Processing math: 63%
Research article Special Issues

Positive solutions to integral boundary value problems for singular delay fractional differential equations

  • Received: 06 July 2023 Revised: 07 August 2023 Accepted: 10 August 2023 Published: 04 September 2023
  • MSC : 34A08, 34B15, 34B17

  • Delay fractional differential equations play very important roles in mathematical modeling of real-life problems in a wide variety of scientific and engineering applications. The objective of this manuscript is to study the existence and uniqueness of positive solutions for singular delay fractional differential equations with integral boundary data. To investigate the described system, we construct a u0-positive operator first. New research technique of by constructing u0-positive operator is used to overcome the difficulties caused by both the delays and the boundary value conditions. Then the sufficient conditions for the existence and uniqueness of positive solutions of a class of the singular delay fractional differential equations with integral boundary is proved by using the fixed point theorem in cone.

    Citation: Xiulin Hu, Lei Wang. Positive solutions to integral boundary value problems for singular delay fractional differential equations[J]. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304

    Related Papers:

    [1] Gonca Durmaz Güngör, Ishak Altun . Fixed point results for almost (ζθρ)-contractions on quasi metric spaces and an application. AIMS Mathematics, 2024, 9(1): 763-774. doi: 10.3934/math.2024039
    [2] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [3] Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080
    [4] Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323
    [5] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [6] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [7] Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111
    [8] Abdellah Taqbibt, M'hamed Elomari, Milica Savatović, Said Melliani, Stojan Radenović . Fixed point results for a new α-θ-Geraghty type contraction mapping in metric-like space via CG-simulation functions. AIMS Mathematics, 2023, 8(12): 30313-30334. doi: 10.3934/math.20231548
    [9] Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen . Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations. AIMS Mathematics, 2023, 8(4): 8633-8649. doi: 10.3934/math.2023433
    [10] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
  • Delay fractional differential equations play very important roles in mathematical modeling of real-life problems in a wide variety of scientific and engineering applications. The objective of this manuscript is to study the existence and uniqueness of positive solutions for singular delay fractional differential equations with integral boundary data. To investigate the described system, we construct a u0-positive operator first. New research technique of by constructing u0-positive operator is used to overcome the difficulties caused by both the delays and the boundary value conditions. Then the sufficient conditions for the existence and uniqueness of positive solutions of a class of the singular delay fractional differential equations with integral boundary is proved by using the fixed point theorem in cone.



    In 1922, Banach first presented the Banach contraction principle [1] in metric spaces, which is a powerful and classical means to solve problems about fixed point. Subsequently, it has been generalized in many aspects. One vital generalization is to promote the concept of metric spaces. b-metric spaces is regarded as a well-known generalization of metric spaces. In 1993, Czerwik [2] first introduced the concept of b-metric spaces by modifying the third condition of the metric function. The author also provided fixed point results for contraction conditions in this type space. In the sequel, several papers have been published on the fixed point theory of various classes of single-valued and multi-valued operators in b-metric spaces (see [3,4,5,6]).

    In 1969, Boyd and Wong [7] gave a definition of ϕ-contraction in metric spaces for the first time. Afterward, Alber and Guerre [8] defined the concept of weak contraction and got some fixed point results in Hilbert space. In [9], Rhoades generalized Alber and Guerre's results to more general forms. Alutn [10] proved the common fixed point theorem for weakly contraction mappings of integral type. Later, more scholars [11,12,13,14] presented some fixed point theorems for weakly contractive mappings in different spaces.

    In particular, Perveen [15] obtained the θ-weak contraction principle in metric spaces as follows:

    Theorem 1.1. [15] Suppose (Ω,) is a complete metric space and S:ΩΩ is a θ-weak contraction. If θ is continuous, then

    (a) S has unique fixed point (say, zΩ),

    (b)limn+Snz=z, zΩ.

    Motivated and inspired by results in [15], in this paper we give some fixed point theorems for contractive mappings of the integral type in b-metric spaces. Furthermore, two examples are given to prove the feasibility of the theorems. Also, the solvability of a functional equation arising in dynamic programming is considered by means of obtained results.

    We introduce the following definitions and lemmas, which will be used to obtain our main results.

    Definition 2.1. [2] Let be a nonempty set and s1 be a given real number. A mapping ϖ:×[0,+) is said to be a b-metric if, and only if, for all κ,λ,μ, the following conditions are satisfied:

    (ⅰ) ϖ(κ,λ)=0 if, and only if, κ=λ;

    (ⅱ) ϖ(κ,λ)=ϖ(λ,κ);

    (ⅲ) ϖ(κ,λ)s(ϖ(κ,μ)+ϖ(λ,μ)).

    In general, (,ϖ) is called a b-metric space with parameter s1.

    Remark 2.2. Visibly, every metric space is a b-metric space with s=1. There are several examples of b-metric spaces that are not metric spaces (see [16]).

    Example 2.3. [17] Let (,d) be a metric space, and ϖ(κ,λ)=(d(κ,λ))p, where p>1 is a real number, then ϖ(κ,λ) is a b-metric with s=2p1.

    Definition 2.4. [18] Let (,ϖ) be a b-metric space with parameter s1, then a sequence {κι}+ι=1 in is said to be:

    (ⅰ) b-convergent if there exists κ such that ϖ(κι,κ)0 as ι+;

    (ⅱ) a Cauchy sequence if ϖ(κι,κυ)0 when ι,υ+.

    As usual, a b-metric space is called complete if, and only if, each Cauchy sequence in this space is b-convergent.

    The following lemma plays a key role in our conclusion.

    Lemma 2.5. [17] Let (,ϖ) be a b-metric space with parameter s1. Assume that {κι}+ι=1 and {λι}+ι=1 are b-convergent to κ and λ, respectively, then we have

    1s2ϖ(κ,λ)lim infι+ϖ(κι,λι)lim supι+ϖ(κι,λι)s2ϖ(κ,λ).

    In particular, if κ=λ, then we have limι+ϖ(κι,λι)=0. Moreover, for each μ, we have

    1sϖ(κ,μ)lim infι+ϖ(κι,μ)lim supι+ϖ(κι,μ)sϖ(κ,μ).

    Lemma 2.6. [19] Let φ and {κι}ιN be a nonnegative sequence with limn+κι=κ, then

    limn+κι0φ(ω)dω=κ0φ(ω)dω.

    Lemma 2.7. [19] Let φ and {κι}ιN be a nonnegative sequence, then

    limι+κι0φ(ω)dω=0

    if, and only if, limι+κι=0.

    Throughout this paper, we assume that R+=[0,+), N0=N{0}, where N stands for the set of positive integers,

    ={ξ|ξ:R+R+ satisfies that ξ is Lebesgue integrable, and δ0ξ(ω)dω>0 for each δ>0}.

    Let (,ϖ) be a b-metric space with parameter s1 and S be a self-mapping on . For any u,v, set

    (u,v)=max{ϖ(u,v),ϖ(u,Su),ϖ(v,Sv),ϖ(u,Sv)+ϖ(v,Su)2s}.

    In this part, we introduce the new concept of αsp-admissible mapping and other definitions, which will be used to prove the fixed point theorems of the integral type in b-metric space. Moreover, we also provide two examples to support our results.

    Let

    Θ1={θ|θ:(0,+)(1,+) satisfies the following conditions (1) and (3)},

    Θ2={θ|θ:(0,+)(0,1) satisfies the following conditions (2) and (3)},

    where

    (1) θ is nondecreasing and continuous;

    (2) θ is nonincreasing and continuous;

    (3) for each sequence {βι}+ι=1(0,+), limι+θ(βι)=1limι+βι=0.

    Definition 3.1. Let (,ϖ) be a b-metric space with parameter s1 and p1 be an integer. A mapping S: is said to be αspadmissible if for all z,w, one has

    α(z,w)spα(Sz,Sw)sp

    where α:×[0,+) is a given function.

    Lemma 3.2. Let φ and {κι}ιN be a nonnegative sequence. If lim supι+κι=κ, then

    κ0φ(ω)dωlim supι+κι0φ(ω)dω.

    If lim infι+κι=κ, then

    lim infι+κι0φ(ω)dωκ0φ(ω)dω.

    Proof. It follows from lim supι+κι=κ that there exists a subsequence {κις} of {κι} such that

    limς+κις=κ.

    In view of Lemma 2.6, we deduce that

    κ0φ(ω)dω=limς+κις0φ(ω)dωlim supι+κι0φ(ω)dω.

    Similarly, one can prove another inequality.

    Theorem 3.3. Let (,ϖ) be a complete b-metric space with parameter s1 and S: be a given self-mapping. Assume that α:×[0,+) and p3. If

    (ⅰ) S is αsp-admissible,

    (ⅱ) there is p0 satisfying α(p0,Sp0)sp,

    (ⅲ) α satisfies transitive property, i.e., for ξ,η,ζ if

    α(ξ,η)sp and α(η,ζ)spα(ξ,ζ)sp,

    (ⅳ) if {pι} is a sequence in satisfying pιp as ι+, then there exists a subsequence {pι(k)}+k=1 of {pι}+ι=1 with α(pι(k),p)sp,

    (ⅴ) S is a θ-weak contraction, that is, there exists (0,1), φ, θΘ1 such that: for any u,v,

    α(u,v)sp,ϖ(Su,Sv)0φ(ω)dω>0θ(α(u,v)ϖ(Su,Sv)0φ(ω)dω)[θ( (u,v)0φ(ω)dω)], (3.1)

    then S has a fixed point in . Furthermore, if

    (ⅵ) for p,qFix(S), one can get the conditions of α(p,q)sp and α(q,p)sp, where Fix(S) represents the collection of all fixed points of S,

    then the fixed point is unique.

    Proof. Under condition (ⅱ), there is a p0 satisfying α(p0,Sp0)sp. Define sequence {pn} in by pn+1=Spn for nN. If pn0=Spn0 for some n0, then pn0 is a fixed point of S. Suppose that pn+1pn for nN. It follows from condition (ⅰ) that

    α(p0,Sp0)spα(Sp0,S2p0)sp,
    α(p1,p2)spα(Sp1,Sp2)sp,
    α(p2,p3)spα(Sp2,Sp3)sp,

    Thus, for all nN, we have α(pn1,pn)sp. Using (3.1) by u=pn1 and v=pn, one gets

    θ(α(pn1,pn)ϖ(Spn1,Spn)0φ(ω)dω)[θ( (pn1,pn)0φ(ω)dω)] (3.2)

    where

    (pn1,pn)=max{ϖ(pn1,pn),ϖ(pn1,Spn1),ϖ(pn,Spn),ϖ(pn1,Spn)+ϖ(pn,Spn1)2s}=max{ϖ(pn1,pn),ϖ(pn1,pn),ϖ(pn,pn+1),ϖ(pn1,pn+1)+ϖ(pn,pn)2s}=max{ϖ(pn1,pn),ϖ(pn,pn+1)}. (3.3)

    If ϖ(pn,pn+1)ϖ(pn1,pn) for some nN, in view of (3.2) and (3.3), we have (pn1,pn)=ϖ(pn,pn+1), so

    θ(ϖ(pn,pn+1)0φ(ω)dω)<θ(spϖ(pn,pn+1)0φ(ω)dω)θ(α(pn1,pn)ϖ(Spn1,Spn)0φ(ω)dω)[θ((pn1,pn)0φ(ω)dω)]=[θ(ϖ(pn,pn+1)0φ(ω)dω)]

    which is impossible. Hence,

    ϖ(pn1,pn)>ϖ(pn,pn+1). (3.4)

    (3.4) implies that (pn1,pn)=ϖ(pn1,pn) is decreasing. Thus, we have

    θ(ϖ(pn,pn+1)0φ(ω)dω)<[θ(ϖ(pn1,pn)0φ(ω)dω)]<[θ(ϖ(pn2,pn1)0φ(ω)dω)]2<<[θ(ϖ(p0,p1)0φ(ω)dω)]n.

    Letting n+ in the above inequality, we get

    1limn+θ(ϖ(pn,pn+1)0φ(ω)dω)limn+[θ(ϖ(p0,p1)0φ(ω)dω)]n=1

    i.e., limn+θ(ϖ(pn,pn+1)0φ(ω)dω)=1, which by the definition of θ yields that

    limn+ϖ(pn,pn+1)0φ(ω)dω=0

    which implies

    limn+ϖ(pn,pn+1)=0.

    Now, we prove {pn} is a Cauchy sequence. Suppose {pn} is not Cauchy, then there exists ε>0 for which we can choose sequences {pn(k)} and {pm(k)} of {pn}, such that n(k) is the smallest index for which n(k)>m(k)>k,

    εϖ(pm(k),pn(k)),ϖ(pm(k),pn(k)1)<ε. (3.5)

    Under the triangle inequality and (3.5), we get

    εϖ(pm(k),pn(k))sϖ(pm(k),pn(k)1)+sϖ(pn(k)1,pn(k))<sε+sϖ(pn(k)1,pn(k)).

    Taking the superior limit and inferior limit as k+, we get

    εlim infk+ϖ(pm(k),pn(k))lim supk+ϖ(pm(k),pn(k))sε. (3.6)

    Similarly, one can deduce the following inequalities:

    ϖ(pm(k),pn(k))sϖ(pm(k),pm(k)1)+s2ϖ(pm(k)1,pn(k)1)+s2ϖ(pn(k)1,pn(k)), (3.7)
    ϖ(pm(k)1,pn(k)1)sϖ(pm(k)1,pm(k))+s2ϖ(pm(k),pn(k))+s2ϖ(pn(k),pn(k)1), (3.8)
    ϖ(pm(k),pn(k))sϖ(pm(k),pm(k)1)+sϖ(pm(k)1,pn(k)), (3.9)
    ϖ(pm(k)1,pn(k))sϖ(pm(k)1,pm(k))+sϖ(pm(k),pn(k)), (3.10)
    ϖ(pm(k),pn(k))sϖ(pm(k),pn(k)1)+sϖ(pn(k)1,pn(k)), (3.11)
    ϖ(pm(k),pn(k)1)sϖ(pm(k),pn(k))+sϖ(pn(k),pn(k)1). (3.12)

    By (3.6)–(3.8), we have

    εs2lim infk+ϖ(pm(k)1,pn(k)1)lim supk+ϖ(pm(k)1,pn(k)1)s3ε. (3.13)

    It follows from (3.6), (3.9), and (3.10) that

    εslim infk+ϖ(pm(k)1,pn(k))lim supk+ϖ(pm(k)1,pn(k))s2ε. (3.14)

    According to (3.6), (3.11), and (3.12), one can obtain

    εslim infk+ϖ(pm(k),pn(k)1)lim supk+ϖ(pm(k),pn(k)1)s2ε. (3.15)

    Thus, there exists NN0 such that for m(k),n(k)N, ϖ(pm(k)1,pn(k)1)0φ(ω)dω>0.

    In view of the definition of (u,v), we have

    (pm(k)1,pn(k)1)=max{ϖ(pm(k)1,pn(k)1),ϖ(pm(k)1,Spm(k)1),ϖ(pn(k)1,Spn(k)1),ϖ(pm(k)1,Spn(k)1)+ϖ(pn(k)1,Spm(k)1)2s}=max{ϖ(pm(k)1,pn(k)1),ϖ(pm(k)1,pm(k)),ϖ(pn(k)1,pn(k)),ϖ(pm(k)1,pn(k))+ϖ(pn(k)1,pm(k))2s}. (3.16)

    Letting k+ in (3.16), we get

    lim infk+(pm(k)1,pn(k)1)lim supk+(pm(k)1,pn(k)1)max{s3ε,0,0,s2ε+s2ε2s}=s3ε. (3.17)

    The transitivity property of α yields that α(pm(k)1,pn(k)1)sp. Choosing u=pm(k)1 and v=pn(k)1 in (3.1), by Lemma 3.2, one can deduce

    θ(s3ε0φ(ω)dω)lim infk+θ(spϖ(pm(k),pn(k))0φ(ω)dω)lim infk+θ(α(pm(k)1,pn(k)1)ϖ(Spm(k)1,Spn(k)1)0φ(ω)dω)lim infk+[θ((pm(k)1,pn(k)1)0φ(ω)dω)][θ(s3ε0φ(ω)dω)]

    which is a contradiction. So, {pn} is Cauchy. As is complete, there exists p such that pnp as n+.

    Next, we prove the point p to be a fixed point of S. So, we think about a set, say Q={nN0:pn=Sp}, then it has two situations. One, if Q is an infinite set, then there exists a subsequence {pn(k)}{pn}, which converges to Sp. By the uniqueness of limit, we have Sp=p. The other, if Q is a finite set, then there is NN such that ϖ(pn,Sp)0φ(ω)dω>0 for any nN. By (iv), we obtain that there exists a subsequence {pn(k)}{pn} such that α(pn(k)1,p)sp and ϖ(pn(k),Sp)0φ(ω)dω>0, kN. Taking u=pn(k)1 and v=p in (3.1), we get

    θ(α(pn(k)1,p)ϖ(Spn(k)1,Sp)0φ(t)dt)[θ( (pn(k)1,p)0φ(ω)dω)] (3.18)

    where

    (pn(k)1,p)=max{ϖ(pn(k)1,p),ϖ(pn(k)1,Spn(k)1),ϖ(p,Sp),ϖ(pn(k)1,Sp)+dϖ(p,Spn(k)1)2s}=max{ϖ(pn(k)1,p),ϖ(pn(k)1,pn(k)),ϖ(p,Sp),ϖ(pn(k)1,Sp)+ϖ(p,pn(k))2s}. (3.19)

    Putting the limit as k+ in (3.19), we get

    limk+(pn(k)1,p)=max{0,0,ϖ(p,Sp),ϖ(p,Sp)2}=ϖ(p,Sp).

    According to (3.18), (3.19), and Lemma 2.5, we get

    θ(ϖ(p,Sp)0φ(ω)dω)<θ(s31sϖ(p,Sp)0φ(ω)dω)lim supn+θ(spϖ(Spn(k)1,Sp)0φ(ω)dω)lim supn+θ(α(pn(k)1,p)ϖ(Spn(k)1Sp)0φ(ω)dω)lim supn+[θ((pn(k)1,p)0φ(ω)dω)]=[θ(ϖ(p,Sp)0φ(ω)dω)]

    which is contradiction. Hence, Sp=p.

    For the uniqueness, let q be one more fixed point of S, then (vi) yields α(p,q)sp. Using (3.1), one can arrive at

    θ(α(p,q)ϖ(Sp,Sq)0φ(ω)dω)[θ( (p,q)0φ(ω)dω)]

    where

    (p,q)=max{ϖ(p,q),ϖ(p,Sp),ϖ(q,Sq),ϖ(p,Sq)+ϖ(q,Sp)2s}=max{ϖ(p,q),0,0,ϖ(p,q)+ϖ(q,p)2s,0,0}=ϖ(p,q).

    So, we have

    θ(ϖ(p,q)0φ(ω)dω)<θ(s3ϖ(p,q)0φ(ω)dω)θ(α(p,q)ϖ(Sp,Sq)0φ(ω)dω)[θ((p,q)0φ(ω)dω)]=[θ(ϖ(p,q)0φ(ω)dω)]

    a contradiction. Thus, p=q, which proves the uniqueness of the fixed point. This completes the proof.

    Example 3.4. Let =[0,1] and ϖ(p,q)=(pq)2. It is easy to show that (,ϖ) is a b-metric space with parameter s=2. Define mappings S: by

    Sp={p4+1,  p[0,1),78, p=1

    and α:×[0,+) by

    α(p,q)=23,p,q.

    Define θ:[0,+)(1,+) and φ:[0,+)[0,+) by

    θ(ω)=e256ω+sinω and φ(ω)=2ω.

    It is easy to get that α(u,v)23, ϖ(Su,Sv)0φ(ω)dω>0 u,v[0,1] and uv. We consider the two following cases:

    Case 1. u,v[0,1). It follows that

    θ(α(u,v)ϖ(Su,Sv)0φ(ω)dω)=θ(23(u4+1+v41)202ωdω)=θ(14(uv)4)=e64(uv)4+sin(14(uv)4),
    [θ((u,v)0φ(ω)dω)]12[θ((uv)202ωdω)]12=[θ((uv)4]12=e128(uv)4+sin((uv)4)2.

    Case 2. u[0,1),v=1. One can deduce that

    θ(α(u,v)ϖ(Su,Sv)0φ(ω)dω)=θ(23(u4+178)202ωdω)=θ(14(u12)4)θ(14×16)=e4+sin164,
    [θ((u,v)0φ(ω)dω)]12[θ(ϖ(u,Sv)+ϖ(v,Su)2202ωdω)]12=[θ(14[(u78)2+u216]02ωdω)]12=[θ(141716[(u1417)2+(78)2(1417)2]02ωdω)]12[θ(141716[(78)2(1417)2]02ωdω)]12[θ(116)]12=e8+sin(116)2.

    Clearly, as =12, we have

    θ(α(u,v)ϖ(Su,Sv)0φ(ω)dω)[θ((u,v)0φ(ω)dω)].

    Hence, (3.1) holds. It follows that all conditions of Theorem 3.3 are satisfied with s=2 and p=3. Here, 45 is the fixed point of S.

    Remark 3.5. If (,ϖ) is a metric space and α(u,v)=1 in Theorem 3.3, then one can obtain Theorem 1.1 immediately.

    Theorem 3.6. Let (,ϖ) be a complete b-metric space with parameter s1 and S: be a given self-mapping. Assume that α:×[0,+) and p3. If

    (ⅰ) S is αsp-admissible,

    (ⅱ) there is p0 satisfying α(p0,Sp0)sp,

    (ⅲ) α satisfies transitive property, i.e., for ξ,η,ζ if

    α(ξ,η)sp and α(η,ζ)spα(ξ,ζ)sp,

    (ⅳ) if {pι} is a sequence in satisfying pιp as ι+, then there is a subsequence {pι(k)}+k=1 of {pι}+ι=1 with α(pι(k),p)sp,

    (ⅴ) S is a θ-ψ-weak contraction, that is, there exists φ, θΘ2 such that: for any u,vφ

    α(u,v)sp,ϖ(Su,Sv)0φ(ω)dω>0ψ(α(u,v)ϖ(Su,Sv)0φ(ω)dω)θ(ψ((u,v)0φ(ω)dω))ψ((u,v)0φ(ω)dω), (3.20)

    where \psi:[0, +\infty)\rightarrow [0, +\infty) is a continuous and increasing function with \psi(\omega) = 0 if, and only if, \omega = 0 ,

    then \mathbb{S} has a fixed point in \aleph . Moreover, if

    (ⅵ) for \mathfrak{p}, \mathfrak{q}\in Fix(\mathbb{S}) , one can get the conditions of \alpha(\mathfrak{p}, \mathfrak{q})\geq s^p and \alpha(\mathfrak{q}, \mathfrak{p})\geq s^p , where Fix(\mathbb{S} ) represents the collection of all fixed points of \mathbb{S} ,

    then the fixed point of \mathbb{S} is unique.

    Proof. As in the proof of Theorem 3.3, we infer \alpha(\mathfrak{p}_{n-1}, \mathfrak{p}_n)\geq s^p . Using (3.16) with \mathfrak{u} = \mathfrak{p}_{n-1} and \mathfrak{v} = \mathfrak{p}_{n} , one can deduce that

    \begin{align} \psi(\int_{0}^{\alpha(\mathfrak{p}_{n-1}, \mathfrak{p}_n)\varpi(\mathbb{S} \mathfrak{p}_{n-1}, \mathbb{S} \mathfrak{p}_n)}\varphi(\omega)\, d\omega) \leq&\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_n)}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_n)}\varphi(\omega)\, d\omega) \end{align} (3.21)

    where

    \begin{align} \triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}) = \max&\{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}), \varpi(\mathfrak{p}_{n-1}, \mathbb{S}\mathfrak{p}_{n-1}), \varpi(\mathfrak{p}_{n}, \mathbb{S} \mathfrak{p}_{n}), \frac{\varpi(\mathfrak{p}_{n-1}, \mathbb{S}\mathfrak{p}_{n})+\varpi(\mathfrak{p}_{n}, \mathbb{S} \mathfrak{p}_{n-1})}{2s}\}\\ = \max&\{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_n), \varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}), \varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1}), \frac{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n+1})+\varpi(\mathfrak{p}_n, \mathfrak{p}_n)}{2s}\}\\ = \max&\{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_n), \varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1})\}. \end{align} (3.22)

    If \varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1})\geq \varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_n) for some n\in \mathbb{N} , according to (3.22), one can obtain \triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}) = \varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1}) . It follows that

    \begin{align} \psi(&\int_{0}^{\varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1})}\varphi(\omega)\, d\omega)\\ \leq&\psi(\int_{0}^{\alpha(\mathfrak{p}_{n-1}, \mathfrak{p}_{n})\varpi(\mathbb{S} \mathfrak{p}_{n-1}, \mathbb{S}\mathfrak{p}_n)}\varphi(\omega)\, d\omega)\\ \leq&\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_n)}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_n)}\varphi(\omega)\, d\omega)\\ = &\theta(\psi(\int_{0}^{\varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1})}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1})}\varphi(\omega)\, d\omega) \nonumber \end{align}

    which is a contradiction. Thus,

    \begin{align} \varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}) > \varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1}). \end{align} (3.23)

    By (3.23), we get that \triangle(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}) = \varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}) is a decreasing sequence. Hence, there exists \rho\geq 0 such that \varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n}) = \rho. If \rho > 0, then

    \begin{align*} \frac{\psi(\int_{0}^{\varpi(\mathfrak{p}_{n}, \mathfrak{p}_{n+1})}\varphi(\omega)\, d\omega)}{\psi(\int_{0}^{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n})}\varphi(\omega)\, d\omega)} \leq\theta(\psi(\int_{0}^{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n})}\varphi(\omega)\, d\omega)). \end{align*}

    Taking n\rightarrow +\infty , we obtain

    \begin{align} 1\leq \lim\limits_{n\rightarrow +\infty}\theta(\psi(\int_{0}^{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n})}\varphi(\omega)\, d\omega))\leq 1\nonumber \end{align}

    which implies \lim\limits_{n\rightarrow +\infty}\theta(\psi(\int_{0}^{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n})}\varphi(\omega)\, d\omega)) = 1 . In view of the definition of \theta and \psi , one can deduce that

    \begin{align} \lim\limits_{n\rightarrow +\infty}\int_0^{\varpi(\mathfrak{p}_{n-1}, \mathfrak{p}_{n})}\varphi(\omega)\, d\omega = 0\nonumber \end{align}

    i.e.,

    \begin{align} \lim\limits_{n\rightarrow +\infty}\varpi(\mathfrak{p}_n, \mathfrak{p}_{n+1}) = 0, \nonumber \end{align}

    which is contradiction. It follows that \lim\limits_{n\rightarrow +\infty}\varpi(\mathfrak{p}_n, \mathfrak{p}_{n+1}) = 0.

    Next, we want to show \{\mathfrak{p}_n\} is a Cauchy sequence. As in the proof of Theorem 3.3, we obtain that (3.13)–(3.17) hold. The transitivity property of \alpha implies that \alpha(\mathfrak{p}_{m(k)-1}, \mathfrak{p}_{n(k)-1})\geq s^p . Putting \mathfrak{u} = \mathfrak{p}_{m(k)-1} and \mathfrak{v} = \mathfrak{p}_{n(k)-1} into (3.20), we get

    \begin{align} \psi(\int_0^{s^3\varepsilon}\varphi(\omega)\, d\omega) \leq&\liminf\limits_{k\rightarrow +\infty}\psi(\int_0^{s^p\varpi(\mathfrak{p}_{m(k)}, \mathfrak{p}_{n(k)})}\varphi(\omega)\, d\omega)\\ \leq&\liminf\limits_{k\rightarrow +\infty}\psi(\int_{0}^{\alpha(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})\varpi(\mathbb{S} \mathfrak{p}_{m_k-1}, \mathbb{S}\mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega)\\ \leq&\liminf\limits_{k\rightarrow +\infty}[\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega)]\\ \leq&\limsup\limits_{k\rightarrow +\infty}\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega)\cdot \liminf\limits_{k\rightarrow +\infty}\psi(\int_{0}^{\triangle(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega)\\ = &\theta(\liminf\limits_{k\rightarrow +\infty}\psi(\int_{0}^{\triangle(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega))\cdot \psi(\liminf\limits_{k\rightarrow +\infty}\int_{0}^{\triangle(\mathfrak{p}_{m_k-1}, \mathfrak{p}_{n_k-1})}\varphi(\omega)\, d\omega)\\ < &\psi(\int_{0}^{s^3\varepsilon}\varphi(\omega)\, d\omega)\nonumber \end{align}

    which is a contradiction. Hence, \{\mathfrak{p}_n\} is Cauchy. The completeness of \aleph ensures that there exists \mathfrak{p}^*\in\aleph such that \{\mathfrak{p}_n\}\rightarrow \mathfrak{p}^* as n\to +\infty .

    Next, we prove the point \mathfrak{p}^* to be a fixed point of \mathbb{S} . Similar to the discussion related to Theorem 3.4, taking \mathfrak{u} = \mathfrak{p}_{n(k)-1} and \mathfrak{v} = \mathfrak{p}^* in (3.20), we get

    \begin{align} \psi&(\int_{0}^{\alpha(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*)\varpi(\mathbb{S} \mathfrak{p}_{n(k)-1}, \mathbb{S} \mathfrak{p}^*)}\varphi(\omega)\, d\omega)\\ \leq&\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*)}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*)}\varphi(\omega)\, d\omega) \end{align} (3.24)

    where

    \begin{align} \triangle(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*) = \max&\{\varpi(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*), \varpi( \mathfrak{p}_{n(k)-1}, \mathbb{S} \mathfrak{p}_{n(k)-1}), \varpi( \mathfrak{p}^*, \mathbb{S} \mathfrak{p}^*), \frac{\varpi( \mathfrak{p}_{n(k)-1}, \mathbb{S} \mathfrak{p}^*)+\varpi( \mathfrak{p}^*, \mathbb{S} \mathfrak{p}_{n(k)-1})}{2s}\}\\ = \max&\{\varpi(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*), \varpi(\mathfrak{p}_{n(k)-1}, \mathfrak{p}_{n(k)}), \varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*), \frac{\varpi(\mathfrak{p}_{n(k)-1}, \mathbb{S} \mathfrak{p}^*)+\varpi(\mathfrak{p}^*, \mathfrak{p}_{n(k)})}{2s}\}.\\ \end{align} (3.25)

    Taking the limit as n\rightarrow +\infty in (3.25), we get

    \begin{align} \lim\limits_{n\rightarrow +\infty}\triangle(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*) = & \max\{0, 0, \varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*), \frac{\varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*)}{2}\} = \varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*). \end{align} (3.26)

    According to (3.24), (3.26), and Lemma 2.5, we get

    \begin{align} \psi(\int_0^{\varpi(\mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*)}\varphi(t)\, dt) \le& \psi(\int_0^{s^3\cdot\frac{1}{s}\varpi(\mathfrak{p}^*, \mathbb{S} \mathfrak{p}^*)}\varphi(t)\, dt)\\ \le&\lim\limits_{n\rightarrow +\infty} \psi(\int_{0}^{\alpha(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*)\varpi(\mathbb{S} \mathfrak{p}_{n(k)-1}, \mathbb{S} \mathfrak{p}^*)}\varphi(\omega)\, d\omega)\\ \leq&\lim\limits_{n\rightarrow +\infty}\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*)}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}_{n(k)-1}, \mathfrak{p}^*)}\varphi(\omega)\, d\omega)\\ = &\theta(\psi(\int_0^{\varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*)}\varphi(\omega)\, d\omega))\psi(\int_0^{\varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*)}\varphi(\omega)\, d\omega)\\ < &\psi(\int_0^{\varpi( \mathfrak{p}^*, \mathbb{S}\mathfrak{p}^*)}\varphi(\omega)\, d\omega)\nonumber \end{align}

    which is impossible. It follows that \mathbb{S} \mathfrak{p}^* = \mathfrak{p}^* .

    At last, we show the uniqueness of the fixed point of \mathbb{S} . Suppose \mathfrak{q}^* is another fixed point of \mathbb{S} . It follows from the condition (ⅳ) that \alpha(\mathfrak{p}^*, \mathfrak{q}^*)\geq s^p . In light of (3.20), one can get

    \begin{align} \psi(\int_{0}^{\alpha(\mathfrak{p}^*, \mathfrak{q}^*)\varpi(\mathbb{S} \mathfrak{p}, \mathbb{S} \mathfrak{q})}\varphi(\omega)\, d\omega) \leq&\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}^*, \mathfrak{q}^*)}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}^*, \mathfrak{q}^*)}\varphi(\omega)\, d\omega), \nonumber \end{align}
    \begin{align} \triangle( \mathfrak{p}^*, \mathfrak{q}^*) = \max&\{\varpi(\mathfrak{p}^*, \mathfrak{q}^*), \varpi( \mathfrak{p}^*, \mathbb{S} \mathfrak{p}^*), \varpi( \mathfrak{q}^*, \mathbb{S} \mathfrak{q}^*), \frac{\varpi(\mathfrak{p}^*, \mathbb{S} \mathfrak{q}^*)+\varpi( \mathfrak{q}^*, \mathbb{S} \mathfrak{p}^*)}{2s}\}\\ = \max&\{\varpi(\mathfrak{p}^*, \mathfrak{q}^*), 0, 0, \frac{\varpi(\mathfrak{p}^*, \mathfrak{q}^*)+\varpi(\mathfrak{q}^*, \mathfrak{p}^*)}{2s}\} = \varpi(\mathfrak{p}^*, \mathfrak{q}^*). \nonumber \end{align}

    Then

    \begin{align} \psi(\int_{0}^{\varpi(\mathfrak{p}^*, \mathfrak{q}^*)}\varphi(\omega)\, d\omega) \leq&\psi(\int_{0}^{\alpha(\mathfrak{p}^*, \mathfrak{q}^*)\varpi(\mathbb{S} \mathfrak{p}, \mathbb{S} \mathfrak{q})}\varphi(\omega)\, d\omega)\\ \leq&\theta(\psi(\int_{0}^{\triangle(\mathfrak{p}^*, \mathfrak{q}^*)}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{p}^*, \mathfrak{q}^*)}\varphi(\omega)\, d\omega)\\ < &\psi(\int_{0}^{\varpi(\mathfrak{p}^*, \mathfrak{q}^*)}\varphi(\omega)\, d\omega)\nonumber \end{align}

    a contradiction, which implies that \mathfrak{p}^* = \mathfrak{q}^* . This completes the proof.

    Example 3.7. Let \aleph = [0, 1] and \varpi(\mathfrak{p}, \mathfrak{q}) = (\mathfrak{p}-\mathfrak{q})^2. Define mappings \mathbb{S}:\aleph\rightarrow \aleph by

    \mathbb{S} \mathfrak{p} = \left\{\begin{aligned} &\frac{\mathfrak{p}}{32\sqrt[16]{e}}, \ \ \mathfrak{p}\in [0, \frac{1}{2}], \\ &\frac{1}{32\sqrt[16]{e}}, \quad \mathfrak{p}\in (\frac{1}{2}, 1] \end{aligned}\right.\\

    and \alpha:\aleph \times \aleph\rightarrow [0, +\infty) by

    \alpha(\mathfrak{p}, \mathfrak{q}) = 2^4, \mathfrak{p}, \mathfrak{q}\in [0, 1].

    Define \theta:[0, +\infty)\rightarrow (0, 1) and \psi, \varphi:[0, +\infty)\rightarrow [0, +\infty) by

    \theta(\omega) = e^{-4\omega}, \; \psi(\omega) = \omega \ \text{ and }\ \varphi(\omega) = 2\omega.

