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1. Introduction

Let Z(c,n)(c > 0,n > 2,n € N) denote the class of meromorphic functions f which are analytic in
the punctured open unit disk U=U \{0} = {z € C: 0 < |z] < 1} and has the Taylor series expansion of
form

@)= §+;akz"- (1.1)

We define the following class XS (c, 8) of the generalized meromorphically starlike of order g8 [1,2],
2f'(z)
f@)

Let f(z) and g(z) be members of analytic function in U, f(z) is said to be subordinate to g(z), if
there exists a Schwarz function w(z), analytic in U with

£57(c, B) = {f(z) e S(c,n): -ReLE S g gero, 1)}.

w(0) =0 and |w| < 1,

such that
f(@) = g(w(2))(z € V).
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In such a case, we write f(z) < g(z). Furthermore if the function g(z) is univalent in U, then we
have [3.,4],

f(@) < g(z) &= f(0) = g(0) and f(U) C g(U).
In this paper, we study a class of meromorphic Janowski functions as follows. [5,6]

Definition 1.1. A function f(z) € Z(c,n) belongs to the class XS (c, a, b), if and only if

_zf’(z) 1+az

15 < T+ be (zeU).

It is quite clear that
. ., l—a
xS (c,a,b) C ZS,(c, m) (-1<b<a<).

Using the subordination relationship, f(z) € £S5 (c, a, b), if satisfies the following condition

'@ _ T+aw@@)

@ - Tvbwe W

where w(z) is analytic in U with |w(z)| < 1 and w(0) = 0.
The above equation can also be equivalent to

f@+z2f(2)
af(z) + bzf'(2)

Let T'(c,n) be a subclass of X(c,n), and f € T(c,n) is defined as

<1, (ze.

f@) = g - ; lagl2". (1.2)

In particular, taking
25 (ca,b) = T(c,n) NS (c,a, b).

Next, we will introduce the second-order generalized A-Hadamard product of the class T (c, n).

Definition 1.2. Let fi(z) = ‘zj — Y law.i|lz* € T(c,n) (i = 1,2). The second-order generalized A-
Hadamard product (fiAf>)(u, v, c;2) of the function f and f is defined by

2

— 2
(fiaf)au,v,c;2) = (1 = Dz(finfo) (u, v, ¢;2) = 2z2(z(fi & 2)) (w, v, ¢52) + % (1.3)

where

[Se]

2
c

(finf)u,v,c;2) = — — E lag1 [“laxal 2~ (1.4)
2 k=n
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We can obtain, from (1.3) and (1.4), that

2 (o)
— C
hBfaw v, e52) = — = > Tk = k(k+ DAl 'lacal'2"

k=n

In particular, if u = v = 1, then (fiAf)(1,1,¢;2) = (fi*f).(z) is the second-order A-Hadamard
product as follows:

2 2
(fixfa@) = (A = Dz(finf) (A, 1,¢;2) = Azz(fi & )) (A, 1,¢52) + %
2 o)
= —CZ - Z[k — k(k + D A|agllag.lz". s
k=n

Note. By choosing different parameters c, 4, u and v, we can get special convolutions as below:

(1) For =0, c=1, (fiaf)o(u,v,1;2) = (fiafa)(u,v;z) is the product defined in [7,8].
2 Ford =0, u=v=1c=1,(firfh)(1,1,1;2) = (fi*f£)(2) is the famous Hadamard product
defined in [1].

For the sake of simplicity, the parameters for the rest of the article are specified below
c>0neNn>2,aeR,|a <1,beR,|b<1,a+b.

At the same time, let
IS (c,a,b) = T(c,n) NS (c, a,b).

In 1996, Choi et al. [7] studied the generalized A-Hadamard product of univalent functions.
In 2021, the authors [3] discuss the closure properties of the first-order A-Hadamard product of the
class ﬁ:(c, a,b).

In this paper, we will continue to discuss the closed problems of second-order generalized A-
Hadamard product of the class XS (c, a, b) and obtain some new results.

2. Perliminaries

Lemma 2.1. [3]If f € X(c, k) satisfies

[(k+ 1)+ |a+ kb|]lal <1, 2.1)
- cla - b|

then f(z) € S (c,a,b).
Lemma 2.2. [3] Let the function f € T(c,k), then f € ﬁz(c, a, b) if and only if

o [elradbllad <1 0<p<a<l
{Zk:n b - - - (22)

c(a-b)
oo [k+1—(a+kb)]|ak|
Zkznwﬁ 1, -1<a<bx0.
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3. Main results

First, we investigate the closure properties of the second-order A-Hadamard product (fi*f>).(2).
Theorem 3.1. If fi(z) = % — Yren |ak,l~|zk € ﬁ:(c, a,b) (i = 1,2) satisfy one of the following conditions:
(1)0<b<a<l,0<a<-L

n+1’

(2) -1<a<b<0,0<A<-]

n+1’

then the second-order A-Hadamard product %( fixfr)a(2) € ﬁ:(c, a,b).

Proof. Let fi, f € 25 ,(c, a, b), which are given by (1.2).
(1) For 0 < b < a <1, we can get from (2.2),

o (k+ 1+ (a+ kb))lay,| <

2. ca-b <1 (3.1)
and
Since

2

1 1 2
E(flgf‘Z)/l(Z) = [(1 - Dz(finf) (A, 1,¢;2) — Az2(z(fi &2 )Y (1, 1,¢32) + %
=1
= = k- Ktk + Dlagllaal2
< k=n ¢

then, to obtain %( fixfo) € ﬁ:(c, a, b), we only need to verify the following condition is established.

i [(k — k(k + D]D(k + 1 + (a + kD))lay1|lax 2 <1
c2(a—-Db) -

(3.3)

k=n

Using Cauchy-Schwarz inequality, it can be obtained from Eqs (3.1) and (3.2) that

i (k+ 1+ (a+ kb)) y/lay.1llaxz] <1 (3.4)

cla—-b)

k=n

From (3.3) and (3.4), we just need to prove

C
< —
laxllaxa| < (k — k(k + D)

Since
cla—b)

< .
k+ 1+ (a+kb)

|Clk,1||ak,2|
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Thus, we just have to show

k+ 1+ (a+kb)

-b< n> 3.5
(k—k(k+ DA’ (3-5)
For A < -+, (3.5) can be simplified to A > k(“_l(’;:gf)z(lki(f; )]
Therefore, we conclude that if
k(a—b)—k+ 1+ (a+kb)] }
A ,0p =0,
el >max{ (@—Dk(k+ 1)
then L(fi%f2)a(z) € TS ,(c, a, b).
(2) For —1 < a < b < 0. We can using the same method above, obtain that if
kb—a)—(k+1—a-kb) }
> 1> ,0p =0,
nt max{ b —aktk+ 1)
then %( fix/)a(2) € ﬁ:(c, a, b). This completes the proof of Theorem 3.1. O

Corollary 3.1. Letu > 1, fi(z) € 28 (¢, —1,0) (i = 1,2). If 0 < 1 < - then

+1 ’
(finf)a(1,1,¢:2) € ﬁ:(c, -1,0).
Next, we consider the closure properties of the second-order generalized A-Hadamard product.

Theorem 3.2. Let u > 1, fiz) = £ - Yo laldt € ﬁ;(c, a,b) (i = 1,2). If one of the following
conditions,

. ~ 2n+1 . cc(1+b)+2n(a—b) _
(i)0 <b<b<a<l, Do < A< mln(—(3n2+2n)(a b)’n+l) and 0 < b < min(1,a

(a—D)[n+1+(a+nb)In[1-(n+1)1] ) .
c[n+1+(a+nb))+(a—b)n*[1-(n+1)A] 7’

(i) ~1 <a<b<bh<0,and 0 <1< -2 holds true, then (flAfz),l(l ut z)eﬁ,j(c,a,l}).

(+1)Bn+1)’ ML

Proof. Let fi(z) € S (c,a,b)(i = 1,2).
(1)Let0 < b <a < 1,using (2.2), we have

S k+1 kb
S @< (=12,
= cla—-b)
So we get
S k+1+(a+kb v
yEE @Bl <1, (3.6)
- c(a—b)
and
o k+1+(a+kb v
Z ( )|ak,2| <. (3.7)
= c(a—Db)
Since
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2 (o8]
—_ C
(hE (v, 6:2) = — = 3 Tk = k(k + DAllaglagal 2
k=n

then, to get %( fir fz)(%, % c;7) € ﬁ;(c, a,/l;), we just only need to verify that the following condition:

S\ [k + 1+ (a+ kb)][(k — k(k + 1)A]

= |an,1|%|ak,2|ul;‘l <1 (3.8)
k=n Cz(a - b)

holds true.
Applying the Holder inequality, from (3.6) and (3.7), we get

o0

Zk+1+(a+kb)
cla—->b)

u=1

1
lag il lagal = < 1.

k=n

In order to obtain inequality (3.8), we only need to prove

[k—k(k+1)ﬂ][k+1+(a+k?5)] < k+1+(a+kb)

i < , 3.9
c2(a—b) cla—>b) (39)
that 1s,
kLT @ RDT o g2y ) < ORI @HRDT s Dk = ke + DAL
a—>b a—->b
Let
Pyk) = clk+ 1+ (a+kb)] IR — K- D]
a—>b
and
01(k) = Sk Zt(b“ ROVt ket DI kG + DAL

After simplification, we can get

Oy _  [k+1+(a+kb)la—-b)k—kk+ 1))
Pik) ¢ clk+ 1+ (a+kb)] + (a—b)[k* — K2k + 1)A]

Suppose
Pi(k) =lk+ 1+ (a+kb)|(a—b)k—k(k+ 1))
and
0,(k) = cl[k + 1+ (a + kb)] + (a — b)[K* — K*(k + 1)A].
To prove Theorem 3.2, we divide the procedure into two cases.

(a) Because P;(k) is increasing with respect to k and P(n) = W +n’[1 -+ 1] > 0,

P(k) > 0 1is true for k > n. In order to prove (3.9), we only need to show the following inequality
7 0, (k) 4 (a—D)k+ 1+ (a+kb)l(k—k(k+ 1)) ‘ (3.10)
P (k) clk + 1+ (a+kb)] + (a—b)[k> — kK*(k + 1)A]
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(a-b)n*+a[n+1+(a+nb)]
(a=b)(n+1)n?

It is clear that P;(k) is monotonically increasing, so we get A <

It is easily to verify (3.10) holds true if A <

c(1+b)+2k(a—b)
(Bk2+2k)(a—b) *

Since Q (k) is monotonically decreasing with respect to k if 1 > g, then

s PR (n-n0+ DAUa-b)n+ 1 +(a+nb)
RGE Tt L+ @+ nb) +(a— bk —n2(n+ DAY’

and Q, (k) is increasing with respect to k if A < %, then

b < lim @ = —1.

=t k)

Because of b > 0, this case is removed.
(b) Because P;(k) is decreasing with respect to k and P,(n) = W +n’[1=(m+ D] <0,
P(k) < 01is true for k > n. (3.9) holds true if

s 0,(k) [k +1+ (a+kb)l(a—-b)k—k(k+1)1) G.11)
=a- . )
~ Pi(k) clk+ 1+ (a+kb)]+ (a—b)[k?—-k*(k+ 1)A]
Clearly, (3.11) holds true if 1 > “=~ )?:_*Z)[(kktrl&i‘z”kb)]. Since A < k]r—l, there is no solution for A.
Since P;(k) and P;(k) are decreasing functions, we have 4 > dlsbiidkah) "5 (k) is monotonically
(3k2+2Kk)(a—b)
decreasing with respect to k if 4 > % we have
7> 0:(k) (a-b)An+1+(a+nb)(n—nn+1))
> =a- .
P, (k) cn+1+@+nb)+(a-bn*(l-—n+ 1))
And Q(k) is increasing if 1 < (k+f;<(—;ll<+1) On the other hand, because 4 > %, there is no

solution for A.
If the condition (i) is satisfied, then (3.9) is true. Therefore, 1(fiAf>) ﬂ(i’ “le, z) € =S (c,a,b).

(2) For —1 < a < b <0, the proof is similar to (1), so we can obtain

Z[C[k +1—(a+kb)] + (K = Kk + D]

b—a
< ca[k+1b—_(:+kb)] +(—a+k+ D[k = k(k + DA]. (3.12)
Let
Py = PELZC@H IO o e -
b-a
and

calk + 1 — (a + kb)]

(k) = —

+(—a+k+ D[k —-k(k+1)A].
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After simple calculation, we can obtain

Qs (k) (k+1—=(a+kb)b—-a)k(l—-(k+1)1)
Py (k) —ar clk+1=(a+kb)]+(b-a)k[l-(k+1)A]
Assume
Py(k) = (k+ 1 = (a + kb))(b — a)(k — k(k + 1))
and

0,(k) = clk + 1 — (a + kb)] + (b — a)[K* — kK*(k + D)A].

We divide the discussion into two cases as follows:
(c) Because P,(k) is increasing with respect to k and P»(n) = M +n[1 =+ 1] > 0,
P, (k) > 0 is true for k > n. In order to prove (3.12), we only need the followmg inequality to be true

Q2(k) N (k+1—=(a+kb))b-a)k—k(k+ 1))
Pz(k) - clk+1—(a+kb)+ (- a)k?—k*k+ 1))

(3.13)

(b—a)n®+c(n+1—(a+nb))
(b—a)(n+)n?

On the other hand, P, (k) is increasing with respect to k, we can get A <
It is clear that Q,(k) is decreasing if A > 2+l then

It is not hard to verify (3.13) holds true if 1 <

c(1-b)+2k(b—a)
(Bk2+2k)(b-a) *

(k+1)(3k+1)°
7« o) (n—n(n+ 1)Ab - a)(n + 1 — (a + nb))
=d ,
- Ok cn+ 1= (a+nb))+n2(b-a)l - (n+1)d)
and Q,(k) is increasing with respect to k if A < m, then

ZS a+ lim P>(k)
k—+0c0 Qz(k)

=1.

(d) Because P,(k) is decreasing with respect to k and P»>(n) = n*[1 — (n + 1)A] + W <0,

P,(k) < Qs true for k > n. In order to prove (3.12), we only need the following inequality to be true

Qz(k) N (k+1—=(a+kb))(b—-a)k—k(k+1)1)
P2(k) - clk+1—(a+kb)]+[k*—Kk(k+ DA -a)

(3.14)

. . . (b—a)n+c(n+1—(a+nb))
It is not hard to verify (3.14) holds true if 4 > GamiDE

AT . . . 1-b)+2k(b—
Also, P;(k) is decreasing with respect to k, we can obtain A > W So, there is no solution
for A.

If the condition (i1) is satisfied, then (3.12) is true. Therefore, %( firf) ﬁ(i ”;ul c, z) € ﬁ:(c, a, 13).
O

When b = % and a = 1 in Theorem 3.2, we have the following corollary.

AIMS Mathematics Volume 8, Issue 5, 12133-12142.
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Corollary 3.2. Letu > 1, fi(z) = g =0 laild i =1,2) € ﬁ:(c, 1, %). If
2n+1 3c+2n 1 [n—nn+ DA]Bn +4)

— < l<mi , d1- >0,
T DG A MG ) an On+8) + 2 —n2(n+ DA]

S

u

then LA L} L e.2) € 350, 1, D)
By putting b = —% and a = —1 in Theorem 3.2, we have
Corollary 3.3. Let u > 1, fi(z) = £ = X2, lewild*(i = 1,2) € 28 ,(c, -1, 1) .

If —1<b<0,0<2< =25 then %(ff&fz)l(%, ”;ul,c,z) € T5)(c, 1, -1y,

4. Conclusions

In this paper, we prove the closure properties of the second-order A-Hadamard product and the
second-order generalized A-Hadamard product of the class ﬁz(c, a,b). The results presented in
this paper would find further applications for the A-Hadamard product of the class of meromorphic
Janowski function, which can enrich the research field of Hadamard procduct.
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