Citation: Chunyan Luo, Tingsong Du, Muhammad Uzair Awan, Yao Zhang. Estimation-type results with respect to the parameterized (p, q)-integral inequalities[J]. AIMS Mathematics, 2020, 5(1): 568-586. doi: 10.3934/math.2020038
[1] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[2] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[3] | Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177 |
[4] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[5] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[6] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
[7] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[8] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[9] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[10] | Kin Keung Lai, Shashi Kant Mishra, Geetanjali Panda, Md Abu Talhamainuddin Ansary, Bhagwat Ram . On q-steepest descent method for unconstrained multiobjective optimization problems. AIMS Mathematics, 2020, 5(6): 5521-5540. doi: 10.3934/math.2020354 |
Throughout this paper, let a<b and p, q be two constants which satisfy 0<q<p≤1.
In 2016, Tunç and Göv defined the (p,q)-derivative and (p,q)-integral as follows.
Definition 1. ([14]) Let f:[a,b]→R be continuous, the (p,q)-derivative of f at x∈[a,b] is defined by the expression
aDp,qf(x)=f(px+(1−p)a)−f(qx+(1−q)a)(p−q)(x−a), x≠a. |
Since f is a continuous mapping, one has aDp,qf(a)=limx→aaDp,qf(x).
Definition 2. ([14]) Let f:[a,b]→R be continuous, the (p,q)-integral on [a,x] is defined as
∫xaf(t)adp,qt=(p−q)(x−a)∞∑n=0qnpn+1f(qnpn+1x+(1−qnpn+1)a) |
for x∈[a,b]. Moreover, if c∈(a,x), then the (p,q)-integral on [c,x] is delineated as
∫xcf(t)adp,qt=∫xaf(t)adp,qt−∫caf(t)adp,qt. |
In Definition 1 and Definition 2, if we take p=1, then we get the definitions of q-derivative and q-integral, respectively.
In 2018, Kunt et al. presented the (p,q)-integrals version of the Hermite–Hadamard's inequality as follows.
Theorem 1 ([4]). Let f:[a,b]→R be convex, continuous and (p,q)-differentiable on [a,b]. Then we have
f(qa+pbp+q)≤1p(b−a)∫pb+(1−p)aaf(x)adp,qx≤qf(a)+pf(b)p+q. |
Clearly, if we put p=1 in Theorem 1, then we obtain the q-integrals version of the Hermite–Hadamard's inequality. For recent results on the q-Hermite–Hadamard's inequality, see [5,7,8,9,17]. Besides this, we also refer to some recent related work with respect to other type quantum integral inequalities, for example, see [3,6,10,12,13,16] and the references therein.
Here, our main purpose is to investigate the parameterized inequalities for (p,q)-integral operators. For this purpose, we will establish a (p,q)-integral identity with parameters. Using this (p,q)-integral identity, we present several (p,q)-integral inequalities for a class of (p,q)-differentiable mappings, which are related to convex mappings. In addition, we obtain some estimation-type results for (p,q)-integral inequalities by considering the boundedness and Lipschitz condition. Some relevant connections of the derived results in this paper with previous ones are also pointed out.
We need the following lemma.
Lemma 1. Let f:[a,b]→R be a continuous and (p,q)-differentiable function on (a,b). If aDp,qf is integrable on [a,b] and λ,μ∈[0,1], then the following identity holds:
Λ(λ,μ;a,b)=(b−a){∫μ0(qt+λμ−λ)aDp,qf(tb+(1−t)a)0dp,qt+∫1μ(qt+λμ−1)aDp,qf(tb+(1−t)a)0dp,qt}, |
where
Λ(λ,μ;a,b):=λ[(1−μ)f(a)+μf(b)]+(1−λ)f(μb+(1−μ)a)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx. |
Proof. By identical transformation, we get
(b−a){∫μ0(qt+λμ−λ)aDp,qf(tb+(1−t)a)0dp,qt+∫1μ(qt+λμ−1)aDp,qf(tb+(1−t)a)0dp,qt}=(b−a){∫10(qt+λμ−1)aDp,qf(tb+(1−t)a)0dp,qt+∫μ0(1−λ)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.1) |
From Definition 1, we get
aDp,qf(tb+(1−t)a)=f(p[tb+(1−t)a]+(1−p)a)−f(q[tb+(1−t)a]+(1−q)a)t(p−q)(b−a)=f(ptb+(1−pt)a)−f(qtb+(1−qt)a)t(p−q)(b−a). |
Utilizing the above calculation and Definition 2, we have
∫10t aDp,qf(tb+(1−t)a)0dp,qt=∫10f(ptb+(1−pt)a)−f(qtb+(1−qt)a)(p−q)(b−a)0dp,qt=1b−a{∞∑n=0qnpn+1f(qnpnb+(1−qnpn)a)−pq∞∑n=0qn+1pn+2f(qn+1pn+1b+(1−qn+1pn+1)a)}=1b−a{1pf(b)+(1−pq)∞∑n=1qnpn+1f(qnpnb+(1−qnpn)a)}=1b−a{1qf(b)−p−qq∞∑n=0qnpn+1f(qnpnb+(1−qnpn)a)}=f(b)q(b−a)−1pq(b−a)2∫pb+(1−p)aaf(x)adp,qx, | (2.2) |
∫10aDp,qf(tb+(1−t)a)0dp,qt=1b−a{∞∑n=0f(qnpnb+(1−qnpn)a)−∞∑n=0f(qn+1pn+1b+(1−qn+1pn+1)a)}=f(b)−f(a)b−a | (2.3) |
and
∫μ0aDp,qf(tb+(1−t)a)0dp,qt=1b−a{∞∑n=0f(qnpnμb+(1−qnpnμ)a)−∞∑n=0f(qn+1pn+1μb+(1−qn+1pn+1μ)a)}=f(μb+(1−μ)a)−f(a)b−a. | (2.4) |
Substituting (2.2), (2.3) and (2.4) into (2.1), we obtain the desired result. This ends the proof.
Remark 1. Consider Lemma 1.
(i) Putting μ=0, we have
f(a)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a)∫10(qt−1)aDp,qf(tb+(1−t)a)0dp,qt. | (2.5) |
(ii) Putting μ=1, we have
f(b)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a)∫10qt aDp,qf(tb+(1−t)a)0dp,qt. | (2.6) |
(iii) Putting μ=pp+q, we have
λqf(a)+pf(b)p+q+(1−λ)f(qa+pbp+q)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a){∫pp+q0(qt−λqp+q)aDp,qf(tb+(1−t)a)0dp,qt+∫1pp+q(qt+pλp+q−1)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.7) |
Remark 2. Consider Lemma 1.
(i) Putting λ=0, we get
f(μb+(1−μ)a)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a){∫μ0qt aDp,qf(tb+(1−t)a)0dp,qt+∫1μ(qt−1)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.8) |
Specially, taking μ=pp+q, we obtain Lemma 3 presented by Kunt et al. in [4].
(ii) Putting λ=13, we get
13[(1−μ)f(a)+μf(b)+2f(μb+(1−μ)a)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a){∫μ0(qt+13μ−13)aDp,qf(tb+(1−t)a)0dp,qt+∫1μ(qt+13μ−1)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.9) |
Specially, taking μ=pp+q, we obtain the Simpson-like integral identity
13[qf(a)+pf(b)p+q+2f(qa+pbp+q)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a){∫pp+q0(qt−q3p+3q)aDp,qf(tb+(1−t)a)0dp,qt+∫1pp+q(qt+p3p+3q−1)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.10) |
(iii) Putting λ=12, we get
12[(1−μ)f(a)+μf(b)+f(μb+(1−μ)a)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a){∫μ0(qt+12μ−12)aDp,qf(tb+(1−t)a)0dp,qt+∫1μ(qt+12μ−1)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.11) |
Specially, taking μ=pp+q, we obtain the averaged midpoint-trapezoid-like integral identity
12[qf(a)+pf(b)p+q+f(qa+pbp+q)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a){∫pp+q0(qt−q2p+2q)aDp,qf(tb+(1−t)a)0dp,qt+∫1pp+q(qt+p2p+2q−1)aDp,qf(tb+(1−t)a)0dp,qt}. | (2.12) |
(iv) Putting λ=1, we get
(1−μ)f(a)+μf(b)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a)∫10(qt+μ−1)aDp,qf(tb+(1−t)a)0dp,qt. | (2.13) |
Specially, taking μ=pp+q, we obtain the trapezoid-like integral identity
qf(a)+pf(b)p+q−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(b−a)∫10(qt+pp+q−1)aDp,qf(tb+(1−t)a)0dp,qt. | (2.14) |
Worth mentioning, to the best of our knowledge the above-obtained (p,q)-integral identities (2.5)-(2.14) are new in the literature.
In 2017, Kunt et al. established the (p,q)-Hermite–Hadamard inequality in the paper [4]. Here we give a new proof, which is more concise.
Theorem 2. Let f:[a,b]→R be convex, continuous and (p,q)-differentiable on (a,b). Then we have
f(qa+pbp+q)≤1p(b−a)∫pb+(1−p)aaf(x)adp,qx≤qf(a)+pf(b)p+q. |
Proof. It is obvious that ∞∑n=0(1−qp)qnpn=1, 0<q<p≤1. Since Jensen's inequality defined on convex sets for infinite sums still remains true, utilizing this fact and Definition 2, we have
f(qa+pbp+q)=f(∞∑n=0(1−qp)qnpn(qnpnb+(1−qnpn)a))≤∞∑n=0(1−qp)qnpnf(qnpnb+(1−qnpn)a)=1p(b−a)∫pb+(1−p)aaf(x)adp,qx. |
Using Definition 2 and the convexity of f, we get
1p(b−a)∫pb+(1−p)aaf(x)adp,qx=∞∑n=0(1−qp)qnpnf(qnpnb+(1−qnpn)a)≤∞∑n=0(1−qp)qnpn(qnpnf(b)+(1−qnpn)f(a))=qf(a)+pf(b)p+q. |
The proof is completed.
Theorem 3. Let f:[a,b]→R be continuous and (p,q)-differentiable on (a,b), and let aDp,qf be integrable on [a,b]. Then the following inequality
|Λ(λ,μ;a,b)|≤(b−a){[Φ1(λ,μ;p,q)+Φ2(λ,μ;p,q)−Φ3(λ,μ;p,q)]|aDp,qf(b)|+[Φ4(λ,μ;p,q)+Φ5(λ,μ;p,q)−Φ6(λ,μ;p,q)−Φ1(λ,μ;p,q)−Φ2(λ,μ;p,q)+Φ3(λ,μ;p,q)]|aDp,qf(a)|} | (3.1) |
holds for all λ,μ∈[0,1] if |aDp,qf| is convex on [a,b], where
Φ1(λ,μ;p,q)=∫μ0t|qt+λμ−λ|0dp,qt={μ2(λ−λμ)p+q−qμ3p2+pq+q2,(λ+q)μ≤λ,2(λ−λμ)3q2(1p+q−1p2+pq+q2)+qμ3p2+pq+q2−μ2(λ−λμ)p+q,(λ+q)μ>λ, | (3.2) |
Φ2(λ,μ;p,q)=∫10t|qt+λμ−1|0dp,qt={1−λμp+q−qp2+pq+q2,λμ+q≤1,2(1−λμ)3q2(1p+q−1p2+pq+q2)+qp2+pq+q2−1−λμp+q,λμ+q>1, | (3.3) |
Φ3(λ,μ;p,q)=∫μ0t|qt+λμ−1|0dp,qt={μ2(1−λμ)p+q−qμ3p2+pq+q2,(λ+q)μ≤1,2(1−λμ)3q2(1p+q−1p2+pq+q2)+qμ3p2+pq+q2−μ2(1−λμ)p+q,(λ+q)μ>1, | (3.4) |
Φ4(λ,μ;p,q)=∫μ0|qt+λμ−λ|0dp,qt={λμ(1−μ)−qμ2p+q,(λ+q)μ≤λ,2(λ−λμ)2q(1−1p+q)+qμ2p+q−λμ(1−μ),(λ+q)μ>λ, | (3.5) |
Φ5(λ,μ;p,q)=∫10|qt+λμ−1|0dp,qt={pp+q−λμ,λμ+q≤1,2(1−λμ)2q(1−1p+q)+λμ−pp+q,λμ+q>1, | (3.6) |
and
Φ6(λ,μ;p,q)=∫μ0|qt+λμ−1|0dp,qt={μ(1−λμ)−qμ2p+q,(λ+q)μ≤1,2(1−λμ)2q(1−1p+q)+qμ2p+q−μ(1−λμ),(λ+q)μ>1. | (3.7) |
Proof. Utilizing Lemma 1 and the convexity of |aDp,qf|, we have
|Λ(λ,μ;a,b)|≤(b−a){∫μ0|qt+λμ−λ||aDp,qf(tb+(1−t)a)|0dp,qt+∫1μ|qt+λμ−1||aDp,qf(tb+(1−t)a)|0dp,qt}≤(b−a){∫μ0|qt+λμ−λ|[t|aDp,qf(b)|+(1−t)|aDp,qf(a)|]0dp,qt+∫1μ|qt+λμ−1|[t|aDp,qf(b)|+(1−t)|aDp,qf(a)|]0dp,qt}=(b−a){[∫μ0t|qt+λμ−λ|0dp,qt+∫10t|qt+λμ−1|0dp,qt−∫μ0t|qt+λμ−1|0dp,qt]|aDp,qf(b)|+[∫μ0|qt+λμ−λ|0dp,qt+∫10|qt+λμ−1|0dp,qt−∫μ0|qt+λμ−1|0dp,qt−∫μ0t|qt+λμ−λ|0dp,qt−∫10t|qt+λμ−1|0dp,qt+∫μ0t|qt+λμ−1|0dp,qt]|aDp,qf(a)|}. |
The proof is completed.
Remark 3. Consider μ=pp+q in Theorem 3.
(i) For λ=0, we obtain the midpoint-like integral inequality presented by Kunt et al. in [4,Theorem 7]. Specially, taking p=1, we get Theorem 13 established by Alp et al. in [2].
(ii) For λ=13, we obtain the Simpson-like integral inequality
|13[qf(a)+pf(b)p+q+2f(qa+pbp+q)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|≤(b−a){[Φ1(13,pp+q;p,q)+Φ2(13,pp+q;p,q)−Φ3(13,pp+q;p,q)]|aDp,qf(b)|+[Φ4(13,pp+q;p,q)+Φ5(13,pp+q;p,q)−Φ6(13,pp+q;p,q)−Φ1(13,pp+q;p,q)−Φ2(13,pp+q;p,q)+Φ3(13,pp+q;p,q)]|aDp,qf(a)|}. |
Specially, taking p=1 and let q→1−, we get Corollary 1 established by Alomari et al. in [1].
(iii) For λ=12, we obtain the averaged midpoint-trapezoid-like integral inequality
|12[qf(a)+pf(b)p+q+f(qa+pbp+q)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|≤(b−a){[Φ1(12,pp+q;p,q)+Φ2(12,pp+q;p,q)−Φ3(12,pp+q;p,q)]|aDp,qf(b)|+[Φ4(12,pp+q;p,q)+Φ5(12,pp+q;p,q)−Φ6(12,pp+q;p,q)−Φ1(12,pp+q;p,q)−Φ2(12,pp+q;p,q)+Φ3(12,pp+q;p,q)]|aDp,qf(a)|}. |
Specially, taking p=1 and let q→1−, we get Corollary 3.4 established by Xi and Qi in [15].
(iv) For λ=1, we obtain the trapezoid-like integral inequality
|qf(a)+pf(b)p+q−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|≤(b−a){Φ2(1,pp+q;p,q)|aDp,qf(b)|+[Φ5(1,pp+q;p,q)−Φ2(1,pp+q;p,q)]|aDp,qf(a)|}. |
Specially, taking p=1, we get Theorem 4.1 given by Sudsutad et al. in [11].
If |aDp,qf|r for r>1 is convex, then we have the following theorem.
Theorem 4. Let f:[a,b]→R be continuous and (p,q)-differentiable on (a,b), and let aDp,qf be integrable on [a,b]. Then the following inequality
|Λ(λ,μ;a,b)|≤(b−a){Φ1−1r5(λ,μ;p,q)[Φ2(λ,μ;p,q)|aDp,qf(b)|r+(Φ5(λ,μ;p,q)−Φ2(λ,μ;p,q))|aDp,qf(a)|r]1r+(1−λ)μ1−1r[μ2p+q|aDp,qf(b)|r+(μ−μ2p+q)|aDp,qf(a)|r]1r} |
holds for all λ,μ∈[0,1] if |aDp,qf|r for r>1 is convex on [a,b], where Φ2(λ,μ;p,q) and Φ5(λ,μ;p,q) are defined by (3.3) and (3.6), respectively.
Proof. Using Lemma 1 and the power mean inequality, we have
|Λ(λ,μ;a,b)|≤(b−a){(∫10|qt+λμ−1|0dp,qt)1−1r×(∫10|qt+λμ−1||aDp,qf(tb+(1−t)a)|r0dp,qt)1r+(1−λ)(∫μ01 0dp,qt)1−1r(∫μ0|aDp,qf(tb+(1−t)a)|r0dp,qt)1r}. | (3.8) |
Utilizing the convexity of |aDp,qf|r, we get
∫10|qt+λμ−1||aDp,qf(tb+(1−t)a)|r0dp,qt≤∫10|qt+λμ−1|[t|aDp,qf(b)|r+(1−t)|aDp,qf(a)|r]0dp,qt=(∫10t|qt+λμ−1|0dp,qt)|aDp,qf(b)|r+(∫10|qt+λμ−1|0dp,qt−∫10t|qt+λμ−1|0dp,qt)|aDp,qf(a)|r | (3.9) |
and
∫μ0|aDp,qf(tb+(1−t)a)|r0dp,qt≤∫μ0[t|aDp,qf(b)|r+(1−t)|aDp,qf(a)|r]0dp,qt=μ2p+q|aDqf(b)|r+(μ−μ2p+q)|aDqf(a)|r. | (3.10) |
Using (3.9) and (3.10) in (3.8), we deduce the desired result. The proof is completed.
A similar result is embodied in the following theorem.
Theorem 5. Let f:[a,b]→R be continuous and (p,q)-differentiable on (a,b), and let aDp,qf be integrable on [a,b]. Then the following inequality
|Λ(λ,μ;a,b)|≤(b−a){Ψ1s(λ,μ;p,q)[1p+q|aDp,qf(b)|r+(1−1p+q)|aDp,qf(a)|r]1r+(1−λ)μ1s[μ2p+q|aDp,qf(b)|r+(μ−μ2p+q)|aDp,qf(a)|r]1r} |
holds for all λ,μ∈[0,1] if |aDp,qf|r for r>1 with r−1+s−1=1 is convex on [a,b],
where
Ψ(λ,μ;p,q)=∫10|qt+λμ−1|s0dp,qt={(p−q)∞∑n=0qnpn+1(1−λμ−qn+1pn+1)s,0≤λμ≤1−q,[(p−q)(1−λμ)s+1∞∑n=0qn−1pn+1(1−qnpn+1)s+(p−q)∞∑n=0qnpn+1(qn+1pn+1−1+λμ)s−(p−q)(1−λμ)s+1∞∑n=0qn−1pn+1(qnpn+1−1)s],1−q<λμ≤1. |
Proof. Using Lemma 1 and the Hölder inequality, one has
|Λ(λ,μ;a,b)|≤(b−a){(∫10|qt+λμ−1|s0dp,qt)1s(∫10|aDp,qf(tb+(1−t)a)|r0dp,qt)1r+(1−λ)(∫μ01s0dp,qt)1s(∫μ0|aDp,qf(tb+(1−t)a)|r0dp,qt)1r}. | (3.11) |
Utilizing the convexity of |aDp,qf|r, one gets
∫10|aDp,qf(tb+(1−t)a)|r0dp,qt≤∫10[t|aDp,qf(b)|r+(1−t)|aDp,qf(a)|r]0dp,qt=1p+q|aDp,qf(b)|r+(1−1p+q)|aDp,qf(a)|r | (3.12) |
and
∫μ0|aDp,qf(tb+(1−t)a)|r0dp,qt≤∫μ0[t|aDp,qf(b)|r+(1−t)|aDp,qf(a)|r]0dp,qt=μ2p+q|aDp,qf(b)|r+(μ−μ2p+q)|aDp,qf(a)|r. | (3.13) |
Using (3.12) and (3.13) in (3.11), one has the desired result. The proof is completed.
Remark 4. For μ=pp+q, if we take λ=0, λ=13, λ=12 and λ=1 in Theorem 4 and Theorem 5, respectively, then we obtain the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint-trapezoid-like integral inequality and the trapezoid-like integral inequality, respectively.
The following result is a lower bound for (p,q)-integral inequality involving product of two convex functions.
Theorem 6. Let f,g:[a,b]→R be continuous and non-negative on [a,b]. If f and g are convex functions on [a,b], then the following inequality holds:
4f(a+b2)g(a+b2)−1b−a∫baf(x)g(x)adp,qx≤(1−1p+q+1p2+pq+q2)[f(a)g(b)+f(b)g(a)]+(2p+q−1p2+pq+q2)f(a)g(a)+(1−1p2+pq+q2)f(b)g(b). |
Proof. Since f and g are convex and non-negative, we have
4f(a+b2)g(a+b2)=4f(tb+(1−t)a2+ta+(1−t)b2)g(tb+(1−t)a2+ta+(1−t)b2)≤[f(tb+(1−t)a)+f(ta+(1−t)b)][g(tb+(1−t)a)+g(ta+(1−t)b)]=f(tb+(1−t)a)g(tb+(1−t)a)+f(tb+(1−t)a)g(ta+(1−t)b)+f(ta+(1−t)b)g(tb+(1−t)a)+f(ta+(1−t)b)g(ta+(1−t)b)≤f(tb+(1−t)a)g(tb+(1−t)a)+[tf(b)+(1−t)f(a)][tg(a)+(1−t)g(b)]+[tf(a)+(1−t)f(b)][tg(b)+(1−t)g(a)]+[tf(a)+(1−t)f(b)][tg(a)+(1−t)g(b)]=f(tb+(1−t)a)g(tb+(1−t)a)+(1−t+t2)[f(a)g(b)+f(b)g(a)]+(2t−t2)f(a)g(a)+(1−t2)f(b)g(b). |
Taking (p,q)-integral for the above inequality about t on (0,1), we get
4f(a+b2)g(a+b2)−1b−a∫baf(x)g(x)adp,qx≤[∫10(1−t+t2)0dp,qt][f(a)g(b)+f(b)g(a)]+[∫10(2t−t2)0dp,qt]f(a)g(a)+[∫10(1−t2)0dp,qt]f(b)g(b).=(1−1p+q+1p2+pq+q2)[f(a)g(b)+f(b)g(a)]+(2p+q−1p2+pq+q2)f(a)g(a)+(1−1p2+pq+q2)f(b)g(b). |
This ends the proof.
Our next result is an upper bound of (p,q)-integral inequality through product of two convex functions.
Theorem 7. Let f,g:[a,b]→R be continuous and non-negative on [a,b]. If f and g are convex functions on [a,b], then the following inequality holds:
1b−a∫baf(x)g(x)adp,qx≤1p2+pq+q2f(b)g(b)+(1−2p+q+1p2+pq+q2)f(a)g(a)+(1p+q−1p2+pq+q2)[f(a)g(b)+f(b)g(a)]. |
Proof. Using the convexity of f and g, for all t∈[0,1], we have
f(tb+(1−t)a)g(tb+(1−t)a)≤[tf(b)+(1−t)f(a)][tg(b)+(1−t)g(a)]=t2f(b)g(b)+(1−t)2f(a)g(a)+t(1−t)[f(a)g(b)+f(b)g(a)]. |
Taking (p,q)-integral for the above inequality about t on (0,1), we obtain
∫10f(tb+(1−t)a)g(tb+(1−t)a)0dp,qt≤1p2+pq+q2f(b)g(b)+(1−2p+q+1p2+pq+q2)f(a)g(a)+(1p+q−1p2+pq+q2)[f(a)g(b)+f(b)g(a)]. | (3.14) |
A simple calculation shows that
∫10f(tb+(1−t)a)g(tb+(1−t)a)0dp,qt=1b−a∫baf(x)g(x)adp,qx. | (3.15) |
Combining (3.14) and (3.15), we deduce the desired result. This ends the proof.
Corollary 1. Putting p=1 in Theorem 7, we get Theorem 4.3 established by Sudsutad et al. in [11].
If aDp,qf is bounded, one gets the following theorem.
Theorem 8. Let f:[a,b]→R be continuous and (p,q)-differentiable on (a,b), and let aDp,qf be integrable on [a,b]. If there exists a constant M such that |aDp,qf(x)|≤M<+∞ for all x∈[a,b], then the following inequality
|Λ(λ,μ;a,b)|≤M(b−a)[Φ4(λ,μ;p,q)+Φ5(λ,μ;p,q)−Φ6(λ,μ;p,q)] | (4.1) |
holds together with λ,μ∈[0,1], where Φ4(λ,μ;p,q), Φ5(λ,μ;p,q) and
Φ6(λ,μ;p,q) are defined by (3.5), (3.6) and (3.7), respectively.
Proof. From Lemma 1, utilizing the property of the modulus, we have
|Λ(λ,μ;a,b)|≤(b−a){∫μ0|qt+λμ−λ||aDp,qf(tb+(1−t)a)|0dp,qt+∫1μ|qt+λμ−1||aDp,qf(tb+(1−t)a)|0dp,qt}≤M(b−a){∫μ0|qt+λμ−λ|0dp,qt+∫10|qt+λμ−1|0dp,qt−∫μ0|qt+λμ−1|0dp,qt}. |
Using (3.5), (3.6) and (3.7) in the above inequality, we deduce the desired result. The proof is completed.
Corollary 2. Consider Theorem 8.
(i) Putting λ=0, we get
|f(μb+(1−μ)a)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|≤M(b−a)[2qμ2+pp+q−μ]. |
(ii) Putting λ=1=p and μ=11+q, we get
|qf(a)+f(b)1+q−1b−a∫baf(x)adqx|≤2q2(b−a)M(1+q)3. |
If aDp,qf satisfies Lipschitz condition, one has the following theorem.
Theorem 9. Let f:[a,b]→R be continuous and (p,q)-differentiable on (a,b), and let aDp,qf be integrable on [a,b]. If aDp,qf satisfies Lipschitz condition for some L>0 on [a,b], then the following inequality
|Λ(λ,μ;a,b)|≤L(b−a)2[Φ1(λ,μ;p,q)−Φ2(λ,μ;p,q)+Φ3(λ,μ;p,q)+Φ5(λ,μ;p,q)−Φ6(λ,μ;p,q)]+(b−a)[Φ4(λ,μ;p,q)|aDp,qf(a)|+(Φ5(λ,μ;p,q)−Φ6(λ,μ;p,q))|aDp,qf(b)|] |
holds together with λ,μ∈[0,1], where Φi(λ,μ;p,q) (i=1,2,⋯,6) are defined by (3.2)-(3.7), respectively.
Proof. From Lemma 1, utilizing the property of the modulus, we have
|Λ(λ,μ;a,b)|≤(b−a){∫μ0|qt+λμ−λ||aDp,qf(tb+(1−t)a)−aDp,qf(a)|0dp,qt+∫1μ|qt+λμ−1||aDp,qf(tb+(1−t)a)−aDp,qf(b)|0dp,qt+|aDp,qf(a)|∫μ0|qt+λμ−λ|0dp,qt+|aDp,qf(b)|∫1μ|qt+λμ−1|0dp,qt}≤(b−a){∫μ0L(b−a)t|qt+λμ−λ|0dp,qt+|aDp,qf(a)|∫μ0|qt+λμ−λ|0dp,qt+∫1μL(b−a)(1−t)|qt+λμ−1|0dp,qt+|aDp,qf(b)|∫1μ|qt+λμ−1|0dp,qt}=L(b−a)2{∫μ0t|qt+λμ−λ|0dp,qt+∫10|qt+λμ−1|0dp,qt−∫μ0|qt+λμ−1|0dp,qt−∫10t|qt+λμ−1|0dp,qt+∫μ0t|qt+λμ−1|0dp,qt}+(b−a){(∫μ0|qt+λμ−λ|0dp,qt)|aDp,qf(a)|+(∫10|qt+λμ−1|0dp,qt−∫μ0|qt+λμ−1|0dp,qt)|aDp,qf(b)|}. |
Using (3.2)-(3.7) in the above inequality, one get the desired result. This ends the proof.
Corollary 3. Consider Theorem 9.
(i) Putting λ=0, we get
|f(μb+(1−μ)a)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|≤L(b−a)2[(1+q)μ2+p−1p+q+qp2+pq+q2−μ]+(b−a)[qμ2p+q|aDp,qf(a)|+(qμ2+pp+q−μ)|aDp,qf(b)|]. |
(ii) Putting λ=1=p and μ=11+q, we get
|qf(a)+f(b)1+q−1b−a∫baf(x)adqx|≤L(b−a)2[q(1+q)2+q2(1+q)3−q1+q+q2]+q2(b−a)(1+q)3[|aDp,qf(a)|+|aDp,qf(b)|]. |
In this section, we give three examples to illustrate our main results.
Example 1. Let f(x)=x2, for x∈[1,3]. Applying Theorem 2 with a=1, b=3, q=12 and p=1, the left-hand side becomes:
f(qa+pbp+q)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx=(12+31+12)2−13−1×(1−12)×(3−1)∞∑n=012n×(12n×3+1−12n)2=499−25042≈−0.5079<0. |
For the right-hand side, one has:
1p(b−a)∫pb+(1−p)aaf(x)adp,qx−qf(a)+pf(b)p+q=(1−12)×(3−1)∞∑n=012n×(12n×3+1−12n)2−12×1+1×321+12=25042−193≈−0.3810<0. |
Example 2. Let f(x)=x3 and g(x)=1x3 on [1,2]. Applying Theorem 7 with a=1, b=2, q=12 and p=1, the left-hand side becomes:
1b−a∫baf(x)g(x)adp,qx=12−1×(1−12)×(2−1)∞∑n=012n=1. |
For the right-hand side, one has:
1p2+pq+q2f(b)g(b)+(1−2p+q+1p2+pq+q2)f(a)g(a)+(1p+q−1p2+pq+q2)[f(a)g(b)+f(b)g(a)]=11+12+14+(1−21+12+11+12+14)+(11+12−11+12+14)[13×123+23×113]≈1.5833. |
It is clear that 1<1.5833, which demonstrates the result described in Theorem 7.
Example 3. Theorem 3, Theorem 4, Theorem 5, Theorem 8 and Theorem 9 provide an upper bound for the approximation of (p,q)-integral ∫pb+(1−p)aaf(x)adp,qx. There exist some (p,q)-integral functions that can not be easy to calculate. Therefore, the above theorems are of importance to deal with such (p,q)-integral mappings. For example, let f(x)=1lnx, for x∈[2,∞), if we take λ=0, μ=12, a=3, b=5, q=15 and p=12, then all assumptions in Theorem 8 are satisfied. The left-hand side term of (4.1) is:
|f(μb+(1−μ)a)−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|=|1ln(3+52)−112×(5−3)×(12−15)×(4−3)∞∑n=02n+15n×1ln(2n+15n(4−3)+3)| | (5.1) |
Clearly, the term ∑∞n=02n+15n×1ln(2n+15n(4−3)+3) can not easy solved directly. However, applying Theorem 8, we obtain an upper bound for (5.1), i.e.
M(b−a)[2qμ2+pp+q−μ]=1ln3×(5−3)×[2×15×122+1212+15−12]≈0.6502. |
We have established a new (p,q)-integral identity with parameters and developed certain (p,q)-integral error estimations of different type inequalities, such as the midpoint-like inequalities, the Simpson-like inequalities, the averaged midpoint-trapezoid-like inequalities and the trapezoid-like inequalities. We also give the upper and lower bounds for (p,q)-integral inequalities via product of two convex functions. It is worthwhile to mention that some inequalities obtained in this article generalize certain results given by Alp, N. et al. (2018), Kunt, M. et al. (2018) and Sudsutad, W. et al. (2015). The (p,q)-integral inequalities deduced in the present research are very general and helpful in error estimations involved in various approximation processes. With these contributions, we hope to motivate the interested reader to explore this fascinating field of quantum integral inequalities based on these techniques and the ideas developed in this paper.
This work was supported by the National Natural Science Foundation of China (No. 61374028).
All authors declare no conflicts of interest in this paper.
[1] | M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, Research Report Collection, 12 (2009), 1-18. |
[2] |
N. Alp, M. Z. Sarikaya, M. Kunt, et al. q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University-Science, 30 (2018), 193-203. doi: 10.1016/j.jksus.2016.09.007
![]() |
[3] | M. U. Awan, G. Cristescu, M. A. Noor, et al. Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions, U.P.B. Sci. Bull., Series A, 79 (2017), 33-44. |
[4] | M. Kunt, İ. İşcan, N. Alp, et al. (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 112 (2018), 969-992. |
[5] | M. Kunt, M. A. Latif and İ. İşcan, Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals, Sigma J. Eng. Nat. Sci., 37 (2019), 207-223. |
[6] |
M. A. Latif, S. S. Dragomir and E. Momoniat, Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, Journal of King Saud UniversityScience, 29 (2017), 263-273. doi: 10.1016/j.jksus.2016.07.001
![]() |
[7] | W. J. Liu and H. F. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501-522. |
[8] | M. A. Noor, K. I. Noor and M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675-679. |
[9] | L. Riahi, M. U. Awan and M. A. Noor, Some complementary q-bounds via different classes of convex functions, U.P.B. Sci. Bull., Series A, 79 (2017), 171-182. |
[10] | W. Sudsutad, S. K. Ntouyas and J. Tariboon, Integral inequalities via fractional quantum calculus, J. Inequal. Appl., 2016 (2016), 81. |
[11] | W. Sudsutad, S. K. Ntouyas and J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781-793. |
[12] | J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. |
[13] | J. Tariboon, S. K. Ntouyas and P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Differ. Equ., 2015 (2015), 18. |
[14] | M. Tunç and E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1-12. |
[15] | B. Y. Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243-257. |
[16] |
W. G. Yang, Some new Fejér type inequalities via quantum calculus on finite intervals, ScienceAsia, 43 (2017), 123-134. doi: 10.2306/scienceasia1513-1874.2017.43.123
![]() |
[17] | Y. Zhang, T. S. Du, H. Wang, et al. Different types of quantum integral inequalities via (α, m)- convexity, J. Inequal. Appl., 2018 (2018), 264. |
1. | Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right $(p,q)$-derivatives and definite integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03094-x | |
2. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, On post quantum estimates of upper bounds involving twice $(p,q)$-differentiable preinvex function, 2020, 2020, 1029-242X, 10.1186/s13660-020-02496-5 | |
3. | Samet Erden, Sabah Iftikhar, Mohsen Rostamian Delavar, Poom Kumam, Phatiphat Thounthong, Wiyada Kumam, On generalizations of some inequalities for convex functions via quantum integrals, 2020, 114, 1578-7303, 10.1007/s13398-020-00841-3 | |
4. | Humaira Kalsoom, Miguel Vivas-Cortez, Muhammad Zainul Abidin, Muhammad Marwan, Zareen A. Khan, Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications, 2022, 14, 2073-8994, 1449, 10.3390/sym14071449 |