The goal of this paper is to present a new class of contraction mappings, so-called ηℓθ-contractions. Also, in the context of partially ordered metric spaces, some coupled fixed-point results for ηℓθ-contraction mappings are introduced. Furthermore, to support our results, two examples are provided. Finally, the theoretical results are applied to obtain the existence of solutions to coupled fractional differential equations with a Mittag-Leffler kernel.
Citation: Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen. Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations[J]. AIMS Mathematics, 2023, 8(4): 8633-8649. doi: 10.3934/math.2023433
[1] | Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731 |
[2] | Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221 |
[3] | Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638 |
[4] | Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213 |
[5] | Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from p-adic integrals on Zp. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298 |
[6] | Jung Yoog Kang, Cheon Seoung Ryoo . The forms of (q,h)-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436 |
[7] | Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380 |
[8] | Talha Usman, Mohd Aman, Owais Khan, Kottakkaran Sooppy Nisar, Serkan Araci . Construction of partially degenerate Laguerre-Genocchi polynomials with their applications. AIMS Mathematics, 2020, 5(5): 4399-4411. doi: 10.3934/math.2020280 |
[9] | Gyung Won Hwang, Cheon Seoung Ryoo, Jung Yoog Kang . Some properties for 2-variable modified partially degenerate Hermite (MPDH) polynomials derived from differential equations and their zeros distributions. AIMS Mathematics, 2023, 8(12): 30591-30609. doi: 10.3934/math.20231564 |
[10] | Sang Jo Yun, Jin-Woo Park . On a generation of degenerate Daehee polynomials. AIMS Mathematics, 2025, 10(5): 12286-12298. doi: 10.3934/math.2025556 |
The goal of this paper is to present a new class of contraction mappings, so-called ηℓθ-contractions. Also, in the context of partially ordered metric spaces, some coupled fixed-point results for ηℓθ-contraction mappings are introduced. Furthermore, to support our results, two examples are provided. Finally, the theoretical results are applied to obtain the existence of solutions to coupled fractional differential equations with a Mittag-Leffler kernel.
Fractional calculus has emerged as one of the most important interdisciplinary subjects. In recent past it experienced rapid development and consequently several new generalizations of classical concepts of fractional calculus have been obtained in the literature, for example, see [9].
The classical Riemann-Liouville fractional integrals are defined as:
Definition 1.1 ([9]). Let F∈L1[a,b]. Then the Riemann-Liouville integrals Jαa+F and Jαb−F of order α>0 with a≥0 are defined by
Jαa+F(x)=1Γ(α)x∫a(x−v)α−1F(v)dv,x>a, |
and
Jαb−F(x)=1Γ(α)b∫x(v−x)α−1F(v)dv,x<b, |
where
Γ(x)=∫∞0e−vvx−1dv, |
is the well known Gamma function.
Diaz et al. [8] introduced the notion of generalized k-gamma function. The integral form of Γk is given by:
Γk(x)=∞∫0vx−1e−vkkdv,ℜ(x)>0. |
Note that
Γk(x)=kxk−1Γ(xk). |
k-Beta function is defined as:
βk(x,y)=1k1∫0vxk−1(1−v)xk−1dv. |
Obviously
βk(x,y)=1kβ(xk,yk). |
Sarikaya et al. [18] extended the notion of Riemann-Liouville fractional integrals to k-Riemann-Liouville fractional integrals and discussed some of its interesting properties.
To be more precise let F be piecewise continuous on I∗=(0,∞) and integrable on any finite subinterval of I=[0,∞]. Then for v>0, we consider k-Riemann-Liouville fractional integral of F of order α
kJαaF(x)=1kΓk(α)x∫a(x−v)αk−1F(v)dv,x>a,k>0. |
It has been observed that k-fractional integrals are significant generalizations of classical fractional integrals. For more details, see [18].
Ahmad et al. [1] defined fractional integral operators with an exponential kernel and obtained corresponding inequalities.
Definition 1.2. Let F∈[a,b]. The fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) are defined as follows:
Iαa+F(x)=1αx∫ae−1−αα(x−v)F(v)dv, x>a, |
and
Iαb−F(x)=1αb∫xe−1−αα(v−x)F(v)dv, x<b. |
Using the ideas of [1,18], we now introduce the notion of k-fractional integral operators with an exponential kernel.
Definition 1.3. Let F∈L[a,b]. The k-fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) for k>0 are defined as follows
kIαa+F(x)=kαx∫ae−k−αα(x−v)F(v)dv, x>a, |
and
kIαb−F(x)=kαb∫xe−k−αα(v−x)F(v)dv, x<b. |
It is to be noted that by taking k→1 in Definition 1.3, we recapture Definition 1.2. Fractional analogues of integral inequalities have a great many applications in numerical quadrature, transform theory, probability, statistical problems etc. Therefore, a significant and rapid development in this field has been noticed, for details, see [2,3,20,24,25]. Sarikaya et al. [19] utilized the concepts of fractional integrals and obtained new fractional refinements of trapezium like inequalities. This article motivated many researchers and as a result several new fractional extensions of classical inequalities have been obtained in the literature, for example, see [1,4,6,7,11,14,15,16,17,18,19,22,23]. Recently Ahmad et al. [1] used fractional integral operators with an exponential kernel and obtained corresponding inequalities. Wu et al. [23] derived some new identities and bounds pertaining to fractional integrals with the exponential kernel.
The main motivation of this paper is to derive some new fractional refinements of trapezium like inequalities essentially using the new fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and the preinvexity property of the functions. In order to establish the significance of our main results, we offer some applications of our main results to means and q-digamma functions. We hope that the ideas and techniques of this paper will inspire interested readers working in the field of inequalities.
Before we proceed further, we now recall some previously known concepts from convex analysis. We first, start with the definition of invex sets.
Definition 1.4 ([10]). A set K is said to be invex with respect to bifunction θ(.,.), if
x+vθ(y,x)∈K,∀x,y∈K,v∈[0,1]. |
The preinvexity of the functions is defined as:
Definition 1.5 ([21]). A function F:K→R is said to be preinvex with respect to bifunction θ(.,.), if
F(x+vθ(y,x))≤(1−v)F(x)+vf(y),∀x,y∈K,v∈[0,1]. |
In order to obtain some of the main results of the paper, we need the famous condition C, which was introduced by Mohan and Neogy [13]. This condition played a vital role in the development of several results involving preinvex functions.
Condition C. Let θ:K×K→Rn. We say that the bifunction θ(.,.) satisfies the condition C, if for any x,y∈Rn
1. θ(x,x+vθ(y,x))=−vθ(y,x),
2. θ(y,x+vθ(y,x))=(1−v)θ(y,x),
for all v∈[0,1].
Note that for any x,y∈Rn and v1,v2∈[0,1] and from the condition C, we have, see [12]
θ(x+v2θ(y,x),x+v1θ(y,x))=(v2−v1)θ(y,x). |
In this section, we derive some new fractional trapezium type inequalities involving the functions having preinvexity property. For the sake of simplicity, we set ρ=k−ααθ(b,a) and ρ1=1−ααθ(b,a).
Theorem 2.1. Let F:[a,a+θ(b,a)]⊆R→R be a positive function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Suppose F is a preinvex function and θ(.,.) satisfies condition C, then
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤F(a)+F(b)2. | (2.1) |
Proof. By preinvexity of F, we have for every x,y∈[a,a+θ(b,a)] with λ=12
2F(x+θ(y,x)2)≤[F(x)+F(y)], |
with x=a+vθ(b,a),y=a+(1−v)θ(b,a) and using the condition C, we have
2F(a+vθ(b,a)+θ(a+(1−v)θ(b,a),a+vθ(b,a))2)=2F(a+vθ(b,a)+(1−2v)θ(b,a)2)=2F(2a+θ(b,a)2)≤F(a+vθ(b,a))+F(a+(1−v)θ(b,a)). | (2.2) |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
2(1−e−ρ)ρF(2a+θ(b,a)2)≤1∫0e−ρvf(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)ds]=αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
As a result, we get
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. | (2.3) |
For the proof of second inequality, we note that F is a preinvex function, so we have
F(a+vθ(b,a))+F(a+(1−v)θ(b,a))≤F(a)+F(b). | (2.4) |
Multiplying both sides by e−ρv and integrating with respect to v over [0,1], we have
αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤1−e−ρρ[F(a)+F(b)], | (2.5) |
Combining (2.3) and (2.5) completes the proof.
Theorem 2.2. Let F:[a,a+θ(b,a)]⊆R→R be a positive and preinvex function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Let W be a non-negative, integrable and symmetric with respect to 2a+θ(b,a)2, then using the condition C, we have
F(2a+θ(b,a)2)[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]≤kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)≤F(a)+F(b)2[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. | (2.6) |
Proof. Since F is preinvex function on L[a,a+θ(b,a)], so multiplying inequality (2.2) by
e−ρvW(a+vθ(b,a)), | (2.7) |
and then integrating with respect to v over [0,1], we get
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+vθ(b,a))F(a+(1−v)θ(b,a))dv=1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+(1−v)θ(b,a))F(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)W(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)W(s)ds]=αkθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]. |
Thus
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤αkθ(b,a)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]. |
Since W is symmetric with respect to 2a+θ(b,a)2, we have
kIα(a)+W(a+θ(b,a))=kIα(a+θ(b,a))−W(a)=12[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. |
Thus we get the left side of inequality (2.6).
For the proof of right side of inequality (2.6), we multiply (2.7) and (2.4) and then integrating the resulting inequality with respect to v over [0,1], we get the required result.
Theorem 2.3. Let F,W:[a,a+θ(b,a)]⊆R→R be nonnegative and preinvex function on L[a,a+θ(b,a)] with θ(b,a)>0. If θ(.,.) satisfies condition C, then the following inequalities for the k-fractional integrals with exponential kernel holds:
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3, | (2.8) |
and
2F(2a+θ(b,a)2)W(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]≤M(a,b)ρ−2+e−ρ(ρ+2)ρ2(1−e−ρ)+N(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ2(1−e−ρ), | (2.9) |
where
M(a,b)=F(a)W(a)+F(b)W(b), |
and
N(a,b)=F(a)W(b)+F(b)W(a). |
Proof. Since F,W are preinvex functions on [a,a+θ(b,a)], then we have
F(a+vθ(b,a))W(a+vθ(b,a))≤(1−v)2F(a)W(a)+v2F(b)W(b)+v(1−v)N(a,b), |
and
F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤v2F(a)W(a)+(1−v)2F(b)W(b)+v(1−v)N(a,b). |
Adding above inequalities, we have
F(a+vθ(b,a))W(a+vθ(b,a))+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤(2v2−2v+1)M(a,b)+2v(1−v)N(a,b). |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))dv≤M(a,b)1∫0e−ρv(2v2−2v+1)dv+M(a,b)1∫0e−ρv2v(1−v)dv=M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
So,
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
For the proof of inequality (2.9), using the preinvexity of F,W and condition C, we have
F(2a+θ(b,a)2)W(2a+θ(b,a)2)=F(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))×W(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))≤(F(a+vθ(b,a))+F(a+(1−v)θ(b,a))2)(W(a+vθ(b,a))+W(a+(1−v)θ(b,a))2)≤F(a+vθ(b,a))W(a+vθ(b,a))4+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4+v(1−v)2M(a,b)+2v2−2v+14N(a,b). | (2.10) |
Multiplying both sides of inequality (2.10) by e−ρv and integrating with respect to v over [0,1], we get
1−e−ρρF(2a+θ(b,a)2)W(2a+θ(b,a)2)≤1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))4dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4dv+M(a,b)1∫0e−ρvv(1−v)2dv+N(a,b)1∫0e−ρv2v2−2v+14dv, |
which completes the proof.
Lemma 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.1) |
where
Rab=k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]−F(2a+θ(b,a)2), |
and
u={1, for0≤v≤12,−1,for12≤v≤1. |
Proof. By simple calculations, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρvF(a+(1−v)θ(b,a))|10+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a+θ(b,a))−e−ρF(a)+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−ρθ(b,a)a+θ(b,a)∫ae−ρa+θ(b,a)−sθ(b,a)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−ααa+θ(b,a)∫ae−(k−α)α(a+θ(b,a)−s)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−αkkIα(a)+F(a+θ(b,a))], | (3.2) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρ(1−v)F(a+(1−v)θ(b,a))|10−ρ1∫0e−ρ(1−v)F(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a)−e−ρF(a+θ(b,a))−ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+ρθ(b,a)a+θ(b,a)∫ae−ρs−aθ(b,a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−ααa+θ(b,a)∫ae−(k−α)α(s−a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−αkkIα(a+θ(b,a))−F(a)]. | (3.3) |
Also note that
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=−12[F(a+(1−v)θ(b,a))|120−F(a+(1−v)θ(b,a))|112]=F(a)−F(2a+θ(b,a)2)2−F(2a+θ(b,a)2)−F(a+θ(b,a))2. | (3.4) |
Substituting (3.2), (3.3) and (3.4) in (3.1) completes the proof.
Theorem 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)] and |F′| is preinvex on [a,a+θ(b,a)]. Then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.1, preinvexity of |F′| and increasing property of exponential function, we have
|Rab|=|θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv]|≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))|F′(a+(1−v)θ(b,a))|dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)|F′(a+(1−v)θ(b,a))|dv]≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)(v|F′(a)|+(1−v)|F′(b)|)dv]=θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−12∫0(1−e−ρ−e−ρv+e−ρ(1−v))((1−v)|F′(a)|+v|F′(b)|)dv]=θ(b,a)2(1−e−ρ)12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(|F′(a)|+|F′(b)|)dv=θ(b,a)2(1−e−ρ)[1−e−ρ2−1ρ(1−e−ρ2)2](|F′(a)|+|F′(b)|)=θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the fractional integrals with exponential kernel holds:
Lab=θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.5) |
where
Lab=F(a)+F(a+θ(b,a)2−k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
Proof. Using 3.2 and 3.3, we get the required result.
Theorem 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. If |F′| is preinvex function on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.2, preinvexity of |F′| and increasing property of exponential function, we have
|Lab|≤θ(b,a)21∫0|e−ρv−e−ρ(1−v)|1−e−ρ|F′(a+vθ(b,a))|dv≤θ(b,a)2[1∫0|e−ρv−e−ρ(1−v)|1−e−ρv|F′(a)|dv+1∫0|e−ρv−e−ρ(1−v)|1−e−ρ(1−v)|F′(b)|dv]=θ(b,a)2|F′(a)|[12∫0e−ρv−e−ρ(1−v)1−e−ρvdv+1∫12e−ρ(1−v)−e−ρv1−e−ρvdv]+θ(b,a)2|F′(b)|[12∫0e−ρv−e−ρ(1−v)1−e−ρ(1−v)dv+1∫12e−ρ(1−v)−e−ρv1−e−ρ(1−v)dv]=θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Lab=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv. | (3.6) |
Proof. Using (3.5) and integration by parts, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1ρ[e−ρvF′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv]=−1ρ[e−ρF′(a)−F′(a+θ(b,a))+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv], | (3.7) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=1ρ[e−ρ(1−v)F′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]=1ρ[F′(a)−e−ρF′(a+θ(b,a))+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]. | (3.8) |
Substituting (3.7) and (3.8) in (3.5), we have
Lab=θ(b,a)2ρ(1−e−ρ)[(1+e−ρ)(F′(a+θ(b,a))−F′(a))−θ(b,a)1∫0(e−ρv+e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv]=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv, |
which completes the proof.
Theorem 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|). |
Proof. It is to be noted that
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))vdv=1+e−ρ2−1−e−ρρ, | (3.9) |
and
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(1−v)dv=1+e−ρ2−1−e−ρρ. | (3.10) |
Using (3.6), (3.9), (3.10) and the preinvexity of |F′′|, we have
Lab=|θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|), |
the proof is complete.
Lemma 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv, | (3.11) |
where
h(v)={v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ), for0≤v≤12,(1−v)−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ),for12≤v≤1. |
Proof. Using (3.1), we have
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], |
Thus
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=θ(b,a)2[vF′(a+(1−v)θ(b,a))|120+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[vF′(a+(1−v)θ(b,a))|112+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[12F′(2a+θ(b,a)2)+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[F′(a)−12F′(2a+θ(b,a)2)+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[F′(2a+θ(b,a)2)−F′(a)]+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)21∫12F′′(a+(1−v)θ(b,a))dv+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv+θ2(b,a)21∫12(1−v)F′′(a+(1−v)θ(b,a))dv. | (3.12) |
Substituting (3.7), (3.8) and (3.12) in (3.1), we get the required result.
Theorem 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is a twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
Proof. Using (3.11) and preinvexity of |F′′|, we have
|Rab|=|θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)21∫0h(v)|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)212∫0(v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv+θ2(b,a)21∫12(1−v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2[12∫0(v2|F′′(a)|+v(1−v)|F′′(b)|)dv+1∫12(v(1−v)|F′′(a)|+(1−v)2|F′′(b)|)dv]+1ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
The proof is complete.
Remark 3.1. We would like to remark here that by taking k→1, new results can be obtained from our results.
Applications
We now discuss some applications of the results obtained in previous section. Before we proceed further let us recall the definition of arithmetic mean.
The arithmetic mean is defined as
A(a,b):=a+b2,a≠b. |
Proposition 3.1. Suppose all the assumptions of Theorem 3.1 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤(b−a)A(a,b)(12−tanh(ρ14)ρ1). |
Proof. The proof directly follows from Theorem 3.1 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.2. Suppose all the assumptions of Theorem 3.2 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤(b−a)A(a,b)tanh(ρ14). |
Proof. The proof directly follows from Theorem 3.2 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.3. Suppose all the assumptions of Theorem 3.3 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤2(b−a)2A(a,b)ρ1(1−e−ρ1)(1+e−ρ12−1−e−ρ1ρ1). |
Proof. The proof directly follows from Theorem 3.3 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.4. Suppose all the assumptions of Theorem 3.4 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤2(b−a)2A(a,b)(18+1+e−ρ12ρ1(1−e−ρ1)−1ρ21). |
Proof. The proof directly follows from Theorem 3.4 by setting θ(b,a)=b−a,k=1 and F(x)=x2. We now discuss applications to q-digamma functions, which is defined as:
Suppose 0<q<1, the q-digamma function χq(u) is given as
χq(u)=−ln(1−q)+ln(q)∞∑i=0qi+u1−qi+u.=−ln(1−q)+ln(q)∞∑i=0qiu1−qiu. |
For q>1,t>0, then q-digamma function χq can be given as
χq(u)=−ln(q−1)+ln(q)[u−12−∞∑i=0q−(i+u)1−q−(i+u)].=−ln(q−1)+ln(q)[u−12−∞∑i=0q−iu1−q−iu]. |
From the above definition, it is clear that χ′q is completely monotone on (0,∞) for q>0. This implies that χ′q is convex. For more details, see [5].
Proposition 3.5. Under the assumption of Theorem 2.1, the following inequality holds:
χq(a+b2)≤1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]≤χq(a)+χq(b)2. |
Proof. The proof is direct consequence of Theorem 2.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.6. Under the assumption of Theorem 3.1, the following inequality holds:
|1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]−χq(a+b2)|≤b−a2(12−tanh(ρ14)ρ1)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.7. Under the assumption of Theorem 3.1, the following inequality holds:
|χq(a)+χq(b)2−1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]|≤b−a2tanh(ρ14)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
In the article, we have extended the fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and derived several new trapezium type integral inequalities involving the new fractional integral operator essentially using the functions having preinvexity property. We have also discussed some interesting applications of our obtained results, which show the significance of our main results. It is also worth mentioning here that our obtained results are the generalizations of some previously known results and our ideas may lead to a lot of follow-up research.
The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled, "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).
[1] |
H. Afshari, H. R. Marasi, H. Aydi, Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations, Filomat, 31 (2017), 2675–2682. https://doi.org/10.2298/FIL1709675A doi: 10.2298/FIL1709675A
![]() |
[2] |
A. Ajou, M. N. Oqielat, Z. A. Zhour, S. Kumar, S. Momani, Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos, 29 (2019), 093102. https://doi.org/10.1063/1.5100234 doi: 10.1063/1.5100234
![]() |
[3] |
E. F. D. Goufoa, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos Soliton. Fract., 130 (2020), 109467. https://doi.org/10.1016/j.chaos.2019.109467 doi: 10.1016/j.chaos.2019.109467
![]() |
[4] | S. G. Samko, A. A. Kilbas, O. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach Science Publishers, 1993. |
[5] |
H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
![]() |
[6] |
K. M. Owolabi, E. Pindza, Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives, Chaos Soliton. Fract., 127 (2019), 146–157. https://doi.org/10.1016/j.chaos.2019.06.037 doi: 10.1016/j.chaos.2019.06.037
![]() |
[7] |
H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Boundary Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
![]() |
[8] |
C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Soliton. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014
![]() |
[9] |
L. F. Avalos-Ruiza, J. F. Gomez-Aguilar, A. Atangana, K. M. Owolabi, On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory, Chaos Soliton. Fract., 127 (2019), 364–388. https://doi.org/10.1016/j.chaos.2019.07.010 doi: 10.1016/j.chaos.2019.07.010
![]() |
[10] |
K. M. Owolabi, J. F. Gomez-Aguilar, B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel, Chaos Soliton. Fract., 125 (2019), 54–63. https://doi.org/10.1016/j.chaos.2019.05.019 doi: 10.1016/j.chaos.2019.05.019
![]() |
[11] |
H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra Integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541
![]() |
[12] |
H. Tajadodi, Variable-order Mittag-Leffler fractional operator and application to mobile-immobile advection-dispersion model, Alex. Eng. J., 61 (2022), 3719–3728. https://doi.org/10.1016/j.aej.2021.09.007 doi: 10.1016/j.aej.2021.09.007
![]() |
[13] |
H. Tajadodi, A. Khan, J. F. Gómez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Control Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
![]() |
[14] |
T. Abdeljawad, R. P. Agrawal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. https://doi.org/10.3390/sym11050686 doi: 10.3390/sym11050686
![]() |
[15] |
H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
![]() |
[16] |
H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. https://doi.org/10.1186/s13662-021-03255-6 doi: 10.1186/s13662-021-03255-6
![]() |
[17] |
H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled fractional differential equations, AIMS Math., 6 (2020), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141
![]() |
[18] |
H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853
![]() |
[19] |
N. Fabiano, N. Nikolič, S. Thenmozhi, S. Radenović, N. Čıtaković, Tenth order boundary value problem solution existence by fixed point theorem, J. Inequal. Appl., 2020 (2020), 166. https://doi.org/10.1186/s13660-020-02429-2 doi: 10.1186/s13660-020-02429-2
![]() |
[20] | H. Afshari, S. Kalantari, E. Karapınar, Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Eq., 2015 (2015), 286. |
[21] |
M. Shoaib, T. Abdeljawad, M. Sarwar, F. Jarad, Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations, IEEE Access, 7 (2019), 127373–127383. https://doi.org/10.1109/ACCESS.2019.2938635 doi: 10.1109/ACCESS.2019.2938635
![]() |
[22] |
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
![]() |
[23] |
V. Lakshmikantham, L. Cirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. Theor., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020
![]() |
[24] |
B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. Theor., 74 (2011), 4260–4268. https://doi.org/10.1016/j.na.2011.04.007 doi: 10.1016/j.na.2011.04.007
![]() |
[25] |
W. Sintunavarat, P. Kumam, Y. J. Cho, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl., 2012 (2012), 170. https://doi.org/10.1186/1687-1812-2012-170 doi: 10.1186/1687-1812-2012-170
![]() |
[26] |
W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model., 55 (2012), 680–687. https://doi.org/10.1016/j.mcm.2011.08.042 doi: 10.1016/j.mcm.2011.08.042
![]() |
[27] |
H. K. Nashine, B. Samet, C. Vetro, Coupled coincidence points for compatible mappings satisfying mixed monotone property, J. Nonlinear Sci. Appl., 5 (2012), 104–114. http://dx.doi.org/10.22436/jnsa.005.02.04 doi: 10.22436/jnsa.005.02.04
![]() |
[28] |
H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. https://doi.org/10.3390/math7070634 doi: 10.3390/math7070634
![]() |
[29] |
B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
![]() |
[30] | M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.2307/2039421 |
[31] |
P. Salimi, A. Latif, N. Hussain, Modified α-ψ- contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 151. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151
![]() |
[32] |
E. Karapinar, P. Kumam, P. Salimi, On α-ψ- Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 94. https://doi.org/10.1186/1687-1812-2013-94 doi: 10.1186/1687-1812-2013-94
![]() |
[33] |
E. Karapinar, B. Samet, Generalized (α-ψ)- contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793486. https://doi.org/10.1155/2012/793486 doi: 10.1155/2012/793486
![]() |
[34] |
M. U. Ali, T. Kamran, On (α∗,ψ)-contractive multi-valued mappings, Fixed Point Theory Appl., 2013 (2013), 137. https://doi.org/10.1186/1687-1812-2013-137 doi: 10.1186/1687-1812-2013-137
![]() |
[35] |
J. Caballero, J. Harjani, K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl., 2012 (2012), 231. https://doi.org/10.1186/1687-1812-2012-231 doi: 10.1186/1687-1812-2012-231
![]() |
[36] |
M. E. Gordji, M. Ramezani. Y. J. Cho, S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric space and application to ordinary differential equations, Fixed Point Theory Appl., 2012 (2012), 74. https://doi.org/10.1186/1687-1812-2012-74 doi: 10.1186/1687-1812-2012-74
![]() |
[37] |
S. H. Cho, J. S. Bae, E. Karapinar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329
![]() |
[38] |
T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. https://doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
![]() |