The use of Pythagorean fuzzy N-soft sets (PFNSs) enables the examination of belongingness and non-belongingness of membership degrees, as well as their combinations with N-grading, in the unpredictable nature of individuals. This research aims to enhance our understanding of a popular multi-criteria group decision making (MCGDM) technique, Preference Ranking Organization Method for Enrichment of Evaluations, under the PFNS environment, aiding in making effective decisions for real-life problems, as fuzzy set theory is directly relevant to real-life applications. The PROMETHEE technique's main principle is to calculate the inflow and outflow streams of alternatives based on the deviation of their score degrees, ultimately providing partial and complete rankings of the given options. To capture the uncertainty of human nature, which demands both the association and disassociation of the considered criteria and provision of N-grading, the PFNS PROMETHEE technique is introduced in this research article. First, an Analytic Hierarchy Process AHP is used to check the feasibility of the standard weights of the criteria. The article then explains the detailed method of the fuzzy N-soft PROMETHEE technique to rank alternatives, with all the steps presented in an extensive flowchart for better understanding of the methodology. Furthermore, the practicality and viability of the proposed technique are demonstrated through an example of selecting the best chemical element in cloud seeding, where the most suitable choice is identified using an outranking directed graph. The credibility of the PFNS PROMETHEE technique is assessed by comparison with an existing method. Finally, the proposed technique's strengths and weaknesses are discussed to demonstrate its efficiency and drawbacks.
Citation: Muhammad Akram, Maheen Sultan, Arooj Adeel, Mohammed M. Ali Al-Shamiri. Pythagorean fuzzy N-Soft PROMETHEE approach: A new framework for group decision making[J]. AIMS Mathematics, 2023, 8(8): 17354-17380. doi: 10.3934/math.2023887
[1] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[2] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[3] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[6] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[7] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
The use of Pythagorean fuzzy N-soft sets (PFNSs) enables the examination of belongingness and non-belongingness of membership degrees, as well as their combinations with N-grading, in the unpredictable nature of individuals. This research aims to enhance our understanding of a popular multi-criteria group decision making (MCGDM) technique, Preference Ranking Organization Method for Enrichment of Evaluations, under the PFNS environment, aiding in making effective decisions for real-life problems, as fuzzy set theory is directly relevant to real-life applications. The PROMETHEE technique's main principle is to calculate the inflow and outflow streams of alternatives based on the deviation of their score degrees, ultimately providing partial and complete rankings of the given options. To capture the uncertainty of human nature, which demands both the association and disassociation of the considered criteria and provision of N-grading, the PFNS PROMETHEE technique is introduced in this research article. First, an Analytic Hierarchy Process AHP is used to check the feasibility of the standard weights of the criteria. The article then explains the detailed method of the fuzzy N-soft PROMETHEE technique to rank alternatives, with all the steps presented in an extensive flowchart for better understanding of the methodology. Furthermore, the practicality and viability of the proposed technique are demonstrated through an example of selecting the best chemical element in cloud seeding, where the most suitable choice is identified using an outranking directed graph. The credibility of the PFNS PROMETHEE technique is assessed by comparison with an existing method. Finally, the proposed technique's strengths and weaknesses are discussed to demonstrate its efficiency and drawbacks.
The famous Young's inequality, as a classical result, state that: if a,b>0 and t∈[0,1], then
atb1−t≤ta+(1−t)b | (1.1) |
with equality if and only if a=b. Let p,q>1 such that 1/p+1/q=1. The inequality (1.1) can be written as
ab≤app+bqq | (1.2) |
for any a,b≥0. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.
Theorem 1 (Hölder inequality for integrals [11]). Let p>1 and 1/p+1/q=1. If f and g are real functions defined on [a,b] and if |f|p,|g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤(∫ba|f(x)|pdx)1/p(∫ba|g(x)|qdx)1/q, | (1.3) |
with equality holding if and only if A|f(x)|p=B|g(x)|q almost everywhere, where A and B are constants.
Theorem 2 (Hölder inequality for sums [11]). Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1akbk≤(n∑k=1apk)1/p(n∑k=1bqk)1/q. | (1.4) |
Equality hold in (1.4) if and only if ap and bq are proportional.
In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:
Theorem 3. Let p>1 and 1p+1q=1. If f and g are real functions defined on interval [a,b] and if |f|p, |g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤1b−a{(∫ba(b−x)|f(x)|pdx)1p(∫ba(b−x)|g(x)|qdx)1q+(∫ba(x−a)|f(x)|pdx)1p(∫ba(x−a)|g(x)|qdx)1q} | (1.5) |
Theorem 4. Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then
n∑k=1akbk≤1n{(n∑k=1kapk)1/p(n∑k=1kbqk)1/q+(n∑k=1(n−k)apk)1/p(n∑k=1(n−k)bqk)1/q}. | (1.6) |
Let E be a nonempty set and L be a linear class of real valued functions on E having the following properties
L1: If f,g∈L then (αf+βg)∈L for all α,β∈R;
L2: 1∈L, that is if f(t)=1,t∈E, then f∈L;
We also consider positive isotonic linear functionals A:L→R is a functional satisfying the following properties:
A1: A(αf+βg)=αA(f)+β A(g) for f,g∈L and α,β∈R;
A2: If f∈L, f(t)≥0 on E then A(f)≥0.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].
Example 1. i.) If E=[a,b]⊆R and L=L[a,b], then
A(f)=∫baf(t)dt |
is an isotonic linear functional.
ii.)If E=[a,b]×[c,d]⊆R2 and L=L([a,b]×[c,d]), then
A(f)=∫ba∫dcf(x,y)dxdy |
is an isotonic linear functional.
iii.)If (E,Σ,μ) is a measure space with μ positive measure on E and L=L(μ) then
A(f)=∫Efdμ |
is an isotonic linear functional.
iv.)If E is a subset of the natural numbers N with all pk≥0, then A(f)=∑k∈Epkfk is an isotonic linear functional. For example; If E={1,2,...,n} and f:E→R,f(k)=ak, then A(f)=∑nk=1ak is an isotonic linear functional. If E={1,2,...,n}×{1,2,...,m} and f:E→R,f(k,l)=ak,l, then A(f)=∑nk=1∑ml=1ak,l is an isotonic linear functional.
Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If w,f,g≥0 on E and wfp,wgq,wfg∈L then we have
A(wfg)≤A1/p(wfp)A1/q(wgq). | (2.1) |
In the case 0<p<1 and A(wgq)>0 (or p<0 and A(wfp)>0), the inequality in (2.1) is reversed.
Remark 1. i.) If we choose E=[a,b]⊆R, L=L[a,b], w=1 on E and A(f)=∫ba|f(t)|dt in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).
ii.) If we choose E={1,2,...,n}, w=1 on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).
iii.) If we choose E=[a,b]×[c,d],L=L(E), w=1 on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤(∫ba∫dc|f(x,y)|pdx)1/p(∫ba∫dc|g(x,y)|qdx)1/q. |
The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.
Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,w,f,g≥0 on E, αwfg,βwfg,αwfp,αwgq,βwfp,βwgq,wfg∈L and α+β=1 on E, then we have
i.)
A(wfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq) | (3.1) |
ii.)
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)≤A1/p(wfp)A1/q(wgq). | (3.2) |
Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of A, it is easily seen that
A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq). |
ⅱ.) Firstly, we assume that A1/p(wfp)A1/q(wgq)≠0. then
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q, |
By the inequality (1.1) and linearity of A, we have
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)≤1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1. |
Finally, suppose that A1/p(wfp)A1/q(wgq)=0. Then A1/p(wfp)=0 or A1/q(wgq)=0, i.e. A(wfp)=0 or A(wgq)=0. We assume that A(wfp)=0. Then by using linearity of A we have,
0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp). |
Since A(αwf),A(βwf)≥0, we get A(αwfp)=0 and A(βwfp)=0. From here, it follows that
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=0≤0=A1/p(wfp)A1/q(wgq). |
In case of A(wgq)=0, the proof is done similarly. This completes the proof.
Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,f,g≥0 on E, αfg,βfg,αfp,αgq,βfp,βgq,fg∈L and α+β=1 on E, then we have
i.)
A(fg)≤A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq) | (3.3) |
ii.)