    One can deduce that \alpha(\mathfrak{u}, \mathfrak{v})\geq 2^4 , \int_0^{\varpi(\mathbb{S}\mathfrak{u}, \mathbb{S}\mathfrak{v})}\varphi(\omega)d\omega > 0 \Leftrightarrow \mathfrak{u}, \mathfrak{v} \in [0, 1] with \mathfrak{u}\neq\mathfrak{v} . It follows that we also consider two cases:

    Case 1. \mathfrak{u}, \mathfrak{v} \in [0, \frac{1}{2}] , then

    \begin{align*} \psi(\int_{0}^{\alpha(\mathfrak{u}, \mathfrak{v})\varpi(\mathbb{S}\mathfrak{u}, \mathbb{S}\mathfrak{v})}\varphi(\omega)\, d\omega) = &\int_{0}^{2^4(\frac{\mathfrak{u}}{32\sqrt[16]{e}}-\frac{\mathfrak{v}}{32\sqrt[16]{e}})^2} 2\omega\, d\omega\\ = &\frac{1}{64^2\times\sqrt[4]{e}}(\mathfrak{u}-\mathfrak{v})^4, \\ \end{align*}
    \begin{align*} \theta(\psi(\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega))\psi(\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega) = &e^{-4\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}2\omega\, d\omega}\cdot\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}2\omega\, d\omega\\ \geq&\frac{1}{\sqrt[4]{e}}(\mathfrak{u}-\mathfrak{v})^4.\\ \end{align*}

    Case 2. \mathfrak{u}\in [0, \frac{1}{2}], \mathfrak{v}\in (\frac{1}{2}, 1] . It is easy to obtain that

    \begin{align*} \psi(\int_{0}^{\alpha(\mathfrak{u}, \mathfrak{v})\varpi(\mathbb{S}\mathfrak{u}, \mathbb{S}\mathfrak{v})}\varphi(\omega)\, d\omega) = &\int_{0}^{2^4(\frac{\mathfrak{u}}{32\sqrt[16]{e}}-\frac{1}{32\sqrt[16]{e}})^2} 2\omega\, d\omega\\ = &\frac{1}{64^2\times\sqrt[4]{e}}(\mathfrak{u}-1)^4\\ \leq &\frac{1}{64^2\times\sqrt[4]{e}}, \end{align*}
    \begin{align*} \theta(\psi(\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega))\psi(\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega) = &e^{-4\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}2\omega\, d\omega}\cdot\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}2\omega\, d\omega\\ \geq&\frac{1}{e^4}\times \frac{1}{16}\times (1-\frac{1}{32\sqrt[16]{e}})^4\\ \geq &\frac{1}{64^2\times\sqrt[4]{e}}. \end{align*}

    That is,

    \psi(\int_{0}^{\alpha(\mathfrak{u}, \mathfrak{v})\varpi(\mathbb{S} \mathfrak{u}, \mathbb{S} \mathfrak{v})}\varphi(\omega)\, d\omega) \leq\theta(\psi(\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega)) \psi(\int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega).

    It follows that all conditions of Theorem 3.6 are satisfied with s = 2 and p = 4 . It is easy to get that 0 is the unique fixed point of \mathbb{S} .

    In this section, by using the fixed point theorems obtained in Section 3, we study the existence of solutions of the following functional Eq (4.2).

    Let O and P be two Banach spaces and S\subseteq O and D\subseteq P be the state and decision spaces. B(S) denotes the Banach space of all bounded real-valued functions on S with norm

    \begin{align} \parallel m \parallel = \sup\{|m(\xi)|:\xi \in S\} \text{ for any }\ m\in B(S). \end{align} (4.1)

    Bellman [20] was the first to investigate the existence and uniqueness of solutions for the following functional equations arising in dynamic programming:

    f(x) = \inf\limits_{y\in D}\max\{r(x, y), s(x, y), f(b(x, y))\},
    f(x) = \inf\limits_{y\in D}\max\{r(x, y), f(b(x, y))\}

    in a complete metric space BB(S) . As suggested in Bellman and Lee [21], the basic form of the functional equations in dynamic programming is as follows:

    f(x) = opt_{y\in D}\{H(x, y, f(T(x, y)))\}, \forall x\in S

    where the opt represents \sup or \inf . Bhakta and Mitra [22] obtained the existence and uniqueness of solutions for the functional equations

    f(x) = \sup\limits_{y\in D}\{p(x, y)+A(x, y, f(a(x, y))\}

    in a Banach space B(S) and

    f(x) = \sup\limits_{y\in D}\{p(x, y)+f(a(x, y))\}

    in BB(S) , respectively. After that, many authors established the existence and uniqueness of solutions or common solutions for several classes of functional equations or systems of functional equations arising in dynamic programming by means of various fixed and common fixed point theorems (see [23,24,25]).

    It is easy to get that (B(S), \varpi) is a complete b -metric space with

    \begin{align*} \begin{aligned} \varpi(\xi, \eta) = \parallel \xi-\eta \parallel^2, \forall \xi, \eta\in B(S). \end{aligned} \end{align*}

    Consider the functional equations arising in dynamic programming:

    \begin{align} \mathfrak{f}(x) = \inf\limits_{y\in D}\{u(x, y)+H(x, y, \mathfrak{f}(\mathrm{T}(x, y)))\}, \forall x\in S \end{align} (4.2)

    where u:S\times D\rightarrow \mathbb{R} , \mathrm{T}:S\times D\rightarrow S and H:S\times D\times \mathbb{R}\rightarrow \mathbb{R} are mappings. Let

    \begin{align} \mathbb{S}\mathfrak{f}(x) = \inf\limits_{y\in D}\{u(x, y)+H(x, y, \mathfrak{f}(\mathrm{T}(x, y)))\}, \forall (x, \mathfrak{f})\in S\times B(S). \end{align} (4.3)

    Theorem 4.1. Let u:S\times D\rightarrow \mathbb{R} , \mathrm{T}:S\times D\rightarrow S , H:S\times D\times \mathbb{R}\rightarrow \mathbb{R} , \mathbb{S}:B(S)\to B(S) , \alpha:B(S)\times B(S)\to \mathbb{R} . If

    (ⅰ) u and H are bounded,

    (ⅱ) \mathbb{S} is \alpha_{s^p} -admissible,

    (ⅲ) there is \mathfrak{p}_0\in B(S) satisfying \alpha(\mathfrak{p}_0, \mathbb{S} \mathfrak{p}_0)\geq s^p ,

    (ⅳ) \alpha satisfies transitive property, i.e., for \xi, \eta, \zeta\in B(S) such that

    \alpha(\xi, \eta)\geq s^p \text{ and } \alpha(\eta, \zeta)\geq s^p\Rightarrow \alpha(\xi, \zeta)\geq s^p,

    (ⅴ) if \{\mathfrak{p}_n\} is a sequence in B(S) satisfying \mathfrak{p}_n\rightarrow \mathfrak{p} as n\rightarrow +\infty , then there is a subsequence \{\mathfrak{p}_{n(k)}\} of \{\mathfrak{p}_{n}\} with \alpha(\mathfrak{p}_{n(k)}, \mathfrak{p})\geq s^p ,

    (ⅵ) for \mathfrak{p}, \mathfrak{q}\in Fix(\mathbb{S}) , one can get the condition of \alpha(\mathfrak{p}, \mathfrak{q})\geq s^p and \alpha(\mathfrak{q}, \mathfrak{p})\geq s^p , where Fix(\mathbb{S} ) represents the collection of all fixed points of \mathbb{S} ,

    (ⅶ) if there exists \ell\in (0, 1) , \varphi \in \Im such that

    \begin{align} &\alpha(\mathfrak{u}, \mathfrak{v})\geq s^p, \int_{0}^{\parallel\mathbb{S}\mathfrak{u}-\mathbb{S}\mathfrak{v}\parallel^2}\varphi(\omega)\, d\omega > 0\\ \Rightarrow &\\ &\exp(\int_{0}^{2\alpha(\mathfrak{u}, \mathfrak{v})|H(\mathfrak{u}, \mathfrak{v}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{v}))) -H(\mathfrak{u}, \mathfrak{v}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))|^2 }\varphi(\omega)\, d\omega)\leq[\exp(\ \int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega)]^\ell, \end{align} (4.4)

    then the functional Eq (4.2) has a unique solution \mathfrak{p^*}\in B(S) .

    Proof. It follows from (i) that there exists M > 0 satisfying

    \sup\{|u(x, y)|, |H(x, y, t)|:(x, y, t)\in S\times D\times \mathbb{R}\}\leq M.

    It is easy to see that \mathbb{S} is a self-mapping in B(S) . Define \alpha:B(S)\times B(S)\rightarrow [0, \infty) by

    \alpha(\mathfrak{u}, \mathfrak{v}) = \left\{\begin{aligned} &s^{p}, \ \ \varpi(\mathbb{S}\mathfrak{u}, \mathbb{S}\mathfrak{v}) > 0, \\ &0, \ \text{ otherwise}. \end{aligned}\right.\\

    By (i) and \varphi\in \Im , we have for each \varepsilon > 0 , there exists \delta > 0 such that

    \begin{align} \int_{C}\varphi(t)dt < \varepsilon, \forall C\subset [0, 2M] \text{ with } m(C)\leq \delta, \end{align} (4.5)

    where m(C) denotes the Lebesgue measure of C .

    Let \mathfrak{u}\in S, \mathfrak{h}, \mathfrak{g}\in B(S) . By (4.3), there exists \mathfrak{v}, \mathfrak{w}\in D satisfying

    \mathbb{S}\mathfrak{g}(\mathfrak{u}) > u(\mathfrak{u}, \mathfrak{v})+H(\mathfrak{u}, \mathfrak{v}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))-\frac{\sqrt{2\delta}}{2},
    \mathbb{S}\mathfrak{h}(\mathfrak{u}) > u(\mathfrak{u}, \mathfrak{w})+H(\mathfrak{u}, \mathfrak{w}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))-\frac{\sqrt{2\delta}}{2},
    \mathbb{S}\mathfrak{g}(\mathfrak{u})\leq u(\mathfrak{u}, \mathfrak{w})+H(\mathfrak{u}, \mathfrak{w}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{w}))),
    \mathbb{S}\mathfrak{h}(\mathfrak{u})\leq u(\mathfrak{u}, \mathfrak{v})+H(\mathfrak{u}, \mathfrak{v}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{v}))).\\

    Thus,

    \begin{align*} \mathbb{S}\mathfrak{g}(\mathfrak{u})-\mathbb{S}\mathfrak{h}(\mathfrak{u}) < &H(\mathfrak{u}, \mathfrak{w}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))- H(\mathfrak{u}, \mathfrak{w}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))+\frac{\sqrt{2\delta}}{2}\\ \leq&|H(\mathfrak{u}, \mathfrak{w}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))- H(\mathfrak{u}, \mathfrak{w}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))|+\frac{\sqrt{2\delta}}{2}, \end{align*}
    \begin{align*} \mathbb{S}\mathfrak{h}(\mathfrak{u})-\mathbb{S}\mathfrak{g}(\mathfrak{u}) < &H(\mathfrak{u}, \mathfrak{v}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))- H(\mathfrak{u}, \mathfrak{v}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))+\frac{\sqrt{2\delta}}{2}\\ \leq&|H(\mathfrak{u}, \mathfrak{v}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))- H(\mathfrak{u}, \mathfrak{v}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))|+\frac{\sqrt{2\delta}}{2}. \end{align*}

    It follows that

    \begin{align} ||\mathbb{S}\mathfrak{g}-\mathbb{S}\mathfrak{h}|| = \sup\limits_{\mathfrak{u}\in S}|\mathbb{S}\mathfrak{g}(\mathfrak{u})-\mathbb{S}\mathfrak{h}(\mathfrak{u})|\le\max\{\mathrm{T_{1}}, \mathrm{T_{2}}\}+\frac{\sqrt{2\delta}}{2}, \end{align} (4.6)

    where

    \begin{align*} \begin{aligned} \mathrm{T}_{1} = |H(\mathfrak{u}, \mathfrak{w}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))- H(\mathfrak{u}, \mathfrak{w}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{w})))|, \end{aligned} \end{align*}
    \begin{align*} \begin{aligned} \mathrm{T}_{2} = |H(\mathfrak{u}, \mathfrak{v}, \mathfrak{h}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))- H(\mathfrak{u}, \mathfrak{v}, \mathfrak{g}(\mathrm{T}(\mathfrak{u}, \mathfrak{v})))|. \end{aligned} \end{align*}

    It is easy to get that ||\mathbb{S}\mathfrak{g}-\mathbb{S}\mathfrak{h}||^2\leq \max\{2\mathrm{T_{1}}^2, 2\mathrm{T_{2}}^2\}+\delta . Under (4.4) and (4.6), we have

    \begin{align*} \begin{aligned} &\exp(\int_{0}^{s^{p}||\mathbb{S}\mathfrak{g}(\mathfrak{u})-\mathbb{S}\mathfrak{h}(\mathfrak{u})||^2}\varphi(\omega)\, d\omega)\\ \leq&\exp(\int_{0}^{s^{p}\max\{2\mathrm{T}_{1}^2, 2\mathrm{T}_{2}^2\}+\delta}\varphi(\omega)\, d\omega)\\ = &\max\{\exp(\int_{0}^{2s^{p}\mathrm{T}_{1}^2+\delta}\varphi(\omega)\, d\omega), \exp(\int_{0}^{2s^{p}\mathrm{T}_{2}^2+\delta}\varphi(\omega)\, d\omega)\}\\ = &\max\{\exp(\int_{0}^{2s^{p}\mathrm{T}_{1}^2}\varphi(\omega)\, d\omega)\cdot\exp(\int_{2s^{p}\mathrm{T}_{1}^2}^{2s^{p}\mathrm{T}_{1}^2+\delta}\varphi(\omega)\, d\omega), \\ &\quad\exp(\int_{0}^{2s^{p}\mathrm{T}_{2}^2}\varphi(\omega)\, d\omega)\cdot\exp(\int_{2s^{p}\mathrm{T}_{2}^2}^{2s^{p}\mathrm{T}_{2}^2+\delta}\varphi(\omega)\, d\omega)\}\\ \leq&\max\{\exp(\int_{0}^{2s^{p}\mathrm{T}_{1}^2}\varphi(\omega)\, d\omega), \exp(\int_{0}^{2s^{p}\mathrm{T}_{2}^2}\varphi(\omega)\, d\omega)\}\\ &\quad\cdot \max\{\exp(\int_{2s^{p}\mathrm{T}_{1}^2}^{2s^{p}\mathrm{T}_{1}^2+\delta}\varphi(\omega)\, d\omega), \exp(\int_{2s^{p}\mathrm{T}_{2}^2}^{2s^{p}\mathrm{T}_{2}^2+\delta}\varphi(\omega)\, d\omega)\}\\ \leq&[\exp(\ \int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega)]^\ell\cdot\exp(\varepsilon).\\ \end{aligned} \end{align*}

    Letting \varepsilon\rightarrow0^{+} in the above inequality, we get

    \begin{align*} \begin{aligned} \exp(\int_{0}^{\alpha(\mathfrak{u}, \mathfrak{v})\parallel \mathbb{S}\mathfrak{g}-\mathbb{S}\mathfrak{h}\parallel^2 }\varphi(\omega)\, d\omega)\leq[\exp(\ \int_{0}^{\triangle(\mathfrak{u}, \mathfrak{v})}\varphi(\omega)\, d\omega)]^\ell. \end{aligned} \end{align*}

    Thus, the conditions of Theorem 3.3 are satisfied by taking \theta(\omega) = \exp(\omega) , so the functional Eq (4.2) has a unique fixed sloution \mathfrak{p^*} \in B(S) . This completes the proof.

    In this manuscript, we first defined two new types of weak contractions named \theta -weak contraction and \theta - \psi -weak contraction. Second, we presented the conditions of existence and uniqueness of fixed points for them in b -metric spaces. After that, two examples were given to demonstrate the practicability of our theorems. As an application, the existence and uniqueness of solutions for a class of functional equations arising in dynamic programming were discussed.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was financially supported by the Science and Research Project Foundation of Liaoning Province Education Department (No: JYTMS20231700).

    The authors declare that they have no conflicts of interest regarding the publication of this paper.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, B. V. Amsterdam, 2006.
    [2] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [3] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integral and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
    [4] R. L. Magin, Fractional calculus in bioengineering, Begell House Publishers, Redding, CT, USA, 2006.
    [5] D. Baleanu, M. Hasanabadi, A. M. Vaziri, A. Jajarmi, A new intervention strategy for an HIV/AIDs transmission by a general fractional modeling and an optimal control approach, Chaos Soliton. Fract., 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078 doi: 10.1016/j.chaos.2022.113078
    [6] O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh, J. H. Asad, Fractional treatment: An accelerated mass-spring system, Romanian Rep. Phys., 74 (2022), 122.
    [7] A. Akgül, S. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001
    [8] A. Turab, Z. D. Mitrovi\acute{c}, A. Savi\acute{c}, Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph, Adv. Differ. Equ., 2021 (2021), 494. https://doi.org/10.1186/s13662-021-03653-w doi: 10.1186/s13662-021-03653-w
    [9] M. M. Moutamal, C. Joseph, Optimal control of fractional Sturm-Liouville wave equations on a star graph, Optimization, 2022. http://dx.doi.org/10.1080/02331934.2022.2088370
    [10] N. Bouteraa, S. Benaicha, A study of existence and multiplicity of positive solutions for nonlinear fractional differential equations with non-local boundary conditions, Stud. Univ. Babes-Bol. Math., 66 (2021), 361–380. http://dx.doi.org/10.24193/subbmath.2021.2.1 doi: 10.24193/subbmath.2021.2.1
    [11] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51 (2016), 48–54. https://doi.org/10.1016/j.aml.2015.07.002 doi: 10.1016/j.aml.2015.07.002
    [12] R. Agarwal, Y. Liu, D. O'Regan, C. Tian, Positive solutions of two-point boundary value problems for fractional singular differential equations, Differ. Equ., 48 (2012), 619–629.
    [13] I. Bachar, H. M\hat{a}agli, F. Toumi, Z. Z. Abidine, Existence and global asymptotic behavior of positive solutions for sublinear and superlinear fractional boundary value problems, Chinese Ann. Math. B, 37 (2016), 1–28. https://doi.org/10.1007/s11401-015-0943-3 doi: 10.1007/s11401-015-0943-3
    [14] Y. Xu, Fractional boundary value problems with integral and anti-periodic boundary conditions, B. Malays. Math. Sci. So., 39 (2016), 571–587. https://doi.org/10.1007/s40840-015-0126-0 doi: 10.1007/s40840-015-0126-0
    [15] H. Feng, C. Zhai, Existence and uniqueness of positive solutions for a class of fractional differential equation with integral boundary conditions, Nonlinear Anal.-Model., 22 (2017), 160–172. https://doi.org/10.15388/NA.2017.2.2 doi: 10.15388/NA.2017.2.2
    [16] Y. Cui, W. Ma, Q. Sun, X. Su, New uniqueness results for boundary value problem of fractional differential equation, Nonlinear Anal.-Model., 23 (2018), 31–39. https://doi.org/10.15388/NA.2018.1.3 doi: 10.15388/NA.2018.1.3
    [17] W. Liu, L. Liu, Existence and stability analysis of solutions for a new kind of boundary value problems of nonlinear fractional differential equations, Nonlinear Anal.-Model., 27 (2022), 1068–1087. https://doi.org/10.15388/namc.2022.27.29420 doi: 10.15388/namc.2022.27.29420
    [18] Y. Qiao, Z. Zhou, Existence and uniqueness of positive solutions for a fractional differential equation with integral boundary conditions, Adv. Differ. Equ., 2016 (2016), 106–113. https://doi.org/10.1186/s13662-016-0772-z doi: 10.1186/s13662-016-0772-z
    [19] C. Liao, H. Ye, Existence of positive solutions of nonlinear fractional delay differential equations, Positivity, 13 (2009), 601–609. https://doi.org/10.1007/s11117-008-2251-6 doi: 10.1007/s11117-008-2251-6
    [20] X. Su, Positive solutions to singular boundary value problems for fractional functional differential equations with changing sign nonlinearity, Comput. Math. Appl., 64 (2012), 3425–3435. https://doi.org/10.1016/j.camwa.2012.02.043 doi: 10.1016/j.camwa.2012.02.043
    [21] Y. Li, S. Sun, D. Yang, Z. Han, Three-point boundary value problems of fractional functional differential equations with delay, Bound. Value Probl., 38 (2013), 1–15. https://doi.org/10.1186/1687-2770-2013-38 doi: 10.1186/1687-2770-2013-38
    [22] R. P. Agarwal, S. Hristova, Boundary value problem for multi-term nonlinear delay generalized proportional Caputo fractional differential equations, Fractal Fract., 6 (2022), 691. https://doi.org/10.3390/fractalfract6120691 doi: 10.3390/fractalfract6120691
    [23] M. A. Krasnosel'skii, Positive solutions of operator equations, Noordhoff, Groningen, The Netherlands, 1964.
    [24] D. Jiang, C. Yuan, The positive properties of the green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its applications, Nonlinear Anal.-Theor., 72 (2010), 710–719. https://doi.org/10.1016/j.na.2009.07.012 doi: 10.1016/j.na.2009.07.012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1772) PDF downloads(189) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog