczmarz method with projection for solving least squares, Linear Algebra Appl., 484 (2015), 322–343. https://doi.org/10.1016/j.laa.2015.06.027 doi: 10.1016/j.laa.2015.06.027
![]() |
[11] |
I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 40 (2019), 1425–1452. https://doi.org/10.1137/19M1251643 doi: 10.1137/19M1251643
![]() |
[12] |
S. Petra, C. Popa, Single projection Kaczmarz extended algorithms, Numer. Algorithms, 73 (2016), 791–806. https://doi.org/10.1007/s11075-016-0118-7 doi: 10.1007/s11075-016-0118-7
![]() |
[13] |
T. Strohmer, R.Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 15 (2009), 262–278. https://doi.org/10.1007/s00041-008-9030-4 doi: 10.1007/s00041-008-9030-4
![]() |
[14] |
N. C. Wu, H. Xiang, Projected randomized Kaczmarz methods, J. Comput. Appl. Math., 372 (2020), 112672. https://doi.org/10.1016/j.cam.2019.112672 doi: 10.1016/j.cam.2019.112672
![]() |
[15] |
A. Zouzias, N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 34 (2013), 773–793. https://doi.org/10.1137/120889897 doi: 10.1137/120889897
![]() |
1. | Peng Chen, Xinguang Zhang, Lishuang Li, Yongsheng Jiang, Yonghong Wu, Existence and Asymptotic Estimates of the Maximal and Minimal Solutions for a Coupled Tempered Fractional Differential System with Different Orders, 2025, 14, 2075-1680, 92, 10.3390/axioms14020092 | |
2. | Lishuang Li, Xinguang Zhang, Peng Chen, Yonghong Wu, The Existence of Positive Solutions for a p-Laplacian Tempered Fractional Diffusion Equation Using the Riemann–Stieltjes Integral Boundary Condition, 2025, 13, 2227-7390, 541, 10.3390/math13030541 | |
3. | Xinguang Zhang, Peng Chen, Lishuang Li, Yonghong Wu, Multiplicity of Positive Solutions for a Singular Tempered Fractional Initial-Boundary Value Problem with Changing-Sign Perturbation Term, 2025, 9, 2504-3110, 215, 10.3390/fractalfract9040215 |