A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)≤A1/p(fp)A1/q(gq). |
Remark 3. i.) If we choose E=[a,b]⊆R, L=L[a,b], α(t)=b−tb−a,β(t)=t−ab−a on E and A(f)=∫ba|f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).
ii.) If we choose E={1,2,...,n}, α(k)=kn,β(k)=n−kn on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).
We can give more general form of the Theorem 6 as follows:
Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,w,f,g≥0 on E, αiwfg,αiwfp,αiwgq,wfg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(wfg)≤m∑i=1A1/p(αiwfp)A1/q(αiwgq) |
ii.)
m∑i=1A1/p(αiwfp)A1/q(αiwgq)≤A1/p(wfp)A1/q(wgq). |
Proof. The proof can be easily done similarly to the proof of Theorem 6.
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,f,g≥0 on E, αifg,αifp,αigq,fg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(fg)≤m∑i=1A1/p(αifp)A1/q(αigq) | (3.4) |
ii.)
m∑i=1A1/p(αifp)A1/q(αigq)≤A1/p(fp)A1/q(gq). |
Corollary 3 (Improvement of Hölder inequality for double integrals). Let p,q>1 and 1/p+1/q=1. If f and g are real functions defined on E=[a,b]×[c,d] and if |f|p,|g|q∈L(E) then
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤4∑i=1(∫ba∫dcαi(x,y)|f(x,y)|pdx)1/p(∫ba∫dcαi(x,y)|g(x,y)|qdx)1/q, | (3.5) |
where α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),,α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E
Proof. If we choose E=[a,b]×[c,d]⊆R2, L=L(E), α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Corollary 1, then we get the inequality (3.5).
Corollary 4. Let (ak,l) and (bk,l) be two tuples of positive numbers and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1m∑l=1ak,lbk,l≤4∑i=1(n∑k=1m∑l=1αi(k,l)apk,l)1/p(n∑k=1m∑l=1αi(k,l)bqk,l)1/q, | (3.6) |
where α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E.
Proof. If we choose E={1,2,...,n}×{1,2,...,m}, α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E, f:E→[0,∞),f(k,l)=ak,l, and A(f)=∑nk=1∑ml=1ak,l in the Theorem1, then we get the inequality (3.6).
In [14], Sarıkaya et al. gave the following lemma for obtain main results.
Lemma 1. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If ∂2f∂t∂s∈L(Δ), then the following equality holds:
f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy]=(b−a)(d−c)4∫10∫10(1−2t)(1−2s)∂2f∂t∂s(ta+(1−t)b,sc+(1−s)d)dtds. |
By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:
Theorem 8. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q, | (4.1) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:
Theorem 9. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}, | (4.2) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
Proof. Using Lemma 1 and the inequality (3.5), we find
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4∫10∫10|1−2t||1−2s||fst(ta+(1−t)b,sc+(1−s))|dtds≤(b−a)(d−c)4{(∫10∫10ts|1−2t|p|1−2s|pdtds)1/p×(∫10∫10ts|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10t(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10t(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)s|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)s|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q}. | (4.3) |
Since |fst|q is convex function on the co-ordinates on Δ, we have for all t,s∈[0,1]
|fst(ta+(1−t)b,sc+(1−s))|q≤ts|fst(a,c)|q+t(1−s)|fst(a,d)|q+(1−t)s|fst(a,c)|q+(1−t)(1−s)|fst(a,c)|q | (4.4) |
for all t,s∈[0,1]. Further since
∫10∫10ts|1−2t|p|1−2s|pdtds=∫10∫10t(1−s)|1−2t|p|1−2s|pdtds=∫10∫10(1−t)s|1−2t|p|1−2s|pdtds | (4.5) |
=∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds=14(p+1)2, | (4.6) |
a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).
Remark 4. Since η:[0,∞)→R,η(x)=xs,0<s≤1, is a concave function, for all u,v≥0 we have
η(u+v2)=(u+v2)s≥η(u)+η(v)2=us+vs2. |
From here, we get
I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}≤2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q} |
≤4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q |
Thus we obtain
(b−a)(d−c)41+1/p(p+1)2/pI≤(b−a)(d−c)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}≤(b−a)(d−c)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}. |
This shows that the inequality (4.2) is better than the inequality (4.1).
The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.
This research didn't receive any funding.
The author declares no conflicts of interest in this paper.
[1] | L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
[3] | K. T. Atanassov, On the concept of intuitionistic fuzzy sets, In: On intuitionistic fuzzy sets theory, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-29127-2_1 |
[4] |
R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
![]() |
[5] |
S. Zeng, J. Chen, X. Li, A hybrid method for Pythagorean fuzzy multiple-criteria decision making, Int. J. Inf. Technol. Decis., 15 (2016), 403–422. https://doi.org/10.1142/S0219622016500012 doi: 10.1142/S0219622016500012
![]() |
[6] |
X. Zhang, Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods, Inf. Sci., 330 (2016), 104–124. https://doi.org/10.1016/j.ins.2015.10.012 doi: 10.1016/j.ins.2015.10.012
![]() |
[7] |
M. Akram, K. Zahid, J. C. R. Alcantud, A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information, Neural Comput. Appl., 34 (2022), 8069–8102. https://doi.org/10.1007/s00521-021-06847-1 doi: 10.1007/s00521-021-06847-1
![]() |
[8] |
M. Kirişci, N. Şimşek, Decision making method related to Pythagorean fuzzy soft sets with infectious diseases application, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 5968–5978. https://doi.org/10.1016/j.jksuci.2021.08.010 doi: 10.1016/j.jksuci.2021.08.010
![]() |
[9] | M. Deveci, L. Eriskin, M. Karatas, A survey on recent applications of pythagorean fuzzy sets: A state-of-the-art between 2013 and 2020, In: Pythagorean fuzzy sets: Theory and applications, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-1989-2_1 |
[10] |
D. A. Molodtsov, Soft set theory - First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[11] |
F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6 doi: 10.1007/s00500-017-2838-6
![]() |
[12] |
J. C. R. Alcantud, The semantics of N-soft sets, their applications, and a coda about three-way decision, Inf. Sci., 606 (2022), 837–852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084
![]() |
[13] |
J. C. R. Alcantud, F. Feng, R. R. Yager, An N-soft set approach to rough sets, IEEE T. Fuzzy Syst., 28 (2020), 2996–3007. https://doi.org/10.1109/TFUZZ.2019.2946526 doi: 10.1109/TFUZZ.2019.2946526
![]() |
[14] |
F. Fatimah, Analysis of tourism facilities using N-soft set decision making procedures, J. RESTI, 4 (2020), 135–141. https://doi.org/10.29207/resti.v4i1.1536 doi: 10.29207/resti.v4i1.1536
![]() |
[15] |
J. C. R. Alcantud, G. Santos-García, M. Akram, OWA aggregation operators and multi-agent decisions with N-soft sets, Expert Syst. Appl., 203 (2022), 117430. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430
![]() |
[16] | P. K. Maji, A. R. Roy, R. Biswas, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[17] |
P. K. Maji, R. Biswas, A. R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
![]() |
[18] |
J. C. R. Alcantud, S. C. Rambaud, M. J. M. Torrecillas, Valuation fuzzy soft sets: A flexible fuzzy soft set based decision making procedure for the valuation of assets, Symmetry, 9 (2017), 253. https://doi.org/10.3390/sym9110253 doi: 10.3390/sym9110253
![]() |
[19] |
M. Akram, A. Adeel, J. C. R. Alcantud, Fuzzy N-soft sets: A novel model with applications, J. Intell. Fuzzy Syst., 35 (2018), 4757–4771. https://doi.org/10.3233/JIFS-18244 doi: 10.3233/JIFS-18244
![]() |
[20] |
A. Adeel, M. Akram, N. Yaqoob, W. Chammam, Detection and severity of tumor cells by graded decision-making methods under fuzzy N-soft model, J. Intell. Fuzzy Syst., 39 (2020), 1303–1318. https://doi.org/10.3233/JIFS-192203 doi: 10.3233/JIFS-192203
![]() |
[21] |
D. Zhang, P. Y. Li, S. An, N-soft rough sets and its applications, J. Intell. Fuzzy Syst., 40 (2021), 565–573. https://doi.org/10.3233/JIFS-200338 doi: 10.3233/JIFS-200338
![]() |
[22] |
F. Fatimah, J. C. R. Alcantud, The multi-fuzzy N-soft set and its applications to decision-making, Neural. Comput. Appl., 33 (2021), 11437–11446. https://doi.org/10.1007/s00521-020-05647-3 doi: 10.1007/s00521-020-05647-3
![]() |
[23] |
T. Mahmood, U. Rehman, Z. Ali, A novel complex fuzzy N-soft sets and their decision-making algorithm, Complex Intell. Syst., 7 (2021), 2255–2280. https://doi.org/10.1007/s40747-021-00373-2 doi: 10.1007/s40747-021-00373-2
![]() |
[24] |
U. Rehman, T. Mahmood, Picture fuzzy N-soft sets and their applications in decision-making problems, Fuzzy Inf. Eng., 13 (2021), 335–367. https://doi.org/10.1080/16168658.2021.1943187 doi: 10.1080/16168658.2021.1943187
![]() |
[25] |
M. Akram, M. Sultan, J. C. R. Alcantud, M. M. A. Al-Shamiri, Extended fuzzy N-Soft PROMETHEE method and its application in robot butler selection, Math. Biosci. Eng., 20 (2023), 1774–1800. https://doi.org/10.3934/mbe.2023081 doi: 10.3934/mbe.2023081
![]() |
[26] |
M. Akram, G. Ali, J. C. R. Alcantud, New decision-making hybrid model: Intuitionistic fuzzy N-soft rough sets, Soft Comput., 23 (2019), 9853–9868. https://doi.org/10.1007/s00500-019-03903-w doi: 10.1007/s00500-019-03903-w
![]() |
[27] |
Q. Dong, Q. Sheng, L. Martnez, Z. Zhang, An adaptive group decision making framework: Individual and local world opinion based opinion dynamics, Inf. Fusion, 78 (2022), 218–231. https://doi.org/10.1016/j.inffus.2021.09.013 doi: 10.1016/j.inffus.2021.09.013
![]() |
[28] | Z. Li, Z. Zhang, Threshold-based value-driven method to support consensus reaching in multicriteria group sorting problems: A minimum adjustment perspective, IEEE T. Comput. Soc. Syst., 2023. https://doi.org/10.1109/TCSS.2023.3251351 |
[29] | Z. Li, Z. Zhang, W. Yu, Consensus reaching for ordinal classification-based group decision making with heterogeneous preference information, JORS, 2023. https://doi.org/10.1080/01605682.2023.2186806 |
[30] |
R. E. Bellman, L. A. Zadeh, L. A. Decision-making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
![]() |
[31] |
T. L. Saaty, Axiomatic foundation of the analytic hierarchy process, Manage. Sci., 32 (1986), 841–855. https://doi.org/10.1287/mnsc.32.7.841 doi: 10.1287/mnsc.32.7.841
![]() |
[32] | C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, In: Multiple attribute decision making, Berlin, Heidelberg: Springer, 1981. https://doi.org/10.1007/978-3-642-48318-9_3 |
[33] |
B. Roy, The outranking approach and the foundations of ELECTRE methods, Theor. Decis., 31 (1991), 49–73. https://doi.org/10.1007/BF00134132 doi: 10.1007/BF00134132
![]() |
[34] |
M. Akram, M. Sultan, J. C. R. Alcantud, An integrated ELECTRE method for selection of rehabilitation center with m-polar fuzzy N-soft information, Artif. Intell. Med., 135 (2023), 102449. https://doi.org/10.1016/j.artmed.2022.102449 doi: 10.1016/j.artmed.2022.102449
![]() |
[35] |
S. Opricovic, G. H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, Eur. J. Oper. Res., 156(2004), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1 doi: 10.1016/S0377-2217(03)00020-1
![]() |
[36] |
W. K. M. Brauers, E. K. Zavadskas, Project management by MULTIMOORA as an instrument for transition economies, Technol. Econ. Dev. Eco., 16 (2010), 5–24. https://doi.org/10.3846/tede.2010.01 doi: 10.3846/tede.2010.01
![]() |
[37] |
G. Ali, M. Akram, Decision-making method based on fuzzy N-soft expert sets, Arab. J. Sci. Eng., 45 (2020), 10381–10400. https://doi.org/10.1007/s13369-020-04733-x doi: 10.1007/s13369-020-04733-x
![]() |
[38] |
H. Zhang, D. Jia-Hua, C. Yan, Multi-attribute group decision-making methods based on Pythagorean fuzzy N-soft sets, IEEE Access, 8 (2020), 62298–62309. https://doi.org/10.1109/ACCESS.2020.2984583 doi: 10.1109/ACCESS.2020.2984583
![]() |
[39] |
C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, J. Comput. Appl. Math., 40 (2021), 227. https://doi.org/10.1007/s40314-021-01606-3 doi: 10.1007/s40314-021-01606-3
![]() |
[40] |
C. Jana, M. Pal, J. Wang, A robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment, Iran. J. Fuzzy Syst., 16 (2019), 1–16. https://doi.org/10.22111/IJFS.2019.5014 doi: 10.22111/IJFS.2019.5014
![]() |
[41] |
J. P. Brans, P. H. Vincke, A preference ranking organisation method (The PROMETHEE method for multiple criteria decision making), Manage. Sci., 31 (1985), 647–656. https://doi.org/10.1287/mnsc.31.6.647 doi: 10.1287/mnsc.31.6.647
![]() |
[42] |
M. Goumas, V. Lygerou, An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects, Eur. J. Oper. Res., 123 (2000), 606–613. https://doi.org/10.1016/S0377-2217(99)00093-4 doi: 10.1016/S0377-2217(99)00093-4
![]() |
[43] |
M. Gul, E. Celik, A. T. Gumus, A. F. Guneri, A fuzzy logic based PROMETHEE method for material selection problems, Beni-Suef Univ. J. Basic Appl. Sci., 7 (2018), 68–79. https://doi.org/10.1016/j.bjbas.2017.07.002 doi: 10.1016/j.bjbas.2017.07.002
![]() |
[44] |
F. Feng, Z. Xu, H. Fujita, M. Liang, Enhancing PROMETHEE method with intuitionistic fuzzy soft sets, Int. J. Intell. Syst., 35 (2020), 1071–1104. https://doi.org/10.1002/int.22235 doi: 10.1002/int.22235
![]() |
[45] |
R. Krishankumar, K. S. Ravichandran, A. B. Saeid, A new extension to PROMETHEE under intuitionistic fuzzy environment for solving supplier selection problem with linguistic preferences, Appl. Soft Comput., 60 (2017), 564–576. https://doi.org/10.1016/j.asoc.2017.07.028 doi: 10.1016/j.asoc.2017.07.028
![]() |
[46] | W. Zhang, Y. Zhu, D. Wang, S. Zhao, D. Dong, A multi-attribute decision making method based on interval Pythagorean fuzzy language and the PROMETHEE method, In: Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-32456-8_88 |
[47] |
F. Feng, H. Fujita, M. I. Ali, R. R. Yager, X. Liu, Another view on generalized intuitionistic fuzzy soft sets and related multiattribute decision making methods, IEEE T. Fuzzy Syst., 27 (2019), 474–488. https://doi.org/10.1109/TFUZZ.2018.2860967 doi: 10.1109/TFUZZ.2018.2860967
![]() |
[48] |
F. Feng, M. Liang, H. Fujita, R. R. Yager, X. Liu, Lexicographic orders of intuitionistic fuzzy values and their relationships, Mathematics, 7 (2019), 166. https://doi.org/10.3390/math7020166 doi: 10.3390/math7020166
![]() |
[49] |
H. Liao, Z. Xu, Multi-criteria decision making with intuitionistic fuzzy PROMETHEE, J. Intell. Fuzzy Syst., 27(2014), 1703–1717. https://doi.org/10.3233/IFS-141137 doi: 10.3233/IFS-141137
![]() |
[50] |
R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
![]() |
[51] |
T. Y. Chen, A novel PROMETHEE-based outranking approach for multiple criteria decision analysis with Pythagorean fuzzy information, IEEE Access, 6 (2018), 54495–54506. https://doi.org/10.1109/ACCESS.2018.2869137 doi: 10.1109/ACCESS.2018.2869137
![]() |
[52] |
A. Mardani, A. Jusoh, E. K. Zavadskas, Fuzzy multiple criteria decision-making techniques and applications-Two decades review from 1994 to 2014, Expert Syst. Appl., 42 (2015), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003 doi: 10.1016/j.eswa.2015.01.003
![]() |
[53] |
M. J. Manton, L. Warren, A Confirmatory Snowfall Enhancement Project in the Snowy Mountains of Australia. Part II: Primary and Associated Analyses, J. Appl. Meteorol. Climtol., 50 (2011), 1448–1458. https://doi.org/10.1175/2011JAMC2660.1 doi: 10.1175/2011JAMC2660.1
![]() |
[54] |
D. Pamucar, M. Deveci, F. Canitez, D. Bozanic, A fuzzy full consistency method-Dombi-Bonferroni model for prioritizing transportation demand management measures, Appl. Soft Comput., 87 (2020), 105952. https://doi.org/10.1016/j.asoc.2019.105952 doi: 10.1016/j.asoc.2019.105952
![]() |
[55] |
H. M. Ridha, H. Hizam, S. Mirjalili, M. L. Othman, M. E. Ya'acob, M. Ahmadipour, Innovative hybridization of the two-archive and PROMETHEE-II triple-objective and multi-criterion decision making for optimum configuration of the hybrid renewable energy system, Appl. Energy, 341 (2023), 121117. https://doi.org/10.1016/j.apenergy.2023.121117 doi: 10.1016/j.apenergy.2023.121117
![]() |
[56] | A. B. Super, J. A. Heimbach, Evaluation of the bridger range winter cloud seeding experiment using control gages, J. Climatol. Appl. Meteorol., 22 (1983), 1989–2011. |
[57] |
Y. Yang, T. Gai, M. Cao, Z. Zhang, H. Zhang, J. Wu, Application of Group Decision Making in Shipping Industry 4.0: Bibliometric Analysis, Trends, and Future Directions, Systems, 11 (2023), 69. https://doi.org/10.3390/systems11020069 doi: 10.3390/systems11020069
![]() |
[58] |
J. P. Brans, Ph. Vincke, B. Mareschal, How to select and how to rank projects: The PROMETHEE method, Eur. J. Oper. Res., 24 (1986), 228–238. https://doi.org/10.1016/0377-2217(86)90044-5 doi: 10.1016/0377-2217(86)90044-5
![]() |
[59] |
J. Ye, T. Y. Chen, Pythagorean fuzzy sets combined with the PROMETHEE method for the selection of cotton woven fabric, J. Nat. Fibers, 19 (2022), 12447–12461. https://doi.org/10.1080/15440478.2022.2072993 doi: 10.1080/15440478.2022.2072993
![]() |
[60] |
M. Kirisci, I. Demir, N. Simsek, N. Topa, M. Bardak, The novel VIKOR methods for generalized Pythagorean fuzzy soft sets and its application to children of early childhood in COVID-19 quarantine, Neural Comput. Appl., 34 (2022), 1877–1903. https://doi.org/10.1007/s00521-021-06427-3 doi: 10.1007/s00521-021-06427-3
![]() |
[61] |
Z. Hua, X. Jing, A generalized shapley index-based interval-valued Pythagorean fuzzy PROMETHEE method for group decision-making, Soft Comput., 27 (2023), 6629–6652. https://doi.org/10.1007/s00500-023-07842-5 doi: 10.1007/s00500-023-07842-5
![]() |
[62] |
M. U. Molla, B. C. Giri, P. Biswas, Extended PROMETHEE method with Pythagorean fuzzy sets for medical diagnosis problems, Soft Comput., 25 (2021), 4503–4512. https://doi.org/10.1007/s00500-020-05458-7 doi: 10.1007/s00500-020-05458-7
![]() |
[63] |
C. Jana, M. Pal, A robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
![]() |
[64] |
M. Alipour, R. Hafezi, P. Rani, M. Hafezi, A. Mardani, A new Pythagorean fuzzy-based decision-making method through entropy measure for fuel cell and hydrogen components supplier selection, Energy, 234 (2021), 121208. https://doi.org/10.1016/j.energy.2021.121208 doi: 10.1016/j.energy.2021.121208
![]() |
1. | Ludmila Nikolova, Lars-Erik Persson, Sanja Varošanec, 2025, Chapter 2, 978-3-031-83371-7, 31, 10.1007/978-3-031-83372-4_2 |