Theory article Special Issues

Cartesian vector solutions for N-dimensional non-isentropic Euler equations with Coriolis force and linear damping

  • In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices A(t), and vectors b(t), special cases of exact solutions, where entropy s=lnρ, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.

    Citation: Xitong Liu, Xiao Yong Wen, Manwai Yuen. Cartesian vector solutions for N-dimensional non-isentropic Euler equations with Coriolis force and linear damping[J]. AIMS Mathematics, 2023, 8(7): 17171-17196. doi: 10.3934/math.2023877

    Related Papers:

    [1] Jingye Zhao, Zonghua Wei, Jiahui Liu, Yongqiang Fan . Vanishing magnetic field limits of solutions to the non-isentropic Chaplygin gas magnetogasdynamics equations. AIMS Mathematics, 2025, 10(1): 1675-1703. doi: 10.3934/math.2025077
    [2] Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534
    [3] Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102
    [4] Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654
    [5] Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562
    [6] Lining Tong, Li Chen, Simone Göttlich, Shu Wang . The global classical solution to compressible Euler system with velocity alignment. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429
    [7] Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129
    [8] Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta . Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341
    [9] Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501
    [10] Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607
  • In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices A(t), and vectors b(t), special cases of exact solutions, where entropy s=lnρ, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.



    The non-isentropic Euler equations in RN in fluid dynamics with a time-dependent linear damping and Coriolis force can be expressed as follows:

    ρt+div(ρu)=0, (1.1)
    (ρu)t+div(ρuu)+ρJu+α(t)ρu+p=0, (1.2)
    St+uS=0, (1.3)

    where u=(u1,u2,,uN)T is an N-dimensional velocity field, ρ(x,t) and p(x,t)=eSργ represent density and the pressure function respectively, JT=J representing Corilis force is an anti-symmetric matrix. The damping term α(t)ρu with α(t)0 as a coefficient of friction is proportional to the momentum.

    For the special case when α(t)=0, the equations are reduced to Euler equations extended and governed by Coriolis rotational force [1,2,3,4]. The theoretical global existence of the Euler equations with rotational forces can be referred to [5,6,7]. Further studies on stability and tropical cyclones driven by this model can be referred to [8,9,10,11,12,13].

    If J=0, (1.1)–(1.3) are reduced to non-isentropic linear-damped Euler equations, which provide an important model regarding to its physical behaviours. The system can also be used to describe compressible gas dynamics through a porous material driven by a friction force [14,15,16]. Weak solutions of the damped Euler equations are shown with asymptotic and large-time behavious in [16,17,18,19]. Chow, Fan, and Yuen, in 2017, constructed the solutions of Cartesian form with J=0 in [20], which can be regarded as a special case in this article, while taking the parameter γ and 2α in [20] to be γ+1 and α respectively. For time-dependent damping, Dong and Li studied a class of analytical solutions with free-boundary [21] in 2022.

    For the case with J=0 and α(t)=0, the system (1.1)–(1.3) is reduced to the Euler equations

    ρt+div(ρu)=0, (1.4)
    (ρu)t+div(ρuu)+p=0, (1.5)
    St+uS=0. (1.6)

    There are lots of researches on Euler equations, for example, see [22,23,24,25,26]. Among all the topics, constructing analytical and exact solutions are crucial [27,28,29,30,31,32,33,34] with a common pattern of the velocity function u in linear form in many previous studies. For non-isentropic Euler equations, Barna and Mátyás presented the analytic solutions for one-dimensional Euler equations and three-dimensional Navier-Stokes equations with polytropic equation of state [34,35], which can be referred to by taking nγ and the viscosities to be zero respectively. Based on the linear form of velocity, An, Fan, and Yuen contributed with Cartesian rotational solutions to the N-dimension isentropic compressible Euler equations (1.4)–(1.6) [36] in 2015:

    u=b(t)+A(t)x, (1.7)

    where b(t) and A(t) are vector and matrix respectively. Further studies have shown the existence of general solutions in Cartesian form to isentropic Euler equations with damping and rotational forces in [20] and [37], respectively.

    Referring to the many blowup pheonomena studies [38,39,40], the global solution is still complicated to look for.

    In this article, the existence of a form of Cartesian solutions to non-isentropic Euler equations with rational force and linear damping (1.1)–(1.3) is proven by adopting mainly techniques on matrices, vectors, and curve integration. Enforcing eS=ρ and regarding velocity field u as an linear transformation of xRN, the problem is equivalent to finding the pressure function p, which leads us to a quadratic form and requirments on the matrix A and vector b. With this finding, we can construct some special exact solutions, which could be utilized in benchmarks for testings, simulations of computing flows.

    In the following sections, we will prove the existence of the non-isentropic damped Euler equations with Coriolis forces, which admit Cartesian solutions by using appropriate requirements on matrix A and vector b. We will give examples on this first cartesian form solutions to non-isentropic Euler equations based on our finding.

    In this section, we consider the non-isentropic Euler equations. Suppose that the density ρ and pressure p satisfy the relation

    p(ρ)=eSργ, (3.1)

    where the constant γ=cp/cu1, and cp and cu are the specific heats per unit mass under constant pressure and constant volume, respectively. Then we have the following theorem.

    Theorem 3.1. If matrices A with tr(A)=0 and B=(At+A2+JA+α(t)A)/2 satisfy the matrix differential equations

    BT=B, (3.2)
    Bt+BA+ATB=0, (3.3)

    then the compressible Euler equations with a time-dependent linear damping and Coriolis force (1.1)–(1.3) have explicit solutions in the form

    u=b(t)+Ax, (3.4)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ, (3.5)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)], (3.6)

    where μ=(γγ+1)1γ; the vector function b(t) and scalar function c(t) satisfy the ordinary differential equations:

    (bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb=0, (3.7)
    ctbT(bt+Ab+Jb+α(t)b)=0. (3.8)

    Proof. By (3.65), (3.5) and (3.6), ρ>0, S=lnρ. Let

    ˉp=γ+1γργ, (3.9)
    pρ=1ρ(esργ)=1ρ(ργ+1)=(γ+1)ργ1ρ=(γ+1γργ)=ˉp. (3.10)

    With (3.9), the compressible Euler equations (1.2) and (1.3) can then be written as

    ρt+div(ρu)=0, (3.11)
    ut+(u)u+Ju+α(t)u+ˉp=0, (3.12)
    St+uS=0. (3.13)

    Owing to the equivalent relation (3.9) between ˉp and ρ, we mainly deal with ˉp when solving Eqs (3.11) and (3.12). Substituting Eq (3.4) into Eq (3.12), we have

    ut+(u)u+Ju+α(t)u+ˉp (3.14)
    =bt+Atx+[(b+Ax)](b+Ax)+JAx+α(t)Ax+Jb+α(t)b+ˉp (3.15)
    =bt+Jb+α(t)b+Atx+(b)Ax+(Ax)Ax+JAx+α(t)Ax+ˉp (3.16)
    =bt+(A+J+α(t))b+(At+A2+JA+α(t)A)x+ˉp=0. (3.17)

    Let

    B=(bij)N×N=12(At+A2+JA+α(t)A),     J=(gij)N×N. (3.18)

    Then the above equation can be written into a component form

    Qi(x1,,xN)bitα(t)biNk=1(aikbk+gikbk+2bikxk)=ˉpxi,      i=1,2,,N. (3.19)

    Then, the following sufficient and necessary compatible conditions of these N equations,

    Qj(x1,,xN)xi=Qi(x1,,xN)xj,      i,j=1,2,,N, (3.20)

    lead to

    bji=bij,      i,j=1,2,,N, (3.21)

    which implies that B=12(At+A2+JA+α(t)A) is a symmetric matrix. Under the condition (3.20), ˉp(x) is a complete differential function,

    dˉp(x)=Ni=1ˉp(x)xidxi=Ni=1Qi(x1,,xN)dxi. (3.22)

    Therefore we can choose a special integration route to obtain

    ˉp(x,t)=Ni=1(x1,x2,,xN)(0,0,,0)Qi(x1,x2,,xN)dxi (3.23)
    =x10Q1(x1,0,,0)dx1,+x20Q2(x1,x2,0,,0)dx2++xN0QN(x1,x2,,xN)dxN (3.24)
    =Ni=1[bi,t+Nk=1(aikbk+gikbk)+α(t)bi]xiNi=1biix2i2Ni,k=1, i<kbikxixk+c(t) (3.25)
    =xT(bt+Jb+Ab+α(t)b)xTBx+c(t). (3.26)

    Next, we show that functions (3.4)–(3.6) satisfy (3.11). By (3.9), we have

    ρt=(μˉp1γ)t=μγˉp1γ1ˉpt, (3.27)
    ρtr(A)=μˉp1γtr(A)=μγˉp1γ1γtr(A)ˉp, (3.28)
    ρ=(μˉp1γ)=μγˉp1γ1ˉp, (3.29)
    uρ=μγˉp1γ1uTˉp. (3.30)

    From Eqs (3.27)–(3.30), we have

    ρt+div(ρu)=ρt+ρtr(A)+uρ=μγˉp1γ1{xT(bt+Ab+Jb+α(t)b)t+xTBtxct(t)+γtr(A)[xT(bt+Ab+Jb+α(t)b)+xTBxc(t)]+(b+Ax)T(bt+Ab+Jb+α(t)b+2Bx)} (3.31)
    =μγˉp1γ1{xT(Bt+γtr(A)B+2ATB)x+xT[(bt+Ab+Jb+α(t)b)t+(γtr(A)I+AT)(bt+Ab+Jb+α(t)b)+2Bb][ct+γtr(A)cbT(bt+Ab+Jb+α(t)b)]} (3.32)
    =μγˉp1γ1{xT[Bt+2ATB]x+xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb][ctbT(bt+Ab+Jb+α(t)b)]}=0, (3.33)

    where we use the condition of the first term

    xT(Bt+2ATB)x=0, (3.34)

    which is equivalent to

    (Bt+2ATB)T=(Bt+2ATB), (3.35)

    that is,

    Bt+BA+ATB=0, (3.36)

    which is (3.3). The second and third terms are controlled to be 0 with (3.7) and (3.8). By (3.6), we have

    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]=lnρ. (3.37)

    From (3.9), (3.37) is equivalent to

    S=ln(μˉpγ)=lnμ+1γlnˉp, (3.38)
    St=(lnˉp)tγ=1γˉp1ˉpt, (3.39)
    S=1γlnˉp=1γˉp1ˉp. (3.40)

    Substituting (3.4)–(3.6) and (3.38)–(3.40) to (3.13) and using (3.3), (3.7), and (3.8), we obtain by a similar argument used in obtaining Eq (3.33) that

    St+uS=1γˉp1(ˉpt+uTˉp) (3.41)
    =1γˉp1[xT(bt+Ab+Jb+α(t)b)txTBtx+ct(t)(xTAT+bT)(bt+Ab+Jb+α(t)b+2Bx)] (3.42)
    =1γˉp{xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]xT[Bt+2ATB]x+ct(t)bT(bt+Ab+Jb+α(t)b)}=0. (3.43)

    We observe that Eq (3.3) is a N2 matrix differential equation, which demands us to apply special reduction conditions to acquire solutions.

    Corollary 3.1. If A is an anti-symmetric matrix, that is

    AT=A, (3.44)

    and the following conditions are satisfied:

    At+α(t)A=0, (3.45)
    AJ=JA, (3.46)
    Bt=0, (3.47)
    btt+2Atb+(Jb+α(t)b)t=0, (3.48)
    ctbT(bt+Ab+Jb+α(t)b)=0, (3.49)

    then the compressible Euler equations (3.11)–(3.13) admit a general solution

    u=b(t)+Ax, (3.50)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ, (3.51)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]. (3.52)

    Proof. By (3.45) and (3.46),

    BT=12(At+A2+JA+α(t)A)T (3.53)
    =12[(A)(A)+(A)(J)] (3.54)
    =12(A2+JA)=B. (3.55)

    We can then simplify (3.3), (3.7), and (3.8) into (3.47), (3.48), and (3.49). Since matrix A is anti-symmetric, we have

    BA+ATB=0. (3.56)

    By (3.47), we have

    Bt=0, (3.57)
    Bt+BA+ATB=0. (3.58)

    Thus, Eq (3.3) is ensured.

    Since

    BT=B, (3.59)
    AJ=JA, (3.60)
    AT+A=0, (3.61)

    we have

    (bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb (3.62)
    =btt+Atb+AbtAbtA(Ab+Jb+α(t)b)+(At+A2+JA+α(t)A)b+(Jb+α(t)b)t (3.63)
    =btt+2Atb+(Jb+α(t)b)t=0. (3.64)

    Thus, Eq (3.64) is simplified to (3.48).

    Next, we give the following examples in 2 to N-dimension to demonstrate special cases of this corollary.

    Remark 3.1. As (3.5) and (3.6) demand

    xT(bt+Jb+α(t)b+Ab)xTBx+c(t)>0 (3.65)

    for the positivity of the argument of the logarithm and density, the solutions exist locally.

    Example 3.1. When α=0, we have the following examples:

    2-dimensional Case: We take constant matrix

    A=J=k1[0110], b=k2[cos(k1t)sin(k1t)], c(t)=0 (3.66)

    where k1 and k2 are arbitrary constants.

    By (3.18),

    B=12(At+A2+JA+α(t)A)=12(2A2)=A2 (3.67)
    =k12[1001]. (3.68)

    Since A is a constant matrix, At=0, taking α(t)=0,

    Bt=d(At+A2+JA+α(t)A)2dt=0, (3.69)

    Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.70)
    =k12b+0+Jbt+0 (3.71)
    =k12k2[cos(k1t)sin(k1t)]+k12k2[0110][sin(k1t)cos(k1t)]=0 (3.72)

    Eq (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.73)
    =0k2[cos(k1t)sin(k1t)]T(k1k2[sin(k1t)cos(k1t)]+2k1k2[0110][cos(k1t)sin(k1t)]) (3.74)
    =k1k22[cos(k1t)sin(k1t)]T[sin(k1t)cos(k1t)]=0. (3.75)

    we obtain the following solution:

    u(t)=[k2cos(k1t)+k1x2k2sin(k1t)k1x1], (3.76)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ (3.77)
    =μ[xT(bt+2Ab)xTA2x]1γ (3.78)
    =μ[xT(k1k2[sin(k1t)cos(k1t)]+2k1k2[sin(k1t)cos(k1t)])xTk12[1001]x]1γ (3.79)
    =μ[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)]1γ, (3.80)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)] (3.81)
    =lnμ+1γln[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)]. (3.82)

    3-dimensional Case: We take constant matrix

    A=J=k1[011101110], b=k2t[111], c(t)=3k222t2 (3.83)

    where k1 and k2 are arbitrary constants.

    Since matrix A is a constant matrix, (3.45)–(3.47) are satisfied. By using of (3.83), (3.48) and (3.49) are ensured. By (3.18),

    B=12(At+A2+JA+α(t)A)=12(2A2)=A2 (3.84)
    =k12[211121112]. (3.85)

    Since A is a constant matrix, At=0, taking α(t)=0,

    Bt=d(At+A2+JA+α(t)A)2dt=0, (3.86)

    Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.87)
    =0+0+Jbt+0 (3.88)
    =k1k2[011101110][111]=0 (3.89)

    Eq (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.90)
    =3k22tk2[ttt]T(k2[111]+2k1k2[011101110][ttt]) (3.91)
    =3k22t3k22t+0=0. (3.92)

    Therefore we obtain the solution:

    u(t)=[k2t+k1(x2x3)k2t+k1(x3x1)k2t+k1(x1x2)], (3.93)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ (3.94)
    =μ[xT(bt+2Ab)xTA2x+3k222t2]1γ (3.95)
    =μ[xT(k2[111]+0)xTk12[211121112]x+3k222t2]1γ (3.96)
    =μ[2k12(x12+x22+x32x1x2x1x3x2x3)k2(x1+x2+x3)+3k222t2]1γ, (3.97)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)] (3.98)
    =lnμ+1γln[2k12(x12+x22+x32x1x2x1x3x2x3)k2(x1+x2+x3)+3k222t2]. (3.99)

    Remark 3.2. The 3-dimensional example has the same setting with Example 5 in [37], which admits the same u solution but has different entropy and density.

    4-dimensional Case: We take

    A=J=k1[0211201311021320], (3.100)
    b=k2t[1111], c(t)=2k22t2 (3.101)

    where k1 and k2 are arbitrary constants. By (3.18),

    B=12(At+A2+JA+α(t)A)=12(2A2)=A2 (3.102)
    =k12[624821484486284214]. (3.103)

    Since A is a constant matrix, At=0, taking α(t)=0,

    Bt=d(At+A2+JA+α(t)A)2dt=0, (3.104)

    Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.105)
    =0+0+Jbt+0 (3.106)
    =k1k2[0211201311021320][1111]=0 (3.107)

    Eq (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.108)
    =4k22tk2[tttt]T(k2[1111]+2k1k2[0211201311021320][tttt]) (3.109)
    =4k22t4k22t+0=0. (3.110)

    We have the following solutions:

    u=k2t[1111]+k1[2x2+x3+x42x1+x33x4x1x2+2x4x1+3x22x3], (3.111)
    ρ=μ[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)]1γ (3.112)
    =μ[xT(bt+2Ab)xTA2x+2k22t2]1γ (3.113)
    =μ[xT(k2[1111]+0)xTk12[624821484486284214]x+2k22t2]1γ (3.114)
    =μ[k2(x1+x2+x3+x4)+k21(6x12+14x22+6x32+14x424x1x2+8x1x316x1x416x2x38x2x44x3x4)+2k22t2]1γ, (3.115)
    S=lnμ+1γln[xT(bt+Jb+α(t)b+Ab)xTBx+c(t)] (3.116)
    =lnμ+1γln[k2(x1+x2+x3+x4)+k21(6x12+10x22+6x32+14x424x1x2+8x1x316x1x416x2x38x2x44x3x4)+2k22t2]. (3.117)

    Example 3.2. When α is a constant, we have the following examples.

