In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices A(t), and vectors b(t), special cases of exact solutions, where entropy s=lnρ, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.
Citation: Xitong Liu, Xiao Yong Wen, Manwai Yuen. Cartesian vector solutions for N-dimensional non-isentropic Euler equations with Coriolis force and linear damping[J]. AIMS Mathematics, 2023, 8(7): 17171-17196. doi: 10.3934/math.2023877
[1] | Jingye Zhao, Zonghua Wei, Jiahui Liu, Yongqiang Fan . Vanishing magnetic field limits of solutions to the non-isentropic Chaplygin gas magnetogasdynamics equations. AIMS Mathematics, 2025, 10(1): 1675-1703. doi: 10.3934/math.2025077 |
[2] | Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534 |
[3] | Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102 |
[4] | Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654 |
[5] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[6] | Lining Tong, Li Chen, Simone Göttlich, Shu Wang . The global classical solution to compressible Euler system with velocity alignment. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429 |
[7] | Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129 |
[8] | Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta . Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341 |
[9] | Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501 |
[10] | Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607 |
In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices A(t), and vectors b(t), special cases of exact solutions, where entropy s=lnρ, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.
The non-isentropic Euler equations in RN in fluid dynamics with a time-dependent linear damping and Coriolis force can be expressed as follows:
ρt+div(ρu)=0, | (1.1) |
(ρu)t+div(ρu⊗u)+ρJu+α(t)ρu+▽p=0, | (1.2) |
St+u⋅▽S=0, | (1.3) |
where u=(u1,u2,⋯,uN)T is an N-dimensional velocity field, ρ(x,t) and p(x,t)=eSργ represent density and the pressure function respectively, JT=−J representing Corilis force is an anti-symmetric matrix. The damping term α(t)ρu with α(t)≥0 as a coefficient of friction is proportional to the momentum.
For the special case when α(t)=0, the equations are reduced to Euler equations extended and governed by Coriolis rotational force [1,2,3,4]. The theoretical global existence of the Euler equations with rotational forces can be referred to [5,6,7]. Further studies on stability and tropical cyclones driven by this model can be referred to [8,9,10,11,12,13].
If J=0, (1.1)–(1.3) are reduced to non-isentropic linear-damped Euler equations, which provide an important model regarding to its physical behaviours. The system can also be used to describe compressible gas dynamics through a porous material driven by a friction force [14,15,16]. Weak solutions of the damped Euler equations are shown with asymptotic and large-time behavious in [16,17,18,19]. Chow, Fan, and Yuen, in 2017, constructed the solutions of Cartesian form with J=0 in [20], which can be regarded as a special case in this article, while taking the parameter γ and 2α in [20] to be γ+1 and α respectively. For time-dependent damping, Dong and Li studied a class of analytical solutions with free-boundary [21] in 2022.
For the case with J=0 and α(t)=0, the system (1.1)–(1.3) is reduced to the Euler equations
ρt+div(ρu)=0, | (1.4) |
(ρu)t+div(ρu⊗u)+▽p=0, | (1.5) |
St+u⋅▽S=0. | (1.6) |
There are lots of researches on Euler equations, for example, see [22,23,24,25,26]. Among all the topics, constructing analytical and exact solutions are crucial [27,28,29,30,31,32,33,34] with a common pattern of the velocity function u in linear form in many previous studies. For non-isentropic Euler equations, Barna and Mátyás presented the analytic solutions for one-dimensional Euler equations and three-dimensional Navier-Stokes equations with polytropic equation of state [34,35], which can be referred to by taking n≠γ and the viscosities to be zero respectively. Based on the linear form of velocity, An, Fan, and Yuen contributed with Cartesian rotational solutions to the N-dimension isentropic compressible Euler equations (1.4)–(1.6) [36] in 2015:
u=b(t)+A(t)x, | (1.7) |
where b(t) and A(t) are vector and matrix respectively. Further studies have shown the existence of general solutions in Cartesian form to isentropic Euler equations with damping and rotational forces in [20] and [37], respectively.
Referring to the many blowup pheonomena studies [38,39,40], the global solution is still complicated to look for.
In this article, the existence of a form of Cartesian solutions to non-isentropic Euler equations with rational force and linear damping (1.1)–(1.3) is proven by adopting mainly techniques on matrices, vectors, and curve integration. Enforcing eS=ρ and regarding velocity field u as an linear transformation of x∈RN, the problem is equivalent to finding the pressure function p, which leads us to a quadratic form and requirments on the matrix A and vector b. With this finding, we can construct some special exact solutions, which could be utilized in benchmarks for testings, simulations of computing flows.
In the following sections, we will prove the existence of the non-isentropic damped Euler equations with Coriolis forces, which admit Cartesian solutions by using appropriate requirements on matrix A and vector b. We will give examples on this first cartesian form solutions to non-isentropic Euler equations based on our finding.
In this section, we consider the non-isentropic Euler equations. Suppose that the density ρ and pressure p satisfy the relation
p(ρ)=eSργ, | (3.1) |
where the constant γ=cp/cu≥1, and cp and cu are the specific heats per unit mass under constant pressure and constant volume, respectively. Then we have the following theorem.
Theorem 3.1. If matrices A with tr(A)=0 and B=(At+A2+JA+α(t)A)/2 satisfy the matrix differential equations
BT=B, | (3.2) |
Bt+BA+ATB=0, | (3.3) |
then the compressible Euler equations with a time-dependent linear damping and Coriolis force (1.1)–(1.3) have explicit solutions in the form
u=b(t)+Ax, | (3.4) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.5) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)], | (3.6) |
where μ=(γγ+1)1γ; the vector function b(t) and scalar function c(t) satisfy the ordinary differential equations:
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb=0, | (3.7) |
ct−bT(bt+Ab+Jb+α(t)b)=0. | (3.8) |
Proof. By (3.65), (3.5) and (3.6), ρ>0, S=lnρ. Let
ˉp=γ+1γργ, | (3.9) |
▽pρ=1ρ▽(esργ)=1ρ▽(ργ+1)=(γ+1)ργ−1▽ρ=▽(γ+1γργ)=▽ˉp. | (3.10) |
With (3.9), the compressible Euler equations (1.2) and (1.3) can then be written as
ρt+div(ρu)=0, | (3.11) |
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp=0, | (3.12) |
St+u⋅▽S=0. | (3.13) |
Owing to the equivalent relation (3.9) between ˉp and ρ, we mainly deal with ˉp when solving Eqs (3.11) and (3.12). Substituting Eq (3.4) into Eq (3.12), we have
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp | (3.14) |
=bt+Atx+[(b+Ax)⋅▽](b+Ax)+JAx+α(t)Ax+Jb+α(t)b+▽ˉp | (3.15) |
=bt+Jb+α(t)b+Atx+(b⋅▽)Ax+(Ax⋅▽)Ax+JAx+α(t)Ax+▽ˉp | (3.16) |
=bt+(A+J+α(t))b+(At+A2+JA+α(t)A)x+▽ˉp=0. | (3.17) |
Let
B=(bij)N×N=12(At+A2+JA+α(t)A), J=(gij)N×N. | (3.18) |
Then the above equation can be written into a component form
Qi(x1,⋯,xN)≡−bit−α(t)bi−N∑k=1(aikbk+gikbk+2bikxk)=∂ˉp∂xi, i=1,2,⋯,N. | (3.19) |
Then, the following sufficient and necessary compatible conditions of these N equations,
∂Qj(x1,⋯,xN)∂xi=∂Qi(x1,⋯,xN)∂xj, i,j=1,2,⋯,N, | (3.20) |
lead to
bji=bij, i,j=1,2,⋯,N, | (3.21) |
which implies that B=12(At+A2+JA+α(t)A) is a symmetric matrix. Under the condition (3.20), ˉp(x) is a complete differential function,
dˉp(x)=N∑i=1∂ˉp(x)∂xidxi=N∑i=1Qi(x1,⋯,xN)dxi. | (3.22) |
Therefore we can choose a special integration route to obtain
ˉp(x,t)=N∑i=1∫(x1,x2,⋯,xN)(0,0,⋯,0)Qi(x1,x2,⋯,xN)dxi | (3.23) |
=∫x10Q1(x1,0,⋯,0)dx1,+∫x20Q2(x1,x2,0,⋯,0)dx2+⋯+∫xN0QN(x1,x2,⋯,xN)dxN | (3.24) |
=−N∑i=1[bi,t+N∑k=1(aikbk+gikbk)+α(t)bi]xi−N∑i=1biix2i−2N∑i,k=1, i<kbikxixk+c(t) | (3.25) |
=−xT(bt+Jb+Ab+α(t)b)−xTBx+c(t). | (3.26) |
Next, we show that functions (3.4)–(3.6) satisfy (3.11). By (3.9), we have
ρt=(μˉp1γ)t=μγˉp1γ−1ˉpt, | (3.27) |
ρtr(A)=μˉp1γtr(A)=μγˉp1γ−1γtr(A)ˉp, | (3.28) |
▽ρ=▽(μˉp1γ)=μγˉp1γ−1▽ˉp, | (3.29) |
u⋅▽ρ=μγˉp1γ−1uT▽ˉp. | (3.30) |
From Eqs (3.27)–(3.30), we have
ρt+div(ρu)=ρt+ρtr(A)+u⋅▽ρ=−μγˉp1γ−1{xT(bt+Ab+Jb+α(t)b)t+xTBtx−ct(t)+γtr(A)[xT(bt+Ab+Jb+α(t)b)+xTBx−c(t)]+(b+Ax)T(bt+Ab+Jb+α(t)b+2Bx)} | (3.31) |
=−μγˉp1γ−1{xT(Bt+γtr(A)B+2ATB)x+xT[(bt+Ab+Jb+α(t)b)t+(γtr(A)I+AT)(bt+Ab+Jb+α(t)b)+2Bb]−[ct+γtr(A)c−bT(bt+Ab+Jb+α(t)b)]} | (3.32) |
=−μγˉp1γ−1{xT[Bt+2ATB]x+xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−[ct−bT(bt+Ab+Jb+α(t)b)]}=0, | (3.33) |
where we use the condition of the first term
xT(Bt+2ATB)x=0, | (3.34) |
which is equivalent to
(Bt+2ATB)T=−(Bt+2ATB), | (3.35) |
that is,
Bt+BA+ATB=0, | (3.36) |
which is (3.3). The second and third terms are controlled to be 0 with (3.7) and (3.8). By (3.6), we have
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]=lnρ. | (3.37) |
From (3.9), (3.37) is equivalent to
S=ln(μˉpγ)=lnμ+1γlnˉp, | (3.38) |
St=(lnˉp)tγ=1γˉp−1ˉpt, | (3.39) |
▽S=1γ▽lnˉp=1γˉp−1▽ˉp. | (3.40) |
Substituting (3.4)–(3.6) and (3.38)–(3.40) to (3.13) and using (3.3), (3.7), and (3.8), we obtain by a similar argument used in obtaining Eq (3.33) that
St+u⋅▽S=1γˉp−1(ˉpt+uT▽ˉp) | (3.41) |
=1γˉp−1[−xT(bt+Ab+Jb+α(t)b)t−xTBtx+ct(t)−(xTAT+bT)(bt+Ab+Jb+α(t)b+2Bx)] | (3.42) |
=1γˉp{−xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−xT[Bt+2ATB]x+ct(t)−bT(bt+Ab+Jb+α(t)b)}=0. | (3.43) |
We observe that Eq (3.3) is a N2 matrix differential equation, which demands us to apply special reduction conditions to acquire solutions.
Corollary 3.1. If A is an anti-symmetric matrix, that is
AT=−A, | (3.44) |
and the following conditions are satisfied:
At+α(t)A=0, | (3.45) |
AJ=JA, | (3.46) |
Bt=0, | (3.47) |
btt+2Atb+(Jb+α(t)b)t=0, | (3.48) |
ct−bT(bt+Ab+Jb+α(t)b)=0, | (3.49) |
then the compressible Euler equations (3.11)–(3.13) admit a general solution
u=b(t)+Ax, | (3.50) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.51) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]. | (3.52) |
Proof. By (3.45) and (3.46),
BT=12(At+A2+JA+α(t)A)T | (3.53) |
=12[(−A)(−A)+(−A)(−J)] | (3.54) |
=12(A2+JA)=B. | (3.55) |
We can then simplify (3.3), (3.7), and (3.8) into (3.47), (3.48), and (3.49). Since matrix A is anti-symmetric, we have
BA+ATB=0. | (3.56) |
By (3.47), we have
Bt=0, | (3.57) |
Bt+BA+ATB=0. | (3.58) |
Thus, Eq (3.3) is ensured.
Since
BT=B, | (3.59) |
AJ=JA, | (3.60) |
AT+A=0, | (3.61) |
we have
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb | (3.62) |
=btt+Atb+Abt−Abt−A(Ab+Jb+α(t)b)+(At+A2+JA+α(t)A)b+(Jb+α(t)b)t | (3.63) |
=btt+2Atb+(Jb+α(t)b)t=0. | (3.64) |
Thus, Eq (3.64) is simplified to (3.48).
Next, we give the following examples in 2 to N-dimension to demonstrate special cases of this corollary.
Remark 3.1. As (3.5) and (3.6) demand
−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)>0 | (3.65) |
for the positivity of the argument of the logarithm and density, the solutions exist locally.
Example 3.1. When α=0, we have the following examples:
2-dimensional Case: We take constant matrix
A=J=k1[01−10], b=k2[cos(k1t)sin(k1t)], c(t)=0, | (3.66) |
where k1 and k2 are arbitrary constants.
By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.67) |
=k12[−100−1]. | (3.68) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.69) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.70) |
=−k12b+0+Jbt+0 | (3.71) |
=−k12k2[cos(k1t)sin(k1t)]+k12k2[01−10][−sin(k1t)cos(k1t)]=0, | (3.72) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.73) |
=0−k2[cos(k1t)sin(k1t)]T(k1k2[−sin(k1t)cos(k1t)]+2k1k2[01−10][cos(k1t)sin(k1t)]) | (3.74) |
=−k1k22[cos(k1t)sin(k1t)]T[sin(k1t)−cos(k1t)]=0. | (3.75) |
we obtain the following solution:
u(t)=[k2cos(k1t)+k1x2k2sin(k1t)−k1x1], | (3.76) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.77) |
=μ[−xT(bt+2Ab)−xTA2x]1γ | (3.78) |
=μ[−xT(k1k2[−sin(k1t)cos(k1t)]+2k1k2[−sin(k1t)cos(k1t)])−xTk12[−100−1]x]1γ | (3.79) |
=μ[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]1γ, | (3.80) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.81) |
=lnμ+1γln[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]. | (3.82) |
3-dimensional Case: We take constant matrix
A=J=k1[01−1−1011−10], b=k2t[111], c(t)=3k222t2, | (3.83) |
where k1 and k2 are arbitrary constants.
Since matrix A is a constant matrix, (3.45)–(3.47) are satisfied. By using of (3.83), (3.48) and (3.49) are ensured. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.84) |
=k12[−2111−2111−2]. | (3.85) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.86) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.87) |
=0+0+Jbt+0 | (3.88) |
=k1k2[01−1−1011−10][111]=0, | (3.89) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.90) |
=3k22t−k2[ttt]T(k2[111]+2k1k2[01−1−1011−10][ttt]) | (3.91) |
=3k22t−3k22t+0=0. | (3.92) |
Therefore we obtain the solution:
u(t)=[k2t+k1(x2−x3)k2t+k1(x3−x1)k2t+k1(x1−x2)], | (3.93) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.94) |
=μ[−xT(bt+2Ab)−xTA2x+3k222t2]1γ | (3.95) |
=μ[−xT(k2[111]+0)−xTk12[−2111−2111−2]x+3k222t2]1γ | (3.96) |
=μ[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]1γ, | (3.97) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.98) |
=lnμ+1γln[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]. | (3.99) |
Remark 3.2. The 3-dimensional example has the same setting with Example 5 in [37], which admits the same u solution but has different entropy and density.
4-dimensional Case: We take
A=J=k1[0−211201−3−1−102−13−20], | (3.100) |
b=k2t[1111], c(t)=2k22t2, | (3.101) |
where k1 and k2 are arbitrary constants. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.102) |
=k12[−62−482−1484−48−62842−14]. | (3.103) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.104) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.105) |
=0+0+Jbt+0 | (3.106) |
=k1k2[0−211201−3−1−102−13−20][1111]=0, | (3.107) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.108) |
=4k22t−k2[tttt]T(k2[1111]+2k1k2[0−211201−3−1−102−13−20][tttt]) | (3.109) |
=4k22t−4k22t+0=0. | (3.110) |
We have the following solutions:
u=k2t[1111]+k1[−2x2+x3+x42x1+x3−3x4−x1−x2+2x4−x1+3x2−2x3], | (3.111) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.112) |
=μ[−xT(bt+2Ab)−xTA2x+2k22t2]1γ | (3.113) |
=μ[−xT(k2[1111]+0)−xTk12[−62−482−1484−48−62842−14]x+2k22t2]1γ | (3.114) |
=μ[−k2(x1+x2+x3+x4)+k21(6x12+14x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]1γ, | (3.115) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.116) |
=lnμ+1γln[−k2(x1+x2+x3+x4)+k21(6x12+10x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]. | (3.117) |
Example 3.2. When α is a constant, we have the following examples.
2-dimensional Case: We take
A=−J=k1e−αt[01−10], b=k2e−αt[11], | (3.118) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1x2+k2−k1x1+k2], | (3.119) |
ρ=μm1γ, | (3.120) |
S=lnμ+1γlnm. | (3.121) |
3-dimensional Case: We take
A=−J=k1e−αt[011−101−1−10], b=k2e−αt[111], | (3.122) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3)+k2k1(x3−x1)+k2−k1(x1+x2)+k2], | (3.123) |
ρ=μm1γ, | (3.124) |
S=lnμ+1γlnm. | (3.125) |
4-dimensional Case: We take
A=−J=k1e−αt[0111−1011−1−101−1−1−10], b=k2e−αt[1111], | (3.126) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3+x4)+k2k1(x3+x4−x1)+k2k1(x4−x1−x2)+k2−k1(x1+x2+x3)+k2], | (3.127) |
ρ=μm1γ, | (3.128) |
S=lnμ+1γlnm. | (3.129) |
N-dimensional Case: We take
A=k1e−αt[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], b=k2e−αt[11⋮1], | (3.130) |
J=−A, c(t)=m>0, | (3.131) |
where k1, k2, and m are arbitrary constants. Then we get a solution
ui=e−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2], | (3.132) |
ρ=μm1γ, | (3.133) |
S=lnμ+1γlnm. | (3.134) |
Proof. Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. (3.46) is guaranteed by J=−A, with
At=−αk1e−αt=−αA, | (3.135) |
(3.45) is satisfied. Therefore,
B=12(At+A2+JA+αA)=0, Bt=0, | (3.136) |
(3.47) is ensured. Substituting (3.130) and (3.131) into (3.48) and (3.49) produces
btt+2Atb+(Jb+α(t)b)t | (3.137) |
=α2b+2αAb+(αb−Ab)t | (3.138) |
=α2b+2αAb−α2b−2αAb=0, | (3.139) |
and
ct−bT(bt+αb+Ab+Jb) | (3.140) |
=0−bT(−αb+αb−Jb+Jb)=0. | (3.141) |
Example 3.3. (2-dimensional case) We take
A=tk1[01−10], J=(tk1−k2tk1)[0−110], b=tk1[11], c(t)=β, α(t)=−k1t, | (3.142) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[1001], | (3.143) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[01−10], w=[11], | (3.144) |
it is easy to see
At=k1tk1−1Q=−α(t)A, | (3.145) |
and,
B=A2+JA2=(A+J)A2=k22tk1QA=−k22I=BT, | (3.146) |
Bt=(−k22I)t=0, | (3.147) |
therefore, (3.47) is satisfied. Since
bt=−α(t)b,J=k2tk1Q−A, | (3.148) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.149) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.150) |
=−2α(t)Ab−(Ab)t | (3.151) |
=−2α(t)Ab−Abt−Atb | (3.152) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.153) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.154) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.155) |
=0−tk1wT(k2tk1Qtk1w) | (3.156) |
=−k2tk1wTQw | (3.157) |
=−k2tk1N∑i=1,j=1qij=0. | (3.158) |
Then we get a solution
u(t)=tk1[1+x21−x1], | (3.159) |
ρ=μ[k2(x12+x222−x1−x2)+β]1γ, | (3.160) |
S=lnμ+1γln[k2(x12+x222−x1−x2)+β]. | (3.161) |
Example 3.4 (3-dimensional case). We take
A=tk1[011−101−1−10], J=(tk1−k2tk1)[0−1−110−1110], b=tk1[111], c(t)=β, α(t)=−k1t, | (3.162) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[21−1121−112], | (3.163) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[011−101−1−10], w=[111], | (3.164) |
it is easy to see
At=−α(t)A, | (3.165) |
B=A2+JA2=(A+J)A2=k22tk1QA=k22Q2=BT, | (3.166) |
B=A2+JA2=k22[−2−11−1−2−11−1−2], | (3.167) |
therefore
BT=B, Bt=0, | (3.168) |
(3.47) is satisfied.
Since
bt=−α(t)b, J=k2tk1Q−A, | (3.169) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.170) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.171) |
=−2α(t)Ab−(Ab)t | (3.172) |
=−2α(t)Ab−Abt−Atb | (3.173) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.174) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.175) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.176) |
=0−tk1wT(k2tk1Qtk1w) | (3.177) |
=−k2tk1wTQw | (3.178) |
=−k2tk1N∑i=1,j=1qij=0. | (3.179) |
We then get a solution
u(t)=tk1[x2+x3+1x3−x1+1−x1−x2+1], | (3.180) |
ρ=μ[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]1γ, | (3.181) |
S=lnμ+1γln[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]. | (3.182) |
Remark 3.3 (N-dimensional case). We can abtain N-dimensional solutions denoting
Q=(qij)N×N=[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], w=[11⋮1], | (3.183) |
and taking
A=f(t)Q, J=(k1f(t)−f(t))Q, b=f(t)w, α(t)=−˙f(t)f(t), c(t)=β, | (3.184) |
where ˙f(t)f(t)≤0, k1 and β are arbitrary constants. As
AJ=JA=(k1−f(t)2)Q2, | (3.185) |
(3.46) is satisfied. It is easy to see
At=−α(t)A, | (3.186) |
B=A2+JA2=(A+J)A2=k12f(t)Qf(t)Q=k12Q2, | (3.187) |
therefore
BT=B, Bt=0, | (3.188) |
(3.47) are satisfied. Since
bt=−α(t)b, J=k1f(t)Q−A, | (3.189) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.190) |
=−(α(t)b)t−2α(t)Ab+[(k1f(t)−f(t))Qf(t)w]t+(α(t)b)t | (3.191) |
=−2α(t)Ab+(k1Qw−Ab)t | (3.192) |
=−2α(t)Ab−(Ab)t | (3.193) |
=−2α(t)Ab−Abt−Atb | (3.194) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.195) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.196) |
=0−f(t)wT[˙f(t)w+f(t)Qf(t)w+(k1f(t)−f(t))Qf(t)w−˙f(t)w] | (3.197) |
=0−f(t)wT(k1f(t)Qf(t)w) | (3.198) |
=−k1f(t)wTQw | (3.199) |
=−k1f(t)N∑i=1,j=1qij=0. | (3.200) |
In this paper, we construct the Cartesian solutions
u=b(t)+A(t)x |
for the non-isentropic Euler equations with a time-dependent linear damping and a rotational force. By constructing appropriate matices A(t) and vectors b(t), we obtain new theoretical new exact solutions, which are obtained under the requirement of entropy S=lnρ. We then invite the scientific community to provide solutions with other forms of or more general form of entropy. The global existence of the solutions remains open, while the blowup phenomena are complicated to higher dimensional cases due to the existence of many temporal variables and the multiple requirements imposed on them.
The author declares there is no interest in relation to this article.
Verification of examples on Euler equations
For simplicity, we use the same ˉp defined in (3.9), solutions of ρ and S in all dimensions are equivalent to
ρ=μˉp1γ, | (4.1) |
S=lnμ+1γlnˉp. | (4.2) |
It is clear that from the theorem (3.5) and (3.6) and can be easily verified from substitution that all solutions satisfy S=lnρ. Dividing ρ from both sides of (1.2), we rewrite the Euler equations (1.1)–(1.3) as
ρt+N∑k=1∂∂xkρuk=0, | (4.3) |
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ=0, | (4.4) |
St+N∑k=1uk∂∂xkS=0. | (4.5) |
Example 1
For 2-dimension case: Substituting (3.76)–(3.82) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2) | (4.6) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2) | (4.7) |
=μγˉp1−γγˉpt+(k2cos(k1t)+k1x2)∂∂x1μˉp1γ+(k2cos(k1t)−k1x1)∂∂x2μˉp1γ | (4.8) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2]+μγˉp1−γγ∂∂x1[ˉp(k2cos(k1t)+k1x2)]+μγˉp1−γγ∂∂x2[ˉp(k2cos(k1t)−k1x1)] | (4.9) |
=μγˉp1−γγ{−k21k2cos(k1t)x1−k21k2sin(k1t)x2+∂∂x1[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2cos(k1t)+k1x2)+∂∂x2[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2sin(k1t)−k1x1)} | (4.10) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2+(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1)]=0. | (4.11) |
Substituting (3.76)–(3.82) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+αu1+γ+1γ∂∂x1ργ | (4.12) |
=−k1k2sin(k1t)+u1(0+0)+(k2sin(k1t)−k1x1)(k1+k1)+2k21x1−k1k2sin(k1t) | (4.13) |
=0, | (4.14) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j11)+u2(∂u2∂x2+j12)+αu2+γ+1γ∂∂x2ργ | (4.15) |
=k1k2sin(k1t)+(k2cos(k1t)−k1x2)(−k1−k1)+u2(0+0)+2k21x2−k1k2cos(k1t) | (4.16) |
=0. | (4.17) |
Substituting (3.76)–(3.82) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.18) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+1γˉp(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1) | (4.19) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(k21k2sin(k1t)x2+k21k2cos(k1t)x1)=0. | (4.20) |
For 3-dimensional case: Substituting (3.93)–(3.99) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3) | (4.21) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3) | (4.22) |
=μγˉp1−γγˉpt+[k2t+k1(x2−x3)]∂∂x1μˉp1γ+[k2t+k1(x3−x1)]∂∂x2μˉp1γ+[k2t+k1(x1−x2)]∂∂x3μˉp1γ | (4.23) |
=μγˉp1−γγ3k22t+μγˉp1−γγ[k2t+k1(x2−x3)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(x3−x1)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(x1−x2)]∂ˉp∂x3 | (4.24) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)]∂ˉp∂x1+[k2t+k1(x3−x1)]∂ˉp∂x2+[k2t+k1(x1−x2)]∂ˉp∂x3} | (4.25) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)][2k22(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k22(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k22(2x3−x1−x2)−k2]}=0. | (4.26) |
Substituting (3.93)–(3.99) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+αu1+γ+1γ∂∂x1ργ | (4.27) |
=k2+u1(0+0)+[k2t+k1(x3−x1)](k1+k1)+[k2t+k1(x1−x2)](−k1−k1)+2k21(2x1−x2−x3)−k2=0, | (4.28) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+αu2+γ+1γ∂∂x2ργ | (4.29) |
=k2+[k2t+k1(x2−x3)](−k1−k1)+u2(0+0)+[k2t+k1(x1−x2)](k1+k1)+2k21(2x2−x1−x3)−k2=0, | (4.30) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+αu3+γ+1γ∂∂x3ργ | (4.31) |
=k2+[k2t+k1(x2−x3)](k1+k1)+[k2t+k1(x3−x1)](−k1−k1)+u3(0+0)+2k21(2x3−x1−x2)−k2=0. | (4.32) |
Substituting (3.93)–(3.99) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.33) |
=1γˉp3k22t+[k2t+k1(x2−x3)]∂∂x1lnˉp+[k2t+k1(x3−x1)]∂∂x2lnˉp+[k2t+k1(x1−x2)]∂∂x3lnˉp | (4.34) |
=1γˉp{3k22t+[k2t+k1(x2−x3)][2k21(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k21(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k21(2x3−x1−x2)−k2]}=0. | (4.35) |
For 4-dimensional case: Substituting (3.111)–(3.117) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3)+∂∂x4(ρu4) | (4.36) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3)+∂∂x4(μˉp1γu4) | (4.37) |
=μγˉp1−γγˉpt+[k2t+k1(−2x2+x3+x4)]∂∂x1μˉp1γ+[k2t+k1(2x1+x3−3x4)]∂∂x2μˉp1γ+[k2t+k1(−x1−x2+2x4)]∂∂x3μˉp1γ+[k2t+k1(−x1+3x2−2x3)]∂∂x4μˉp1γ | (4.38) |
=μγˉp1−γγ4k22t+μγˉp1−γγ[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+μγˉp1−γγ[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4 | (4.39) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4} | (4.40) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.41) |
Substituting (3.111)–(3.117) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+u4(∂u1∂x4+j14)+αu1+γ+1γ∂∂x1ργ | (4.42) |
=k2+u1(0+0)+[k2t+k1(2x1+x3−3x4)](−2k1−2k1)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](k1+k1)−k2+k21(12x1−4x2+8x3−16x4)=0, | (4.43) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+u4(∂u2∂x4+j24)+αu2+γ+1γ∂∂x2ργ | (4.44) |
=k2+[k2t+k1(−2x2+x3+x4)](2k1+2k1)+u2(0+0)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](−3k1−3k1)−k2+k21(−4x1+28x2−16x3−8x4)=0, | (4.45) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+u4(∂u3∂x4+j34)+αu3+γ+1γ∂∂x3ργ | (4.46) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](−k1−k1)+u3(0+0)+[k2t+k1(−x1+3x2−2x3)](2k1+2k1)−k2+k21(8x1−16x2+12x3−4x4)=0, | (4.47) |
the fourth momentum gives
∂u4∂t+u1(∂u4∂x1+j41)+u2(∂u4∂x2+j42)+u3(∂u4∂x3+j43)+u4(∂u4∂x4+j44)+αu4+γ+1γ∂∂x4ργ | (4.48) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](3k1+3k1)+[k2t+k1(−x1−x2+2x4)](−2k1−2k1)+u4(0+0)−k2+k21(−16x1−8x2−4x3+28x4)=0. | (4.49) |
Substituting (3.111)–(3.117) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S+u4∂∂x4S | (4.50) |
=ˉptγˉp+u1∂∂x1lnˉpγ+u2∂∂x2lnˉpγ+u3∂∂x3lnˉpγ+u4∂∂x4lnˉpγ | (4.51) |
=1γˉp{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.52) |
Example 2
Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. Substituting solutions into Euler equations, as S is a constant, (4.5) is guaranteed. Since ρ is also a constant, by
ρt+N∑k=1∂∂xkρuk | (4.53) |
=0+ρN∑k=1∂∂xkuk | (4.54) |
=ρe−αtN∑k=1∂∂xk[k1(N∑g=k+1xg−k−1∑g=1xg)+k2]=0, | (4.55) |
Eq (4.3) is verified.
∂ui∂xk=∂∂xke−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2] | (4.56) |
={−k1e−αt,for k<i0,for k=ik1e−αt,for k>i}=−jik, | (4.57) |
therefore,
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.58) |
=−αui+0+αui+0=0, | (4.59) |
the n-th momentum Eq (4.4) is satisfied.
Example 3
Substituting (3.159)–(3.161) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2 | (4.60) |
=0+μγˉp1−γγtk1(1+x2)k2(x1−1)+μγˉp1−γγtk1(1−x1)k2(x2+1)=0. | (4.61) |
Substituting (3.159)–(3.161) into (4.4) gives
∂ui∂t+u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+αui+γ+1γ∂∂xiργ | (4.62) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+0 | (4.63) |
=k1tk1−1[1+x11−x2]+tk1(1+x2)(tk1[0−1]+[0tk1−k2tk1])+tk1(1−x1)(tk1[10]+[−tk1+k2tk10])−k1ttk1[1+x11−x2]+[k2(x1−1)k2(x2+1)]=0. | (4.64) |
Substituting (3.159)–(3.161) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.65) |
=0+tk1(1+x2)k2(2x1−1)γˉp+tk1(1−x1)k2(2x2+1)γˉp=0. | (4.66) |
Example 4
Substituting (3.180)–(3.182) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2+∂∂x3ρu3 | (4.67) |
=0+μγˉp1−γγ[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.68) |
Substituting (3.180)–(3.182) into (4.4), since
ut=k1tk1−1=k1ttk1=−α(t)u, | (4.69) |
we have
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.70) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+u3(∂ui∂xk+ji3)+0 | (4.71) |
=tk1(x2+x3+1)(tk1[0−1−1]+[0tk1−k2tk1tk1−k2tk1])+tk1(x3−x1+1)(tk1[10−1]+[−tk1+k2tk10tk1−k2tk1])+tk1(−x1−x2+1)(tk1[110]+[−tk1+k2tk1−tk1+k2tk10]+[k2(2x1+x2−x3−2)k2(2x2+x1+x3)k2(2x3−x1+x2−2)])=0. | (4.72) |
Substituting (3.180)–(3.182) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.73) |
=0+1γˉp[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.74) |
[1] | M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-1052-8 |
[2] | J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-4650-3 |
[3] | J. Marshall, R. A. Plumb, Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, San Diego, CA: Academic Press, 2008. |
[4] | F. V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-31034-8 |
[5] |
H. Liu, E. Tadmor, Rotation prevents finite-time breakdown, Phys. D, 188 (2004), 262–276. https://doi.org/10.1016/j.physd.2003.07.006 doi: 10.1016/j.physd.2003.07.006
![]() |
[6] |
B. Cheng, E. Tadmor, Long-time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations, SIAM J. Math. Anal., 39 (2008), 1668–1685. https://doi.org/10.1137/070693643 doi: 10.1137/070693643
![]() |
[7] |
B. Cheng, C. J. Xie, On the classical solutions of two dimensional inviscid rotating shallow water system, J. Differ. Equations, 250 (2011), 690–709. https://doi.org/10.1016/j.jde.2010.09.017 doi: 10.1016/j.jde.2010.09.017
![]() |
[8] | O. S. Rozanova, M. K. Turzynsky, Nonlinear stability of localized and non-localized vortices in rotating compressible media, In: Theory, Numerics and Applications of Hyperbolic Problems II, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-91548-7_41 |
[9] |
O. S. Rozanova, J. L. Yu, C. K. Hu, Typhoon eye trajectory based on a mathematical model: Comparing with observational data, Nonlinear Anal. Real World Appl., 11 (2010), 1847–1861. https://doi.org/10.1016/j.nonrwa.2009.04.011 doi: 10.1016/j.nonrwa.2009.04.011
![]() |
[10] |
O. S. Rozanova, J. L. Yu, C. K. Hu, On the position of vortex in a two-dimensional model of atmosphere, Nonlinear Anal. Real World Appl., 13 (2012), 1941–1954. https://doi.org/10.1016/j.nonrwa.2011.12.023 doi: 10.1016/j.nonrwa.2011.12.023
![]() |
[11] | O. S. Rozanova, M. K. Turzynsky, On systems of nonlinear ODE arising in gas dynamics: Application to vortical motion, In: Differential and Difference Equations with Applications, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-75647-9_32 |
[12] | O. S. Rozanova, M. K. Turzynsky, Full classification of motions with uniform deformation on a rotating plane, AIP Conf. Proc. 2164 (2019), 090005. https://doi.org/10.1063/1.5130835 |
[13] | O. S. Rozanova, M. K. Turzynsky, The stability of vortices in gas on the l-plane: The influence of centrifugal force, In: Nonlinear Analysis and Boundary Value Problems, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-26987-6_9 |
[14] |
L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/BF02099268 doi: 10.1007/BF02099268
![]() |
[15] |
D. Y. Fang, J. Xu, Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal. Theory Methods Appl., 70 (2009), 244–261. https://doi.org/10.1016/j.na.2007.11.049 doi: 10.1016/j.na.2007.11.049
![]() |
[16] |
F. M. Huang, R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359–376. https://doi.org/10.1007/s00205-002-0234-5 doi: 10.1007/s00205-002-0234-5
![]() |
[17] |
W. K. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410–450. https://doi.org/10.1006/jdeq.2000.3937 doi: 10.1006/jdeq.2000.3937
![]() |
[18] |
F. M. Huang, R. H. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Equations, 220 (2006), 207–233. https://doi.org/10.1016/j.jde.2005.03.012 doi: 10.1016/j.jde.2005.03.012
![]() |
[19] |
F. M. Huang, P. Marcati, R. H. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1–24. https://doi.org/10.1007/s00205-004-0349-y doi: 10.1007/s00205-004-0349-y
![]() |
[20] |
K. W. Chow, E. G. Fan, M. W. Yuen, The analytical solutions for the N-dimensional damped compressible Euler equations, Stud. Appl. Math., 138 (2017), 294–316. https://doi.org/10.1111/sapm.12154 doi: 10.1111/sapm.12154
![]() |
[21] |
J. W. Dong, J. J. Li, Analytical solutions to the compressible Euler equations with time-dependent damping and free boundaries, J. Math. Phys., 63 (2022), 101502. https://doi.org/10.1063/5.0089142 doi: 10.1063/5.0089142
![]() |
[22] |
S. Friedlander, M. M. Vishik, Lax pair formulation for the Euler equation, Phys. Lett. A, 148 (1990), 313–319. https://doi.org/10.1016/0375-9601(90)90809-3 doi: 10.1016/0375-9601(90)90809-3
![]() |
[23] |
Y. Li, A Lax pair for the two dimensional Euler equation, J. Math. Phys., 42 (2001), 3552–3553. https://doi.org/10.1063/1.1378305 doi: 10.1063/1.1378305
![]() |
[24] |
Y. Li, A. V. Yurov, Lax pairs and Darboux transformations for Euler equations, Stud. Appl. Math., 111 (2003), 101–113. https://doi.org/10.1111/1467-9590.t01-1-00229 doi: 10.1111/1467-9590.t01-1-00229
![]() |
[25] |
S. Y. Lou, M. Jia, X. Y. Tang, F. Huang, Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation, Phys. Rev. E, 75 (2007), 056318. https://doi.org/10.1103/PhysRevE.75.056318 doi: 10.1103/PhysRevE.75.056318
![]() |
[26] |
S. Y. Lou, M. Jia, F. Huang, X. Y. Tang, Bäcklund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation, Internat. J. Theoret. Phys., 46 (2007), 2082–2095. https://doi.org/10.1007/s10773-006-9327-5 doi: 10.1007/s10773-006-9327-5
![]() |
[27] | L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9780203739730 |
[28] | A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203 |
[29] | A. G. Ramn, Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering, Cham: Springer, 2005. https://doi.org/10.1007/b100958 |
[30] | P. G. Drazin, N. Riley, The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511526459 |
[31] |
M. W. Yuen, Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in RN, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4524–4528. https://doi.org/10.1016/j.cnsns.2012.05.022 doi: 10.1016/j.cnsns.2012.05.022
![]() |
[32] |
M. W. Yuen, Vortical and self-similar flows of 2D compressible Euler equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2172–2180. https://doi.org/10.1016/j.cnsns.2013.11.008 doi: 10.1016/j.cnsns.2013.11.008
![]() |
[33] |
M. W. Yuen, Rotational and self-similar solutions for the compressible Euler equations in R3, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 634–640. https://doi.org/10.1016/j.cnsns.2014.06.027 doi: 10.1016/j.cnsns.2014.06.027
![]() |
[34] |
I. F. Barna, L. Mátyásb, Analytic solutions for the one-dimensional compressible Euler equation with heat conduction and with different kind of equations of state, Miskolc Math. Notes, 14 (2013), 785–799. https://doi.org/10.18514/MMN.2013.694 doi: 10.18514/MMN.2013.694
![]() |
[35] |
I. F. Barna, L. Mátyásb, Analytic solutions for the three-dimensional compressible Navier-Stokes equation, Fluid Dyn. Res., 46 (2014), 055508. https://doi.org/10.1088/0169-5983/46/5/055508 doi: 10.1088/0169-5983/46/5/055508
![]() |
[36] |
H. L. An, E. G. Fan, M. W. Yuen, The Cartesian vector solutions for the N-dimensional compressible Euler equations, Stud. Appl. Math., 134 (2015), 101–119. https://doi.org/10.1111/sapm.12056 doi: 10.1111/sapm.12056
![]() |
[37] |
E. G. Fan, M. W. Yuen, A method for constructing special solutions for multidimensional generalization of Euler equations with Coriolis force, Chinese J. Phys., 72 (2021), 136–144. https://doi.org/10.1016/j.cjph.2021.03.013 doi: 10.1016/j.cjph.2021.03.013
![]() |
[38] |
T. T. Li, Y. Zhou, D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Commun. Partial Differ. Equ., 19 (1994), 1263–1317. https://doi.org/10.1080/03605309408821055 doi: 10.1080/03605309408821055
![]() |
[39] |
T. T. Li, Y. Zhou, D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., 28 (1997), 1299–1332. https://doi.org/10.1016/0362-546X(95)00228-N doi: 10.1016/0362-546X(95)00228-N
![]() |
[40] |
G. Chen, R. H. Pan, S. G. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591–2614. https://doi.org/10.1137/16M1062818 doi: 10.1137/16M1062818
![]() |