The features of numerical sequences and time series have been studied by using entropies and graphs. In this article, two sequences derived from the divisors of natural numbers are investigated. These sequences are obtained either directly from the divisor function or by recursively applying the divisor function. For comparison purposes, analogous sequences formed from the divisors of happy numbers are also examined. Firstly, the informational entropy of these four sequences is numerically determined. Then, each sequence is mapped into graphs by employing two visibility algorithms. For each graph, the average degree, the average shortest-path length, the average clustering coefficient, and the degree distribution are calculated. Also, the links in these graphs are quantified in terms of the parity of the numbers that these links connect. These computer experiments suggest that the four analyzed sequences exhibit characteristics of quasi-random sequences.
Citation: B.L. Mayer, L.H.A. Monteiro. On the divisors of natural and happy numbers: a study based on entropy and graphs[J]. AIMS Mathematics, 2023, 8(6): 13411-13424. doi: 10.3934/math.2023679
The features of numerical sequences and time series have been studied by using entropies and graphs. In this article, two sequences derived from the divisors of natural numbers are investigated. These sequences are obtained either directly from the divisor function or by recursively applying the divisor function. For comparison purposes, analogous sequences formed from the divisors of happy numbers are also examined. Firstly, the informational entropy of these four sequences is numerically determined. Then, each sequence is mapped into graphs by employing two visibility algorithms. For each graph, the average degree, the average shortest-path length, the average clustering coefficient, and the degree distribution are calculated. Also, the links in these graphs are quantified in terms of the parity of the numbers that these links connect. These computer experiments suggest that the four analyzed sequences exhibit characteristics of quasi-random sequences.
[1] | T. M. Apostol, Introduction to analytic number theory, Springer, New York, 1988. |
[2] | D. M. Burton, Elementary number theory, Mc Graw Hill, New York, 2012. |
[3] | G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, Oxford University Press, Oxford, 2008. |
[4] | O. Ore, Number theory and its history, Dover, New York, 1988. |
[5] | L. E. Dickson, History of the theory of numbers, vol. 1: divisibility and primality, Dover, New York, 2005. |
[6] | B. L. Mayer, L. H. A. Monteiro, A numerical study on the regularity of d-primes via informational entropy and visibility algorithms, Complexity, 2020 (2020), 1480890. https://doi.org/10.1155/2020/1480890 doi: 10.1155/2020/1480890 |
[7] | N. J. A. Sloane, The on-line encyclopedia of integer sequences, 2022. https://oeis.org/ (accessed 04 December 2022). |
[8] | R. Guy, Unsolved problems in number theory, Springer, New York, 2004. |
[9] | E. El-Sedy, S. Siksek, On happy numbers, Rocky Mt. J. Math., 30 (2000), 565–570. https://doi.org/10.1216/rmjm/1022009281 doi: 10.1216/rmjm/1022009281 |
[10] | G. Corso, Families and clustering in a natural numbers network, Phys. Rev. E, 69 (2004), 036106. https://doi.org/10.1103/PhysRevE.69.036106 doi: 10.1103/PhysRevE.69.036106 |
[11] | A. K. Chandra, S. Dasgupta, A small world network of prime numbers, Physica A, 357 (2005), 436–446. https://doi.org/10.1016/j.physa.2005.02.089 doi: 10.1016/j.physa.2005.02.089 |
[12] | T. Zhou, B. H. Wang, P. M. Hui, K. P. Chan, Topological properties of integer networks, Physica A, 367 (2006), 613–618. https://doi.org/10.1016/j.physa.2005.11.011 doi: 10.1016/j.physa.2005.11.011 |
[13] | K. M. Frahm, A. D. Chepelianskii, D. L. Shepelyansky, PageRank of integers, J. Phys. A: Math. Theor., 45 (2012), 405101. https://doi.org/10.1088/1751-8113/45/40/405101 doi: 10.1088/1751-8113/45/40/405101 |
[14] | J. Y. Zhang, W. G. Sun, L. Y. Tong, C. P. Li, Topological properties of Fibonacci networks, Commun. Theor. Phys., 60 (2013), 375–379. https://doi.org/10.1088/0253-6102/60/3/19 doi: 10.1088/0253-6102/60/3/19 |
[15] | P. A. Solares-Hernández, M. A. García-March, J. A. Conejero, Divisibility networks of the rational numbers in the unit interval, Symmetry, 12 (2020), 1879. https://doi.org/10.3390/sym12111879 doi: 10.3390/sym12111879 |
[16] | S. W. Golomb, Probability, information theory, and prime number theory, Discret. Math., 106 (1992), 219–229. https://doi.org/10.1016/0012-365X(92)90549-U doi: 10.1016/0012-365X(92)90549-U |
[17] | G. J. Croll, Bientropy, trientropy and primality, Entropy, 22 (2020), 311. https://doi.org/10.3390/e22030311 doi: 10.3390/e22030311 |
[18] | W. Chen, Y. Liang, S. Hu, H. Sun, Fractional derivative anomalous diffusion equation modeling prime number distribution, Fract. Calc. Appl. Anal., 18 (2015), 789–798. https://doi.org/10.1515/fca-2015-0047 doi: 10.1515/fca-2015-0047 |
[19] | C. E. Shannon, W. Weaver, The mathematical theory of communication, University of Illinois Press, Illinois, 1998. |
[20] | L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J. C. Nuno, From time series to complex networks: the visibility graph, Proc. Natl. Acad. Sci. USA, 105 (2008), 4972–4975. https://doi.org/10.1073/pnas.0709247105 doi: 10.1073/pnas.0709247105 |
[21] | B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: Exact results for random time series, Phys. Rev. E, 80 (2009), 046103. https://doi.org/10.1103/PhysRevE.80.046103 doi: 10.1103/PhysRevE.80.046103 |
[22] | M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98 (2001), 404–409. https://doi.org/10.1073/pnas.021544898 doi: 10.1073/pnas.021544898 |
[23] | A. S. Morais, H. Olsson, L. J. Schooler, Mapping the structure of semantic memory, Cogn. Sci., 37 (2013), 125–145. https://doi.org/10.1111/cogs.12013 doi: 10.1111/cogs.12013 |
[24] | L. Liu, C. Han, W. Xu, Evolutionary analysis of the collaboration networks within National Quality Award Projects of China, Int. J. Proj. Manag., 33 (2015), 599–609. https://doi.org/10.1016/j.ijproman.2014.11.003 doi: 10.1016/j.ijproman.2014.11.003 |
[25] | S. E. Massey, Form and relationship of the social networks of the New Testament, Soc. Netw. Anal. Min., 9 (2019), 32. https://doi.org/10.1007/s13278-019-0577-7 doi: 10.1007/s13278-019-0577-7 |
[26] | A. N. Licciardi Jr., L. H. A. Monteiro, A complex network model for a society with socioeconomic classes, Math. Biosci. Eng., 19 (2022), 6731–6742. https://doi.org/10.3934/mbe.2022317 doi: 10.3934/mbe.2022317 |
[27] | J. S. Shiner, M. Davison, P. T. Landsberg, Simple measure for complexity, Phys. Rev. E, 59 (1999), 1459–1464. https://doi.org/10.1103/PhysRevE.59.1459 doi: 10.1103/PhysRevE.59.1459 |
[28] | Z. L. Zhang, Z. T. Xiang, Y. F. Chen, J. Y. Xu, Fuzzy permutation entropy derived from a novel distance between segments of time series, AIMS Math., 5 (2020), 6244–6260. https://doi.org/10.3934/math.2020402 doi: 10.3934/math.2020402 |
[29] | L. P. D. Mortoza, J. R. C. Piqueira, Measuring complexity in Brazilian economic crises, PLoS One, 12 (2017), e0173280. https://doi.org/10.1371/journal.pone.0173280 doi: 10.1371/journal.pone.0173280 |
[30] | A. S. Gaudencio, M. Hilal, J. M. Cardoso, A. Humeau-Heurtier, P. G. Vaz, Texture analysis using two-dimensional permutation entropy and amplitude-aware permutation entropy, Pattern Recognit. Lett., 159 (2022), 150–156. https://doi.org/10.1016/j.patrec.2022.05.017 doi: 10.1016/j.patrec.2022.05.017 |
[31] | Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, J. Kurths, Complex network approaches to nonlinear time series analysis, Phys. Rep., 787 (2019), 1–97. https://doi.org/10.1016/j.physrep.2018.10.005 doi: 10.1016/j.physrep.2018.10.005 |
[32] | Q. X. Feng, H. P. Wei, J. Hu, W. Z. Xu, F. Li, P. P. Lv, P. Wu, Analysis of the attention to COVID-19 epidemic based on visibility graph network, Mod. Phys. Lett. B, 35 (2021), 2150316. https://doi.org/10.1142/S0217984921503164 doi: 10.1142/S0217984921503164 |
[33] | R. H. Cao, Z. H. Deng, J. W. Xu, Analysis of precipitation characteristics in Shanghai based on the visibility graph algorithm, Physica A, 597 (2022), 127227. https://doi.org/10.1016/j.physa.2022.127227 doi: 10.1016/j.physa.2022.127227 |
[34] | D. J. Watts, S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440–442. https://doi.org/10.1038/30918 doi: 10.1038/30918 |
[35] | M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167–256. https://doi.org/10.1137/S003614450342480 doi: 10.1137/S003614450342480 |
[36] | S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. U. Hwanga, Complex networks: structure and dynamics, Phys. Rep., 424 (2006), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009 doi: 10.1016/j.physrep.2005.10.009 |
[37] | L. Ljung, System identification: Theory for the user, Prentice-Hall, Upper Saddle River, 1998. |