    2-dimensional Case: We take

    A=J=k1eαt[0110], b=k2eαt[11],  (3.118)

    c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution

    u(t)=eαt[k1x2+k2k1x1+k2], (3.119)
    ρ=μm1γ, (3.120)
    S=lnμ+1γlnm. (3.121)

    3-dimensional Case: We take

    A=J=k1eαt[011101110], b=k2eαt[111], (3.122)

    c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution

    u(t)=eαt[k1(x2+x3)+k2k1(x3x1)+k2k1(x1+x2)+k2], (3.123)
    ρ=μm1γ, (3.124)
    S=lnμ+1γlnm. (3.125)

    4-dimensional Case: We take

    A=J=k1eαt[0111101111011110], b=k2eαt[1111], (3.126)

    c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution

    u(t)=eαt[k1(x2+x3+x4)+k2k1(x3+x4x1)+k2k1(x4x1x2)+k2k1(x1+x2+x3)+k2], (3.127)
    ρ=μm1γ, (3.128)
    S=lnμ+1γlnm. (3.129)

    N-dimensional Case: We take

    A=k1eαt[0111101111111110]b=k2eαt[111] (3.130)
    J=A,    c(t)=m>0 (3.131)

    where k1, k2, and m are arbitrary constants. Then we get a solution

    ui=eαt[k1(Nk=i+1xki1k=1xk)+k2], (3.132)
    ρ=μm1γ, (3.133)
    S=lnμ+1γlnm. (3.134)

    Proof. Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. (3.46) is guaranteed by J=A, with

    At=αk1eαt=αA, (3.135)

    (3.45) is satisfied. Therefore,

    B=12(At+A2+JA+αA)=0,  Bt=0, (3.136)

    (3.47) is ensured. Substituting (3.130) and (3.131) into (3.48) and (3.49) produces

    btt+2Atb+(Jb+α(t)b)t (3.137)
    =α2b+2αAb+(αbAb)t (3.138)
    =α2b+2αAbα2b2αAb=0, (3.139)

    and

    ctbT(bt+αb+Ab+Jb) (3.140)
    =0bT(αb+αbJb+Jb)=0. (3.141)

    When α(t) is not a constant, we have the following examples.

    Example 3.3. (2-dimensional case) We take

    A=tk1[0110], J=(tk1k2tk1)[0110], b=tk1[11], c(t)=βα(t)=k1t (3.142)

    where k1<0, k2, and β are arbitrary constants. As

    AJ=JA=(t2k1k2)[1001] (3.143)

    (3.46) is satisfied.

    Denoting

    Q=(qij)N×N=[0110]w=[11] (3.144)

    it is easy to see

    At=k1tk11Q=α(t)A (3.145)

    and,

    B=A2+JA2=(A+J)A2=k22tk1QA=k22I=BT (3.146)
    Bt=(k22I)t=0, (3.147)

    therefore, (3.47) is satisfied. Since

    bt=α(t)b,J=k2tk1QA (3.148)

    (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.149)
    =(α(t)b)t2α(t)Ab+[(k2tk1QA)tk1w]t+(α(t)b)t (3.150)
    =2α(t)Ab(Ab)t (3.151)
    =2α(t)AbAbtAtb (3.152)
    =2α(t)Ab+α(t)Ab+α(t)Ab=0 (3.153)

    (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.154)
    =0tk1wT[k1tk11w+tk1Qtk1w+(k2tk1tk1)Qtk1wk1tk11w] (3.155)
    =0tk1wT(k2tk1Qtk1w) (3.156)
    =k2tk1wTQw (3.157)
    =k2tk1Ni=1,j=1qij=0. (3.158)

    Then we get a solution

    u(t)=tk1[1+x21x1], (3.159)
    ρ=μ[k2(x12+x222x1x2)+β]1γ, (3.160)
    S=lnμ+1γln[k2(x12+x222x1x2)+β]. (3.161)

    Example 3.4 (3-dimensional case). We take

    A=tk1[011101110], J=(tk1k2tk1)[011101110], b=tk1[111]c(t)=βα(t)=k1t (3.162)

    where k1<0, k2, and β are arbitrary constants. As

    AJ=JA=(t2k1k2)[211121112] (3.163)

    (3.46) is satisfied.

    Denoting

    Q=(qij)N×N=[011101110]w=[111] (3.164)

    it is easy to see

    At=α(t)A (3.165)
    B=A2+JA2=(A+J)A2=k22tk1QA=k22Q2=BT (3.166)
    B=A2+JA2=k22[211121112], (3.167)

    therefore

    BT=BBt=0 (3.168)

    (3.47) is satisfied.

    Since

    bt=α(t)bJ=k2tk1QA (3.169)

    (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.170)
    =(α(t)b)t2α(t)Ab+[(k2tk1QA)tk1w]t+(α(t)b)t (3.171)
    =2α(t)Ab(Ab)t (3.172)
    =2α(t)AbAbtAtb (3.173)
    =2α(t)Ab+α(t)Ab+α(t)Ab=0 (3.174)

    (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.175)
    =0tk1wT[k1tk11w+tk1Qtk1w+(k2tk1tk1)Qtk1wk1tk11w] (3.176)
    =0tk1wT(k2tk1Qtk1w) (3.177)
    =k2tk1wTQw (3.178)
    =k2tk1Ni=1,j=1qij=0. (3.179)

    We then get a solution

    u(t)=tk1[x2+x3+1x3x1+1x1x2+1], (3.180)
    ρ=μ[k2(x12+x22+x32+x1x2+x2x3x1x32x1+2x3)+β]1γ, (3.181)
    S=lnμ+1γln[k2(x12+x22+x32+x1x2+x2x3x1x32x1+2x3)+β]. (3.182)

    Remark 3.3 (N-dimensional case). We can abtain N-dimensional solutions denoting

    Q=(qij)N×N=[0111101111111110]w=[111] (3.183)

    and taking

    A=f(t)Q, J=(k1f(t)f(t))Q, b=f(t)w, α(t)=˙f(t)f(t)c(t)=β, (3.184)

    where ˙f(t)f(t)0, k1 and β are arbitrary constants. As

    AJ=JA=(k1f(t)2)Q2, (3.185)

    (3.46) is satisfied. It is easy to see

    At=α(t)A (3.186)
    B=A2+JA2=(A+J)A2=k12f(t)Qf(t)Q=k12Q2 (3.187)

    therefore

    BT=BBt=0 (3.188)

    (3.47) are satisfied. Since

    bt=α(t)bJ=k1f(t)QA (3.189)

    (3.48) is satisfied by

    btt+2Atb+(Jb+α(t)b)t (3.190)
    =(α(t)b)t2α(t)Ab+[(k1f(t)f(t))Qf(t)w]t+(α(t)b)t (3.191)
    =2α(t)Ab+(k1QwAb)t (3.192)
    =2α(t)Ab(Ab)t (3.193)
    =2α(t)AbAbtAtb (3.194)
    =2α(t)Ab+α(t)Ab+α(t)Ab=0 (3.195)

    (3.49) is satisfied by

    ctbT(bt+Ab+Jb+α(t)b) (3.196)
    =0f(t)wT[˙f(t)w+f(t)Qf(t)w+(k1f(t)f(t))Qf(t)w˙f(t)w] (3.197)
    =0f(t)wT(k1f(t)Qf(t)w) (3.198)
    =k1f(t)wTQw (3.199)
    =k1f(t)Ni=1,j=1qij=0. (3.200)

    In this paper, we construct the Cartesian solutions

    u=b(t)+A(t)x

    for the non-isentropic Euler equations with a time-dependent linear damping and a rotational force. By constructing appropriate matices A(t) and vectors b(t), we obtain new theoretical new exact solutions, which are obtained under the requirement of entropy S=lnρ. We then invite the scientific community to provide solutions with other forms of or more general form of entropy. The global existence of the solutions remains open, while the blowup phenomena are complicated to higher dimensional cases due to the existence of many temporal variables and the multiple requirements imposed on them.

    The author declares there is no interest in relation to this article.

    Verification of examples on Euler equations

    For simplicity, we use the same ˉp defined in (3.9), solutions of ρ and S in all dimensions are equivalent to

    ρ=μˉp1γ, (4.1)
    S=lnμ+1γlnˉp. (4.2)

    It is clear that from the theorem (3.5) and (3.6) and can be easily verified from substitution that all solutions satisfy S=lnρ. Dividing ρ from both sides of (1.2), we rewrite the Euler equations (1.1)–(1.3) as

    ρt+Nk=1xkρuk=0, (4.3)
    uit+Nk=1uk(uixk+jik)+αui+γ+1γxiργ=0, (4.4)
    St+Nk=1ukxkS=0. (4.5)

    Example 1

    For 2-dimension case: Substituting (3.76)–(3.82) and (4.1) into (4.3) produces

    ρt+x1(ρu1)+x2(ρu2) (4.6)
    =μ(ˉp1γ)t+x1(μˉp1γu1)+x2(μˉp1γu2) (4.7)
    =μγˉp1γγˉpt+(k2cos(k1t)+k1x2)x1μˉp1γ+(k2cos(k1t)k1x1)x2μˉp1γ (4.8)
    =μγˉp1γγ[k21k2cos(k1t)x1k21k2sin(k1t)x2]+μγˉp1γγx1[ˉp(k2cos(k1t)+k1x2)]+μγˉp1γγx2[ˉp(k2cos(k1t)k1x1)] (4.9)
    =μγˉp1γγ{k21k2cos(k1t)x1k21k2sin(k1t)x2+x1[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)](k2cos(k1t)+k1x2)+x2[k12(x12+x22)+k1k2(sin(k1t)x1+cos(k1t)x2)](k2sin(k1t)k1x1)} (4.10)
    =μγˉp1γγ[k21k2cos(k1t)x1k21k2sin(k1t)x2+(2k21x1k1k2sin(k1t))(k2cos(k1t)+k1x2)+(2k21x2+k1k2cos(k1t))(k2sin(k1t)k1x1)]=0. (4.11)

    Substituting (3.76)–(3.82) into (4.4), the first momentum gives

    u1t+u1(u1x1+j11)+u2(u1x2+j12)+αu1+γ+1γx1ργ (4.12)
    =k1k2sin(k1t)+u1(0+0)+(k2sin(k1t)k1x1)(k1+k1)+2k21x1k1k2sin(k1t) (4.13)
    =0, (4.14)

    the second momentum gives

    u2t+u1(u2x1+j11)+u2(u2x2+j12)+αu2+γ+1γx2ργ (4.15)
    =k1k2sin(k1t)+(k2cos(k1t)k1x2)(k1k1)+u2(0+0)+2k21x2k1k2cos(k1t) (4.16)
    =0. (4.17)

    Substituting (3.76)–(3.82) into (4.5) gives

    St+u1x1S+u2x2S (4.18)
    =1γˉp(k21k2cos(k1t)x1k21k2sin(k1t)x2)+1γˉp(2k21x1k1k2sin(k1t))(k2cos(k1t)+k1x2)+1γˉp(2k21x2+k1k2cos(k1t))(k2sin(k1t)k1x1) (4.19)
    =1γˉp(k21k2cos(k1t)x1k21k2sin(k1t)x2)+1γˉp(k21k2sin(k1t)x2+k21k2cos(k1t)x1)=0. (4.20)

    For 3-dimensional case: Substituting (3.93)–(3.99) and (4.1) into (4.3) produces

    ρt+x1(ρu1)+x2(ρu2)+x3(ρu3) (4.21)
    =μ(ˉp1γ)t+x1(μˉp1γu1)+x2(μˉp1γu2)+x3(μˉp1γu3) (4.22)
    =μγˉp1γγˉpt+[k2t+k1(x2x3)]x1μˉp1γ+[k2t+k1(x3x1)]x2μˉp1γ+[k2t+k1(x1x2)]x3μˉp1γ (4.23)
    =μγˉp1γγ3k22t+μγˉp1γγ[k2t+k1(x2x3)]ˉpx1+μγˉp1γγ[k2t+k1(x3x1)]ˉpx2+μγˉp1γγ[k2t+k1(x1x2)]ˉpx3 (4.24)
    =μγˉp1γγ{3k22t+[k2t+k1(x2x3)]ˉpx1+[k2t+k1(x3x1)]ˉpx2+[k2t+k1(x1x2)]ˉpx3} (4.25)
    =μγˉp1γγ{3k22t+[k2t+k1(x2x3)][2k22(2x1x2x3)k2]+[k2t+k1(x3x1)][2k22(2x2x1x3)k2]+[k2t+k1(x1x2)][2k22(2x3x1x2)k2]}=0. (4.26)

    Substituting (3.93)–(3.99) into (4.4), the first momentum gives

    u1t+u1(u1x1+j11)+u2(u1x2+j12)+u3(u1x3+j13)+αu1+γ+1γx1ργ (4.27)
    =k2+u1(0+0)+[k2t+k1(x3x1)](k1+k1)+[k2t+k1(x1x2)](k1k1)+2k21(2x1x2x3)k2=0, (4.28)

    the second momentum gives

    u2t+u1(u2x1+j21)+u2(u2x2+j22)+u3(u2x3+j23)+αu2+γ+1γx2ργ (4.29)
    =k2+[k2t+k1(x2x3)](k1k1)+u2(0+0)+[k2t+k1(x1x2)](k1+k1)+2k21(2x2x1x3)k2=0, (4.30)

    the third momentum gives

    u3t+u1(u3x1+j31)+u2(u3x2+j32)+u3(u3x3+j33)+αu3+γ+1γx3ργ (4.31)
    =k2+[k2t+k1(x2x3)](k1+k1)+[k2t+k1(x3x1)](k1k1)+u3(0+0)+2k21(2x3x1x2)k2=0. (4.32)

    Substituting (3.93)–(3.99) into (4.5) gives

    St+u1x1S+u2x2S+u3x3S (4.33)
    =1γˉp3k22t+[k2t+k1(x2x3)]x1lnˉp+[k2t+k1(x3x1)]x2lnˉp+[k2t+k1(x1x2)]x3lnˉp (4.34)
    =1γˉp{3k22t+[k2t+k1(x2x3)][2k21(2x1x2x3)k2]+[k2t+k1(x3x1)][2k21(2x2x1x3)k2]+[k2t+k1(x1x2)][2k21(2x3x1x2)k2]}=0. (4.35)

    For 4-dimensional case: Substituting (3.111)–(3.117) and (4.1) into (4.3) produces

    ρt+x1(ρu1)+x2(ρu2)+x3(ρu3)+x4(ρu4) (4.36)
    =μ(ˉp1γ)t+x1(μˉp1γu1)+x2(μˉp1γu2)+x3(μˉp1γu3)+x4(μˉp1γu4) (4.37)
    =μγˉp1γγˉpt+[k2t+k1(2x2+x3+x4)]x1μˉp1γ+[k2t+k1(2x1+x33x4)]x2μˉp1γ+[k2t+k1(x1x2+2x4)]x3μˉp1γ+[k2t+k1(x1+3x22x3)]x4μˉp1γ (4.38)
    =μγˉp1γγ4k22t+μγˉp1γγ[k2t+k1(2x2+x3+x4)]ˉpx1+μγˉp1γγ[k2t+k1(2x1+x33x4)]ˉpx2+μγˉp1γγ[k2t+k1(x1x2+2x4)]ˉpx3+μγˉp1γγ[k2t+k1(x1+3x22x3)]ˉpx4 (4.39)
    =μγˉp1γγ{4k22t+[k2t+k1(2x2+x3+x4)]ˉpx1+[k2t+k1(2x1+x33x4)]ˉpx2+[k2t+k1(x1x2+2x4)]ˉpx3+[k2t+k1(x1+3x22x3)]ˉpx4} (4.40)
    =μγˉp1γγ{4k22t+[k2t+k1(2x2+x3+x4)][k2+k21(12x14x2+8x316x4)]+[k2t+k1(2x1+x33x4)][k2+k21(28x24x116x38x4)]+[k2t+k1(x1x2+2x4)][k2+k21(12x3+8x116x24x4)]+[k2t+k1(x1+3x22x3)][k2+k21(28x416x18x24x3)]}=0. (4.41)

    Substituting (3.111)–(3.117) into (4.4), the first momentum gives

    u1t+u1(u1x1+j11)+u2(u1x2+j12)+u3(u1x3+j13)+u4(u1x4+j14)+αu1+γ+1γx1ργ (4.42)
    =k2+u1(0+0)+[k2t+k1(2x1+x33x4)](2k12k1)+[k2t+k1(x1x2+2x4)](k1+k1)+[k2t+k1(x1+3x22x3)](k1+k1)k2+k21(12x14x2+8x316x4)=0, (4.43)

    the second momentum gives

    u2t+u1(u2x1+j21)+u2(u2x2+j22)+u3(u2x3+j23)+u4(u2x4+j24)+αu2+γ+1γx2ργ (4.44)
    =k2+[k2t+k1(2x2+x3+x4)](2k1+2k1)+u2(0+0)+[k2t+k1(x1x2+2x4)](k1+k1)+[k2t+k1(x1+3x22x3)](3k13k1)k2+k21(4x1+28x216x38x4)=0, (4.45)

    the third momentum gives

    u3t+u1(u3x1+j31)+u2(u3x2+j32)+u3(u3x3+j33)+u4(u3x4+j34)+αu3+γ+1γx3ργ (4.46)
    =k2+[k2t+k1(2x2+x3+x4)](k1k1)+[k2t+k1(2x1+x33x4)](k1k1)+u3(0+0)+[k2t+k1(x1+3x22x3)](2k1+2k1)k2+k21(8x116x2+12x34x4)=0, (4.47)

    the fourth momentum gives

    u4t+u1(u4x1+j41)+u2(u4x2+j42)+u3(u4x3+j43)+u4(u4x4+j44)+αu4+γ+1γx4ργ (4.48)
    =k2+[k2t+k1(2x2+x3+x4)](k1k1)+[k2t+k1(2x1+x33x4)](3k1+3k1)+[k2t+k1(x1x2+2x4)](2k12k1)+u4(0+0)k2+k21(16x18x24x3+28x4)=0. (4.49)

    Substituting (3.111)–(3.117) into (4.5) gives

    St+u1x1S+u2x2S+u3x3S+u4x4S (4.50)
    =ˉptγˉp+u1x1lnˉpγ+u2x2lnˉpγ+u3x3lnˉpγ+u4x4lnˉpγ (4.51)
    =1γˉp{4k22t+[k2t+k1(2x2+x3+x4)][k2+k21(12x14x2+8x316x4)]+[k2t+k1(2x1+x33x4)][k2+k21(28x24x116x38x4)]+[k2t+k1(x1x2+2x4)][k2+k21(12x3+8x116x24x4)]+[k2t+k1(x1+3x22x3)][k2+k21(28x416x18x24x3)]}=0. (4.52)

    Example 2

    Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. Substituting solutions into Euler equations, as S is a constant, (4.5) is guaranteed. Since ρ is also a constant, by

    ρt+Nk=1xkρuk (4.53)
    =0+ρNk=1xkuk (4.54)
    =ρeαtNk=1xk[k1(Ng=k+1xgk1g=1xg)+k2]=0, (4.55)

    Eq (4.3) is verified.

    uixk=xkeαt[k1(Nk=i+1xki1k=1xk)+k2] (4.56)
    ={k1eαt,for k<i0,for k=ik1eαt,for k>i}=jik, (4.57)

    therefore,

    uit+Nk=1uk(uixk+jik)+αui+γ+1γxiργ (4.58)
    =αui+0+αui+0=0, (4.59)

    the n-th momentum Eq (4.4) is satisfied.

    Example 3

    Substituting (3.159)–(3.161) into (4.3) produces

    ρt+x1ρu1+x2ρu2 (4.60)
    =0+μγˉp1γγtk1(1+x2)k2(x11)+μγˉp1γγtk1(1x1)k2(x2+1)=0. (4.61)

    Substituting (3.159)–(3.161) into (4.4) gives

    uit+u1(uixk+ji1)+u2(uixk+ji2)+αui+γ+1γxiργ (4.62)
    =u1(uixk+ji1)+u2(uixk+ji2)+0 (4.63)
    =k1tk11[1+x11x2]+tk1(1+x2)(tk1[01]+[0tk1k2tk1])+tk1(1x1)(tk1[10]+[tk1+k2tk10])k1ttk1[1+x11x2]+[k2(x11)k2(x2+1)]=0. (4.64)

    Substituting (3.159)–(3.161) into (4.5) gives

    St+u1x1S+u2x2S (4.65)
    =0+tk1(1+x2)k2(2x11)γˉp+tk1(1x1)k2(2x2+1)γˉp=0. (4.66)

    Example 4

    Substituting (3.180)–(3.182) into (4.3) produces

    ρt+x1ρu1+x2ρu2+x3ρu3 (4.67)
    =0+μγˉp1γγ[tk1(x2+x3+1)k2(2x1+x2x32)+tk1(x3x1+1)k2(2x2+x1+x3)+tk1(x1x2+1)k2(2x3x1+x2+2)]=0. (4.68)

    Substituting (3.180)–(3.182) into (4.4), since

    ut=k1tk11=k1ttk1=α(t)u, (4.69)

    we have

    uit+Nk=1uk(uixk+jik)+αui+γ+1γxiργ (4.70)
    =u1(uixk+ji1)+u2(uixk+ji2)+u3(uixk+ji3)+0 (4.71)
    =tk1(x2+x3+1)(tk1[011]+[0tk1k2tk1tk1k2tk1])+tk1(x3x1+1)(tk1[101]+[tk1+k2tk10tk1k2tk1])+tk1(x1x2+1)(tk1[110]+[tk1+k2tk1tk1+k2tk10]+[k2(2x1+x2x32)k2(2x2+x1+x3)k2(2x3x1+x22)])=0. (4.72)

    Substituting (3.180)–(3.182) into (4.5) gives

    St+u1x1S+u2x2S+u3x3S (4.73)
    =0+1γˉp[tk1(x2+x3+1)k2(2x1+x2x32)+tk1(x3x1+1)k2(2x2+x1+x3)+tk1(x1x2+1)k2(2x3x1+x2+2)]=0. (4.74)


    [1] M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-1052-8
    [2] J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-4650-3
    [3] J. Marshall, R. A. Plumb, Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, San Diego, CA: Academic Press, 2008.
    [4] F. V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-31034-8
    [5] H. Liu, E. Tadmor, Rotation prevents finite-time breakdown, Phys. D, 188 (2004), 262–276. https://doi.org/10.1016/j.physd.2003.07.006 doi: 10.1016/j.physd.2003.07.006
    [6] B. Cheng, E. Tadmor, Long-time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations, SIAM J. Math. Anal., 39 (2008), 1668–1685. https://doi.org/10.1137/070693643 doi: 10.1137/070693643
    [7] B. Cheng, C. J. Xie, On the classical solutions of two dimensional inviscid rotating shallow water system, J. Differ. Equations, 250 (2011), 690–709. https://doi.org/10.1016/j.jde.2010.09.017 doi: 10.1016/j.jde.2010.09.017
    [8] O. S. Rozanova, M. K. Turzynsky, Nonlinear stability of localized and non-localized vortices in rotating compressible media, In: Theory, Numerics and Applications of Hyperbolic Problems II, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-91548-7_41
    [9] O. S. Rozanova, J. L. Yu, C. K. Hu, Typhoon eye trajectory based on a mathematical model: Comparing with observational data, Nonlinear Anal. Real World Appl., 11 (2010), 1847–1861. https://doi.org/10.1016/j.nonrwa.2009.04.011 doi: 10.1016/j.nonrwa.2009.04.011
    [10] O. S. Rozanova, J. L. Yu, C. K. Hu, On the position of vortex in a two-dimensional model of atmosphere, Nonlinear Anal. Real World Appl., 13 (2012), 1941–1954. https://doi.org/10.1016/j.nonrwa.2011.12.023 doi: 10.1016/j.nonrwa.2011.12.023
    [11] O. S. Rozanova, M. K. Turzynsky, On systems of nonlinear ODE arising in gas dynamics: Application to vortical motion, In: Differential and Difference Equations with Applications, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-75647-9_32
    [12] O. S. Rozanova, M. K. Turzynsky, Full classification of motions with uniform deformation on a rotating plane, AIP Conf. Proc. 2164 (2019), 090005. https://doi.org/10.1063/1.5130835
    [13] O. S. Rozanova, M. K. Turzynsky, The stability of vortices in gas on the l-plane: The influence of centrifugal force, In: Nonlinear Analysis and Boundary Value Problems, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-26987-6_9
    [14] L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/BF02099268 doi: 10.1007/BF02099268
    [15] D. Y. Fang, J. Xu, Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal. Theory Methods Appl., 70 (2009), 244–261. https://doi.org/10.1016/j.na.2007.11.049 doi: 10.1016/j.na.2007.11.049
    [16] F. M. Huang, R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359–376. https://doi.org/10.1007/s00205-002-0234-5 doi: 10.1007/s00205-002-0234-5
    [17] W. K. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410–450. https://doi.org/10.1006/jdeq.2000.3937 doi: 10.1006/jdeq.2000.3937
    [18] F. M. Huang, R. H. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Equations, 220 (2006), 207–233. https://doi.org/10.1016/j.jde.2005.03.012 doi: 10.1016/j.jde.2005.03.012
    [19] F. M. Huang, P. Marcati, R. H. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1–24. https://doi.org/10.1007/s00205-004-0349-y doi: 10.1007/s00205-004-0349-y
    [20] K. W. Chow, E. G. Fan, M. W. Yuen, The analytical solutions for the N-dimensional damped compressible Euler equations, Stud. Appl. Math., 138 (2017), 294–316. https://doi.org/10.1111/sapm.12154 doi: 10.1111/sapm.12154
    [21] J. W. Dong, J. J. Li, Analytical solutions to the compressible Euler equations with time-dependent damping and free boundaries, J. Math. Phys., 63 (2022), 101502. https://doi.org/10.1063/5.0089142 doi: 10.1063/5.0089142
    [22] S. Friedlander, M. M. Vishik, Lax pair formulation for the Euler equation, Phys. Lett. A, 148 (1990), 313–319. https://doi.org/10.1016/0375-9601(90)90809-3 doi: 10.1016/0375-9601(90)90809-3
    [23] Y. Li, A Lax pair for the two dimensional Euler equation, J. Math. Phys., 42 (2001), 3552–3553. https://doi.org/10.1063/1.1378305 doi: 10.1063/1.1378305
    [24] Y. Li, A. V. Yurov, Lax pairs and Darboux transformations for Euler equations, Stud. Appl. Math., 111 (2003), 101–113. https://doi.org/10.1111/1467-9590.t01-1-00229 doi: 10.1111/1467-9590.t01-1-00229
    [25] S. Y. Lou, M. Jia, X. Y. Tang, F. Huang, Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation, Phys. Rev. E, 75 (2007), 056318. https://doi.org/10.1103/PhysRevE.75.056318 doi: 10.1103/PhysRevE.75.056318
    [26] S. Y. Lou, M. Jia, F. Huang, X. Y. Tang, Bäcklund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation, Internat. J. Theoret. Phys., 46 (2007), 2082–2095. https://doi.org/10.1007/s10773-006-9327-5 doi: 10.1007/s10773-006-9327-5
    [27] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9780203739730
    [28] A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203
    [29] A. G. Ramn, Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering, Cham: Springer, 2005. https://doi.org/10.1007/b100958
    [30] P. G. Drazin, N. Riley, The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511526459
    [31] M. W. Yuen, Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in RN, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4524–4528. https://doi.org/10.1016/j.cnsns.2012.05.022 doi: 10.1016/j.cnsns.2012.05.022
    [32] M. W. Yuen, Vortical and self-similar flows of 2D compressible Euler equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2172–2180. https://doi.org/10.1016/j.cnsns.2013.11.008 doi: 10.1016/j.cnsns.2013.11.008
    [33] M. W. Yuen, Rotational and self-similar solutions for the compressible Euler equations in R3, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 634–640. https://doi.org/10.1016/j.cnsns.2014.06.027 doi: 10.1016/j.cnsns.2014.06.027
    [34] I. F. Barna, L. Mátyásb, Analytic solutions for the one-dimensional compressible Euler equation with heat conduction and with different kind of equations of state, Miskolc Math. Notes, 14 (2013), 785–799. https://doi.org/10.18514/MMN.2013.694 doi: 10.18514/MMN.2013.694
    [35] I. F. Barna, L. Mátyásb, Analytic solutions for the three-dimensional compressible Navier-Stokes equation, Fluid Dyn. Res., 46 (2014), 055508. https://doi.org/10.1088/0169-5983/46/5/055508 doi: 10.1088/0169-5983/46/5/055508
    [36] H. L. An, E. G. Fan, M. W. Yuen, The Cartesian vector solutions for the N-dimensional compressible Euler equations, Stud. Appl. Math., 134 (2015), 101–119. https://doi.org/10.1111/sapm.12056 doi: 10.1111/sapm.12056
    [37] E. G. Fan, M. W. Yuen, A method for constructing special solutions for multidimensional generalization of Euler equations with Coriolis force, Chinese J. Phys., 72 (2021), 136–144. https://doi.org/10.1016/j.cjph.2021.03.013 doi: 10.1016/j.cjph.2021.03.013
    [38] T. T. Li, Y. Zhou, D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Commun. Partial Differ. Equ., 19 (1994), 1263–1317. https://doi.org/10.1080/03605309408821055 doi: 10.1080/03605309408821055
    [39] T. T. Li, Y. Zhou, D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., 28 (1997), 1299–1332. https://doi.org/10.1016/0362-546X(95)00228-N doi: 10.1016/0362-546X(95)00228-N
    [40] G. Chen, R. H. Pan, S. G. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591–2614. https://doi.org/10.1137/16M1062818 doi: 10.1137/16M1062818
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1688) PDF downloads(59) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog