Research article

Closure properties for second-order λ-Hadamard product of a class of meromorphic Janowski function

  • Received: 27 January 2023 Revised: 23 February 2023 Accepted: 02 March 2023 Published: 21 March 2023
  • MSC : 30C45, 30C65

  • In this paper, we define second-order λ-Hadamard product of a class of meromorphic Janowski function and study the closure properties of the above product.

    Citation: Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang. Closure properties for second-order λ-Hadamard product of a class of meromorphic Janowski function[J]. AIMS Mathematics, 2023, 8(5): 12133-12142. doi: 10.3934/math.2023611

    Related Papers:

    [1] Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties of generalized $\lambda$-Hadamard product for a class of meromorphic Janowski functions. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102
    [2] Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320
    [3] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [4] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [5] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by $ q $-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [6] Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267
    [7] Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman . Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Mathematics, 2023, 8(3): 6777-6803. doi: 10.3934/math.2023345
    [8] Xiaojing Du, Xiaotong Liang, Yonghong Xie . Integral expressions of solutions to higher order $ \lambda $-weighted Dirac equations valued in the parameter dependent Clifford algebra. AIMS Mathematics, 2025, 10(1): 1043-1060. doi: 10.3934/math.2025050
    [9] Muhammad Ghaffar Khan, Bakhtiar Ahmad, Thabet Abdeljawad . Applications of a differential operator to a class of harmonic mappings defined by Mittag-leffer functions. AIMS Mathematics, 2020, 5(6): 6782-6799. doi: 10.3934/math.2020436
    [10] Ahmad Al-Omari, Mesfer H. Alqahtani . Some operators in soft primal spaces. AIMS Mathematics, 2024, 9(5): 10756-10774. doi: 10.3934/math.2024525
  • In this paper, we define second-order λ-Hadamard product of a class of meromorphic Janowski function and study the closure properties of the above product.



    Let Σ(c,n)(c>0,n2,nN) denote the class of meromorphic functions f which are analytic in the punctured open unit disk ˆU=U{0}={zC:0<|z|<1} and has the Taylor series expansion of form

    f(z)=cz+k=nakzk. (1.1)

    We define the following class ΣSn(c,β) of the generalized meromorphically starlike of order β [1,2],

    ΣSn(c,β)={f(z)Σ(c,n):Rezf(z)f(z)>β,β[0,1)}.

    Let f(z) and g(z) be members of analytic function in U, f(z) is said to be subordinate to g(z), if there exists a Schwarz function ω(z), analytic in U with

    ω(0)=0and|ω|<1,

    such that

    f(z)=g(ω(z))(zU).

    In such a case, we write f(z)g(z). Furthermore if the function g(z) is univalent in U, then we have [3,4],

    f(z)g(z)f(0)=g(0)andf(U)g(U).

    In this paper, we study a class of meromorphic Janowski functions as follows. [5,6]

    Definition 1.1. A function f(z)Σ(c,n) belongs to the class ΣSn(c,a,b), if and only if

    zf(z)f(z)1+az1+bz(zˆU).

    It is quite clear that

    ΣSn(c,a,b)ΣSn(c,1a1b)(1b<a1).

    Using the subordination relationship, f(z)ΣSn(c,a,b), if satisfies the following condition

    zf(z)f(z)=1+aw(z)1+bw(z)(zˆU),

    where ω(z) is analytic in U with |ω(z)|<1 and ω(0)=0.

    The above equation can also be equivalent to

    |f(z)+zf(z)af(z)+bzf(z)|<1,(zˆU).

    Let T(c,n) be a subclass of Σ(c,n), and fT(c,n) is defined as

    f(z)=czk=n|ak|zk. (1.2)

    In particular, taking

    ¯ΣSn(c,a,b)=T(c,n)ΣSn(c,a,b).

    Next, we will introduce the second-order generalized λ-Hadamard product of the class T(c,n).

    Definition 1.2. Let fi(z)=czk=n|ak,i|zkT(c,n)(i=1,2). The second-order generalized λ-Hadamard product (f1˜f2)λ(u,v,c;z) of the function f1 and f2 is defined by

    (f1˜f2)λ(u,v,c;z)=(1λ)z(f1f2)(u,v,c;z)λz(z(f1f2))(u,v,c;z)+2c2z, (1.3)

    where

    (f1f2)(u,v,c;z)=c2zk=n|ak,1|u|ak,2|vzk. (1.4)

    We can obtain, from (1.3) and (1.4), that

    (f1˜f2)λ(u,v,c;z)=c2zk=n[kk(k+1)λ]|ak,1|u|ak,2|vzk.

    In particular, if u=v=1, then (f1˜f2)λ(1,1,c;z)=(f1¯f2)λ(z) is the second-order λ-Hadamard product as follows:

    (f1¯f2)λ(z)=(1λ)z(f1f2)(1,1,c;z)λz(z(f1f2))(1,1,c;z)+2c2z=c2zk=n[kk(k+1)λ]|ak,1||ak,2|zk. (1.5)

    Note. By choosing different parameters c,λ,u and v, we can get special convolutions as below:

    (1) For λ=0,c=1, (f1f2)0(u,v,1;z)=(f1f2)(u,v;z) is the product defined in [7,8].

    (2) For λ=0,u=v=1,c=1, (f1˜f2)0(1,1,1;z)=(f1f2)(z) is the famous Hadamard product defined in [1].

    For the sake of simplicity, the parameters for the rest of the article are specified below

    c>0,nN,n2,aR,|a|1,bR,|b|1,ab.

    At the same time, let

    ¯ΣSn(c,a,b)=T(c,n)ΣSn(c,a,b).

    In 1996, Choi et al. [7] studied the generalized λ-Hadamard product of univalent functions. In 2021, the authors [3] discuss the closure properties of the first-order λ-Hadamard product of the class ¯ΣSn(c,a,b).

    In this paper, we will continue to discuss the closed problems of second-order generalized λ-Hadamard product of the class ΣSn(c,a,b) and obtain some new results.

    Lemma 2.1. [3] If fΣ(c,k) satisfies

    k=n[(k+1)+|a+kb|]|ak|c|ab|1, (2.1)

    then f(z)ΣSn(c,a,b).

    Lemma 2.2. [3] Let the function fT(c,k), then f¯ΣSn(c,a,b) if and only if

    {k=n[k+1+(a+kb)]|ak|c(ab)1,0b<a1,k=n[k+1(a+kb)]|ak|c(ba)1,1a<b0. (2.2)

    First, we investigate the closure properties of the second-order λ-Hadamard product (f1¯f2)λ(z).

    Theorem 3.1. If fi(z)=czk=n|ak,i|zk¯ΣSn(c,a,b)(i=1,2) satisfy one of the following conditions:

    (1) 0b<a1,0<λ<1n+1,

    (2) 1a<b0,0<λ<1n+1,

    then the second-order λ-Hadamard product 1c(f1¯f2)λ(z)¯ΣSn(c,a,b).

    Proof. Let f1,f2¯ΣSn(c,a,b), which are given by (1.2).

    (1) For 0b<a1, we can get from (2.2),

    k=n(k+1+(a+kb))|ak,1|c(ab)1 (3.1)

    and

    k=n(k+1+(a+kb))|ak,2|c(ab)1. (3.2)

    Since

    1c(f1¯f2)λ(z)=1c[(1λ)z(f1f2)(1,1,c;z)λz(z(f1f2))(1,1,c;z)+2c2z]=czk=n1c(kk(k+1)λ|ak,1||ak,2|zk,

    then, to obtain 1c(f1¯f2)¯ΣSn(c,a,b), we only need to verify the following condition is established.

    k=n[(kk(k+1)]λ)(k+1+(a+kb))|ak,1||ak,2|c2(ab)1. (3.3)

    Using Cauchy-Schwarz inequality, it can be obtained from Eqs (3.1) and (3.2) that

    k=n(k+1+(a+kb))|ak,1||ak,2|c(ab)1. (3.4)

    From (3.3) and (3.4), we just need to prove

    |ak,1||ak,2|c(kk(k+1)λ).

    Since

    |ak,1||ak,2|c(ab)k+1+(a+kb).

    Thus, we just have to show

    abk+1+(a+kb)(kk(k+1)λ),nk. (3.5)

    For λ<1n+1, (3.5) can be simplified to λ>k(ab)[k+1+(a+kb)](ab)k(k+1).

    Therefore, we conclude that if

    1n+1>λ>max{k(ab)[k+1+(a+kb)](ab)k(k+1),0}=0,

    then 1c(f1¯f2)λ(z)¯ΣSn(c,a,b).

    (2) For 1a<b0. We can using the same method above, obtain that if

    1n+1>λ>max{k(ba)(k+1akb)(ba)k(k+1),0}=0,

    then 1c(f1¯f2)λ(z)¯ΣSn(c,a,b). This completes the proof of Theorem 3.1.

    Corollary 3.1. Let u>1,fi(z)¯ΣSn(c,1,0)(i=1,2). If 0<λ<1n+1, then

    (f1˜f2)λ(1,1,c;z)¯ΣSn(c,1,0).

    Next, we consider the closure properties of the second-order generalized λ-Hadamard product.

    Theorem 3.2. Let u>1,fi(z)=czk=n|ak|zk¯ΣSn(c,a,b)(i=1,2). If one of the following conditions,

    (i) 0ˆb<b<a1,2n+1(n+1)(3n+1)<λ<min(c(1+b)+2n(ab)(3n2+2n)(ab),1n+1), and 0ˆb<min(1,a(ab)[n+1+(a+nb)]n[1(n+1)λ]c[n+1+(a+nb)]+(ab)n2[1(n+1)λ]);

    (ii) 1a<b<ˆb0,and0<λ<2n+1(n+1)(3n+1), holds true, then 1c(f1˜f2)λ(1u,u1u,c,z)¯ΣSn(c,a,ˆb).

    Proof. Let fi(z)¯ΣSn(c,a,b)(i=1,2).

    (1) Let 0b<a1, using (2.2), we have

    k=nk+1+(a+kb)c(ab)|ak,i|(i=1,2).

    So we get

    {k=nk+1+(a+kb)c(ab)|ak,1|}1u1, (3.6)

    and

    {k=nk+1+(a+kb)c(ab)|ak,2|}u1u1. (3.7)

    Since

    (f1˜f2)λ(u,v,c;z)=c2zk=n[kk(k+1)λ]|ak,1|u|ak,2|vzk,

    then, to get 1c(f1˜f2)(1u,u1u,c;z)¯ΣSn(c,a,ˆb), we just only need to verify that the following condition:

    k=n[k+1+(a+kˆb)][(kk(k+1)λ]c2(aˆb)|an,1|1u|ak,2|u1u1 (3.8)

    holds true.

    Applying the Hölder inequality, from (3.6) and (3.7), we get

    k=nk+1+(a+kb)c(ab)|ak,1|1u|ak,2|u1u1.

    In order to obtain inequality (3.8), we only need to prove

    [kk(k+1)λ][k+1+(a+kˆb)]c2(aˆb)k+1+(a+kb)c(ab), (3.9)

    that is,

    ˆb[c[k+1+(a+kb)]ab+[k2k2(k+1)]λ)ca[k+1+(a+kb)]ab(a+k+1)[kk(k+1)λ].

    Let

    P1(k)=c[k+1+(a+kb)]ab+[k2k2(k1)λ]

    and

    Q1(k)=ca[k+1+(a+kb)]ab(a+k+1)[(kk(k+1)λ].

    After simplification, we can get

    Q1(k)P1(k)=a[k+1+(a+kb)](ab)(kk(k+1)λ)c[k+1+(a+kb)]+(ab)[k2k2(k+1)λ].

    Suppose

    ¯P1(k)=[k+1+(a+kb)](ab)(kk(k+1)λ)

    and

    ¯Q1(k)=c[k+1+(a+kb)]+(ab)[k2k2(k+1)λ].

    To prove Theorem 3.2, we divide the procedure into two cases.

    (a) Because P1(k) is increasing with respect to k and P1(n)=c[n+1+(a+nb)]ab+n2[1(n+1)λ]>0, P1(k)>0 is true for kn. In order to prove (3.9), we only need to show the following inequality

    ˆbQ1(k)P1(k)=a(ab)[k+1+(a+kb)](kk(k+1)λ)c[k+1+(a+kb)]+(ab)[k2k2(k+1)λ]. (3.10)

    It is easily to verify (3.10) holds true if λ<(ab)n2+a[n+1+(a+nb)](ab)(n+1)n2.

    It is clear that ¯P1(k) is monotonically increasing, so we get λ<c(1+b)+2k(ab)(3k2+2k)(ab).

    Since ¯Q1(k) is monotonically decreasing with respect to k if λ>2k+1(k+1)(3k+1), then

    ˆb¯P1(k)¯Q1(k)=a(nn(n+1))λ(ab)(n+1+(a+nb))c(n+1+(a+nb))+(ab)(n2n2(n+1)λ),

    and ¯Q1(k) is increasing with respect to k if λ<2k+1(k+1)(3k+1), then

    ˆblimk+¯P(k)¯Q(k)=1.

    Because of ˆb0, this case is removed.

    (b) Because P1(k) is decreasing with respect to k and P1(n)=c[n+1+(a+nb)]ab+n2[1(n+1)λ]<0, P1(k)<0 is true for kn. (3.9) holds true if

    ˆbQ1(k)P1(k)=a[k+1+(a+kb)](ab)(kk(k+1)λ)c[k+1+(a+kb)]+(ab)[k2k2(k+1)λ]. (3.11)

    Clearly, (3.11) holds true if λ>(ab)n2+c[k+1+(a+kb)](ab)(k+1)k2. Since λ<1k+1, there is no solution for λ.

    Since P1(k) and ¯P1(k) are decreasing functions, we have λ>c(1+b)+2k(ab)(3k2+2k)(ab). ¯Q1(k) is monotonically decreasing with respect to k if λ>2k+1(k+1)(3k+1), we have

    ˆb¯Q1(k)¯P1(k)=a(ab)λ(n+1+(a+nb))(nn(n+1))c(n+1+(a+nb))+(ab)n2(1n+1)λ).

    And ¯Q1(k) is increasing if λ<2k+1(k+1)(3k+1). On the other hand, because λ>c(1+b)+2k(ab)(3k2+2k)(ab), there is no solution for λ.

    If the condition (ⅰ) is satisfied, then (3.9) is true. Therefore, 1c(f1˜f2)λ(1u,u1u,c,z)¯ΣSn(c,a,ˆb).

    (2) For 1a<b0, the proof is similar to (1), so we can obtain

    ˆb[c[k+1(a+kb)]ba+(k2k2(k+1)λ)]ca[k+1(a+kb)]ba+(a+k+1)[kk(k+1)λ]. (3.12)

    Let

    P2(k)=c[k+1(a+kb)]ba+[k2k2(k1)λ]

    and

    Q2(k)=ca[k+1(a+kb)]ba+(a+k+1)[kk(k+1)λ].

    After simple calculation, we can obtain

    Q2(k)P2(k)=a+(k+1(a+kb))(ba)k(1(k+1)λ)c[k+1(a+kb)]+(ba)k2[1(k+1)λ].

    Assume

    ¯P2(k)=(k+1(a+kb))(ba)(kk(k+1)λ)

    and

    ¯Q2(k)=c[k+1(a+kb)]+(ba)[k2k2(k+1)λ].

    We divide the discussion into two cases as follows:

    (c) Because P2(k) is increasing with respect to k and P2(n)=c[n+1+(a+nb)]ba+n2[1(n+1)λ]>0, P2(k)>0 is true for kn. In order to prove (3.12), we only need the following inequality to be true

    ˆbQ2(k)P2(k)=a+(k+1(a+kb))(ba)(kk(k+1)λ)c[k+1(a+kb)]+(ba)[k2k2(k+1)λ]. (3.13)

    It is not hard to verify (3.13) holds true if λ<(ba)n2+c(n+1(a+nb))(ba)(n+1)n2.

    On the other hand, ¯P2(k) is increasing with respect to k, we can get λ<c(1b)+2k(ba)(3k2+2k)(ba).

    It is clear that ¯Q2(k) is decreasing if λ>2k+1(k+1)(3k+1), then

    ˆb¯P2(k)¯Q2(k)=a+(nn(n+1))λ(ba)(n+1(a+nb))c(n+1(a+nb))+n2(ba)(1(n+1)λ),

    and ¯Q2(k) is increasing with respect to k if λ<2k+1(k+1)(3k+1), then

    ˆba+limk+¯P2(k)¯Q2(k)=1.

    (d) Because P2(k) is decreasing with respect to k andP2(n)=n2[1(n+1)λ]+c[n+1(a+nb)]ba<0, P2(k)<0 is true for kn. In order to prove (3.12), we only need the following inequality to be true

    ˆbQ2(k)P2(k)=a+(k+1(a+kb))(ba)(kk(k+1)λ)c[k+1(a+kb)]+[k2k2(k+1)λ](ba). (3.14)

    It is not hard to verify (3.14) holds true if λ>(ba)n2+c(n+1(a+nb))(ba)(n+1)n2.

    Also, ¯P2(k) is decreasing with respect to k, we can obtain λ>c(1b)+2k(ba)(3k2+2k)(ba). So, there is no solution for λ.

    If the condition (ⅱ) is satisfied, then (3.12) is true. Therefore, 1c(f1˜f2)λ(1u,u1u,c,z)¯ΣSn(c,a,ˆb).

    When b=12 and a=1 in Theorem 3.2, we have the following corollary.

    Corollary 3.2. Let u>1,fi(z)=czk=n|ak,i|zk(i=1,2)¯ΣSn(c,1,12). If

    2n+1(n+1)(3n+1)<λ<min(3c+2n3n2+2n,1n+1)and1[nn(n+1)λ](3n+4)c(6n+8)+2[n2n2(n+1)λ]>ˆb0,

    then 1c(f1˜f2)λ(1u,u1u,c,z)¯ΣSn(c,1,12).

    By putting b=12 and a=1 in Theorem 3.2, we have

    Corollary 3.3. Let u>1,fi(z)=czk=n|ck,i|zk(i=1,2)¯ΣSn(c,1,12).

    If 12<ˆb0,0<λ<2n+1(n+1)(3n+1), then 1c(f1˜f2)λ(1u,u1u,c,z)¯ΣSn(c,1,12).

    In this paper, we prove the closure properties of the second-order λ-Hadamard product and the second-order generalized λ-Hadamard product of the class ¯ΣSn(c,a,b). The results presented in this paper would find further applications for the λ-Hadamard product of the class of meromorphic Janowski function, which can enrich the research field of Hadamard procduct.

    Supported by the Natural Science Foundation of the People's Republic of China under Grant 11561001, the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grants 2022MS01004, 2019MS01023 and 2020MS01011, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the Higher School Foundation of Inner Mongolia of the People's Republic of China under Grant NJZY22168, the Program for Key Laboratory Construction of Chifeng University (no. CFXYZD202004) and the Research and Innovation Team of Complex Analysis and Nonlinear Dynamic Systems of Chifeng University (no. cfxykycxtd202005).

    The authors declare no conflict of interest.



    [1] R. M. El-Ashwah, M. K. Aouf, Hadamard product of certain meromorphic starlike and convex function, Comput. Math. Appl., 57 (2009), 1102–1106. https://doi.org/10.1016/j.camwa.2008.07.044 doi: 10.1016/j.camwa.2008.07.044
    [2] H. Tang, S.-H. Li, L. -N. Ma, H. -Y. Zhang, Quasi-Hadamard product of meromorphic starlike functions and convex functions of reciprocal order, J. Math. Pract. Theory, 46 (2016), 261–266.
    [3] T. He, S. -H. Li, L. -N. Ma, H. Tang, Closure properties of generalized λ-Hadamard procduct for a class of meromorphic Janowski functions, AIMS Mathematics, 6 (2021), 1715–1726. https://doi.org/10.3934/math.2021102 doi: 10.3934/math.2021102
    [4] P. L. Duren, Univalent functions, In: Grundlehren der Mathematischen Wissenschaften, New York: Springer, 1983.
    [5] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/AP-28-3-297-326 doi: 10.4064/AP-28-3-297-326
    [6] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 88.
    [7] J. H. Choi, Y. C. Kim, S. Owa, Generalizations of Hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495–501. https://doi.org/10.1006/jmaa.1996.0157 doi: 10.1006/jmaa.1996.0157
    [8] H. Tang, G. -T. Deng, S. -H. Li, Quasi-Hadamard product of meromorphic univalent functions at infinity, J. Math., 34 (2014), 51–57.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1300) PDF downloads(35) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog