Research article

Application of subordination and superordination for multivalent analytic functions associated with differintegral operator

  • Received: 10 January 2023 Revised: 23 February 2023 Accepted: 26 February 2023 Published: 14 March 2023
  • MSC : 30C45

  • The results from this paper are related to the geometric function theory. In order to obtain them, we use the technique based on the properties of the differential subordination and superordination one of the newest techniques used in this field, we obtain some differential subordination and superordination results for multivalent functions defined by differintegral operator with j-derivatives p(ν,ρ;)f(z) for >0, ν,ρR, such that (ρj)0,ν>p(pN) in the open unit disk U. Differential sandwich result is also obtained. Also, the results are followed by some special cases and counter examples.

    Citation: Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui. Application of subordination and superordination for multivalent analytic functions associated with differintegral operator[J]. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579

    Related Papers:

    [1] Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for $ q $ -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794
    [2] Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ . Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Mathematics, 2024, 9(8): 21053-21078. doi: 10.3934/math.20241023
    [3] Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using $ q $-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886
    [4] K. Saritha, K. Thilagavathi . Differential subordination, superordination results associated with Pascal distribution. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395
    [5] Ekram E. Ali, Georgia Irina Oros, Abeer M. Albalahi . Differential subordination and superordination studies involving symmetric functions using a $ q $-analogue multiplier operator. AIMS Mathematics, 2023, 8(11): 27924-27946. doi: 10.3934/math.20231428
    [6] Rabha W. Ibrahim, Jay M. Jahangiri . Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain. AIMS Mathematics, 2019, 4(6): 1582-1595. doi: 10.3934/math.2019.6.1582
    [7] Alina Alb Lupaş, Georgia Irina Oros . Differential sandwich theorems involving Riemann-Liouville fractional integral of $ q $-hypergeometric function. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246
    [8] Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang . On analytic multivalent functions associated with lemniscate of Bernoulli. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149
    [9] Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188
    [10] Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized $ q $-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
  • The results from this paper are related to the geometric function theory. In order to obtain them, we use the technique based on the properties of the differential subordination and superordination one of the newest techniques used in this field, we obtain some differential subordination and superordination results for multivalent functions defined by differintegral operator with j-derivatives p(ν,ρ;)f(z) for >0, ν,ρR, such that (ρj)0,ν>p(pN) in the open unit disk U. Differential sandwich result is also obtained. Also, the results are followed by some special cases and counter examples.



    Let H(U) be the class of analytic functions in the open unit disc U={zC:|z|<1} and let H[a,υ] be the subclass of H(U) including form-specific functions

    f(z)=a+aυzυ+aυ+1zυ+1+(aC),

    we denote by H=H[1,1].

    Also, A(p) should denote the class of multivalent analytic functions in U, with the power series expansion of the type:

    f(z)=zp+υ=p+1aυzυ(pN={1,2,3,..}). (1.1)

    Upon differentiating j-times for each one of the (1.1) we obtain:

    f(j)(z)=δ(p,j)zpj+υ=p+1δ(υ,j)aυzυjzU,δ(p,j)=p!(pj)!       (pN, jN0=N{0}, pj). (1.2)

    Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent functions (see [1,3,6,9,16,27,28,31]).

    For f,H, the function f is subordinate to or the function is said to be superordinate to f in U and we write f(z)(z), if there exists a Schwarz function ω in U with ω(0)=0 and |ω(z)|<1, such that f(z)=(ω(z)), zU. If is univalent in U, then f(z)(z) iff f(0)=(0) and f(U)(U). (see [7,21]).

    In the concepts and common uses of fractional calculus (see, for example, [14,15] see also [2]; the Riemann-Liouville fractional integral operator of order αC ((α)>0) is one of the most widely used operators (see [29]) given by:

    (Iα0+f)(x)=1Γ(α)x0(xμ)α1f(μ)dμ(x>0;(α)>0) (1.3)

    applying the well-known (Euler's) Gamma function Γ(α). The Erd élyi-Kober fractional integral operator of order αC((α)>0) is an interesting alternative to the Riemann-Liouville operator Iα0+, defined by:

    (Iα0+;σ,ηf)(x)=σxσ(α+η)Γ(α)x0μσ(η+1)1(xσμσ)α1f(μ)dμ (1.4)
    (x>0;(α)>0),

    which corresponds essentially to (1.3) when σ1=η=0, since

    (Iα0+;1,0f)(x)=xα(Iα0+f)(x)(x>0;(α)>0).

    Mainly motivated by the special case of the definition (1.4) when x=σ=1, η=ν1 and α=ρν, here, we take a look at the integral operator p(ν,ρ,μ) with fA(p) by (see [11])

    p(ν,ρ;)f(z)=Γ(ρ+p)Γ(ν+p)Γ(ρν)10μν1(1μ)ρν1f(zμ)dμ
    (>0;ν,ρR;ρ>ν>p;pN).

    Evaluating (Euler's) Gamma function by using the Eulerian Beta-function integral as following:

    B(α,β):={10μα1(1μ)β1dμ(min{(α),(β)}>0)Γ(α)Γ(β)Γ(α+β)(α,βCZ0),

    we readily find that

    p(ν,ρ;)f(z)={zp+Γ(ρ+p)Γ(ν+p)υ=p+1Γ(ν+υ)Γ(ρ+υ)aυzυ(ρ>ν)f(z)(ρ=ν). (1.5)

    It is readily to obtain from (1.5) that

    z(p(ν,ρ;)f(z))=(ν+p)(p(ν+1,ρ;)f(z))ν(p(ν,ρ;)f(z)). (1.6)

    The integral operator p(ν,ρ;)f(z) should be noted as a generalization of several other integral operators previously discussed for example,

    (ⅰ) If we set p=1, we get ˜I(ν,ρ;)f(z) defined by Ŕaina and Sharma ([22] with m=0);

    (ⅱ) If we set ν=β,ρ=β+1 and  =1, we obtain βpf(z)(β>p) it was presented by Saitoh et al.[24];

    (ⅲ) If we set ν=β,ρ=α+βδ+1, =1, we obtain α,δβ,pf(z)(δ>0; αδ1; β>p) it was presented by Aouf et al. [4];

    (ⅳ) If we put ν=β,ρ=α+β, =1, we get Qαβ,pf(z)(α0;β>p) it was investigated by Liu and Owa [18];

    (ⅴ) If we put p=1, ν=β,ρ=α+β, =1, we obtain αβf(z)(α0;β>1) it was introduced by Jung et al. [13];

    (ⅵ) If we put p=1, ν=α1, ρ=β1, =1, we obtain L(α,β)f(z)(α,βCZ0,Z0={0,1,2,...}) which was defined by Carlson and Shaffer [8];

    (ⅶ) If we put p=1, ν=ν1, ρ=j, =1 we obtain Iν,jf(z)(ν>0;j1) it was investigated by Choi et al. [10];

    (ⅷ) If we put p=1, ν=α,ρ=0, =1, we obtain Dαf(z)(α>1) which was defined by Ruscheweyh [23];

    (ⅸ) If we put p=1, ν=1, ρ=m, =1, we obtain Imf(z)(mN0) which was introduced by Noor [21];

    (ⅹ) If we set p=1, ν=β,ρ=β+1, =1 we obtain βf(z) which was studied by Bernadi [5];

    (ⅹⅰ) If we set p=1, ν=1, ρ=2, =1 we get f(z) which was defined by Libera [17].

    We state various definition and lemmas which are essential to obtain our results.

    Definition 1. ([20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic and univalent on ¯UE(f), where

    E(f)={ζ:ζU  and  limzζf(z)=},

    and satisfy f(ζ)0 for ζUE(f).

    Lemma 1. ([12]; see also ([19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function in U with h(0)=1, and let φ(z)H, is analytic in U. If

    φ(z)+1γzφ(z)h(z)(zU),

    where γ0 and Re(γ)0. Then

    φ(z)Ψ(z)=γzγz0tγ1h(t)dth(z)(zU),

    and Ψ(z) is the best dominant.

    Lemma 2. ([26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let  ψC with ϰC=C{0} with

    Re(1+zq(z)q(z))>max{0;Reψϰ},zU.

    If λ(z) is analytic in U, and

    ψλ(z)+ϰzλ(z)ψq(z)+ϰzq(z),

    therefore λ(z)q(z), and q is the best dominant.

    Lemma 3. ([20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose δC, with Re(δ)>0. If λH[q(0),1]Q and λ(z)+δzλ(z) is univalent in U, then

    q(z)+δzq(z)λ(z)+δzλ(z),

    implies

    q(z)λ(z)     (zU)

    and q is the best subordinant.

    For a,ϱ,c and c(cZ0) real or complex number the Gaussian hypergeometric function is given by

    2F1(a,ϱ;c;z)=1+aϱc.z1!+a(a+1)ϱ(ϱ+1)c(c+1).z22!+....

    The previous series totally converges for zU to a function analytical in U (see, for details, ([30], Chapter 14)) see also [19].

    Lemma 4. For a,ϱ and c (cZ0), real or complex parameters,

    10tϱ1(1t)cϱ1(1zt)xdt=Γ(ϱ)Γ(ca)Γ(c)2F1(a,ϱ;c;z)(Re(c)>Re(ϱ)>0); (2.1)
    2F1(a,ϱ;c;z)=2F1(ϱ,a;c;z); (2.2)
    2F1(a,ϱ;c;z)=(1z)a2F1(a,cϱ;c;zz1); (2.3)
    2F1(1,1;2;azaz+1)=(1+az)ln(1+az)az; (2.4)
    2F1(1,1;3;azaz+1)=2(1+az)az(1ln(1+az)az). (2.5)

    Throughout the sequel, we assume unless otherwise indicated 1D<C1, δ>0, >0, ν,ρR, ν>p, pN and (ρj)0. We shall now prove the subordination results stated below:

    Theorem 1. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU, (3.1)

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=(1α)((p(ν,ρ;)f(z))(j)zpj)δ+α(p(ν+1,ρ;)f(z))(j)zpj((p(ν,ρ;)f(z))(j)zpj)δ1,

    such that the powers are all the principal ones, i.e., log1 = 0. Whether

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r, (3.2)

    then

    ((p(ν,ρ;)f(z))(j)zpj)δ[p!(pj)!]δp(z), (3.3)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz)                                     (D=0),

    and [p!(pj)!]δp(z) is the best dominant of (3.3). Moreover, there are

    ((p(ν,ρ;)f(z))(j)zpj)δ>[p!(pj)!]δζ,     zU, (3.4)

    where ζ is given by:

    ζ={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δ(ν+p)α;DD1)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;C)                                     (D=0),

    then (3.4) is the best possible.

    Proof. Let

    ϕ(z)=((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ,   (zU). (3.5)

    It is observed that the function ϕ(z)H, which is analytic in U and ϕ(0)=1. Differentiating (3.5) with respect to z, applying the given equation, the hypothesis (3.2), and the knowing that

    z(p(ν,ρ;)f(z))(j+1)=(ν+p)(p(ν+1,ρ;)f(z))(j)(ν+j)(p(ν,ρ;)f(z))(j)   (0j<p), (3.6)

    we get

    ϕ(z)+zϕ(z)δ(ν+p)α(1+Cz1+Dz )r=q(z)     (zU).

    We can verify that the above equation q(z) is analytic and convex in U as following

    Re(1+zq(z)q(z))=1+(1r)(11+Cz)+(1+r)(11+Dz)>1+1r1+|C|+1+r1+|D|0   (zU).

    Using Lemma 1, there will be

    ϕ(z)p(z)=δ(ν+p)αzδ(ν+p)αz0tδ(ν+p)α1(1+Ct1+Dt)rdt.

    In order to calculate the integral, we define the integrand in the type

    tδ(ν+p)α1(1+Ct1+Dt)r=tδ(ν+p)α1(CD)r(1CDC+CDt)r,

    using Lemma 4 we obtain

    p(z)=(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0).

    On the other hand if D=0 we have

    p(z)=2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz),

    where the identities (2.1)–(2.3), were used after changing the variable, respectively. This proof the inequality (3.3).

    Now, we'll verify it

    inf{p(z):|z|<1}=p(1). (3.7)

    Indeed, we have

    (1+Cz1+Dz )r(1Cσ1Dσ)r   (|z|<σ<1).

    Setting

    (s,z)=(1+Csz1+Dsz)r   (0s1; zU)

    and

    dv(s)=δ(ν+p)αsδ(ν+p)α1ds

    where dv(s) is a positive measure on the closed interval [0, 1], we get that

    p(z)=10(s,z)dv(s),

    so that

    p(z)10(1Csσ1Dsσ)rdv(s)=p(σ)   (|z|<σ<1).

    Now, taking σ1 we get the result (3.7). The inequality (3.4) is the best possible since [p!(pj)!]δp(z) is the best dominant of (3.3).

    If we choose j=1 and α=δ=1 in Theorem 1, we get:

    Corollary 1. Let 0<r1. If

    (p(ν+1,ρ;)f(z))zp1p(1+Cz1+Dz )r,

    then

    ((p(ν,ρ;)f(z))zp1)>pζ1,     zU, (3.8)

    where ζ1 is given by:

    ζ1={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+(ν+p);DD1)(D0);2F1(r,(ν+p);1+(ν+p);C)                                     (D=0),

    then (3.8) is the best possible.

    If we choose ν=ρ=0 and  =1 in Theorem 1, we get:

    Corollary 2. Let 0j<p, 0<r1 and as fA(p) assume that

    f(j)(z)zpj0,    zU,

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=[1α(1jp)](f(j)(z)zpj)δ+α(zf(j+1)(z)pf(j)(z))(f(j)(z)zpj)δ, (3.9)

    such that the powers are all the principal ones, i.e., log1 = 0. If

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r,

    then

    (f(j)(z)zpj)δ[p!(pj)!]δp1(z), (3.10)

    where

    p1(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δpα;Dz1+Dz)(D0);2F1(r,δpα;1+δpα;Cz)                                     (D=0),

    and [p!(pj)!]δp1(z) is the best dominant of (3.10). Morover, there are

    (f(j)(z)zpj)δ>[p!(pj)!]δζ2,     zU, (3.11)

    where ζ2 is given by

    ζ2={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δpα;DD1)(D0);2F1(r,δpα;1+δpα;C)                                     (D=0),

    then (3.11) is the best possible.

    If we put δ=1 and  r=1 in Corollary 2, we get:

    Corollary 3. Let 0j<p, and for fA(p) say it

    f(j)(z)zpj0,    zU.

    Let define the function Φj by

    Φj(z)=[(1α(1jp)]f(j)(z)zpj+αf(j+1)(z)pzpj1.

    If

    Φj(z)p!(pj)!1+Cz1+Dz,

    then

    f(j)(z)zpjp!(pj)!p2(z), (3.12)

    where

    p2(z)={CD+(1CD)(1+Dz)1 2F1(1,1;1+pα;Dz1+Dz)(D0);1+pp+αCz,                                                    (D=0),

    and p!(pj)!p2(z) is the best dominant of (3.12). Morover there will be

    (f(j)(z)zpj)>p!(pj)!ζ3,     zU, (3.13)

    where ζ3 is given by:

    ζ3={CD+(1CD)(1D)1 2F1(1,1;1+pα;DD1)(D0);1pp+αC,                                                    (D=0),

    then (3.13) is the best possible.

    For C=1,D=1 and j=1 Corollary 3, leads to the next example:

    Example 1. (i) For fA(p) suppose that

    f(z)zp10,    zU.

    Let define the function Φj by

    Φj(z)=[1(ααp)]f(z)zp1+αf(z)pzp2p1+z1z,

    then

    f(z)zp1p1+z1z, (3.14)

    and

    (f(z)zp1)>pζ4,     zU, (3.15)

    where ζ4 is given by:

    ζ4=1+ 2F1(1,1;p+αα;12),

    then (3.15) is the best possible.

    (ii) For p=α=1, (i) leads to:

    For fA suppose that

    f(z)0,    zU.

    Let define the function Φj by

    Φj(z)=f(z)+zf(z)1+z1z,

    then

    (f(z))>1+2ln2,     zU.

    So the estimate is best possible.

    Theorem 2. Let 0j<p, 0<r1 as for fA(p). Assume that Fα is defined by

    Fα(z)=α(ν+p)(p(ν+1,ρ;)f(z))+(1αα(ν))(p(ν,ρ;)f(z)).  (3.16)

    If

    F(j)α(z)zpj(1α+αp)p!(pj)!(1+Cz1+Dz )r, (3.17)

    then

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!p(z), (3.18)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+(1α+αp)α;Dz1+Dz)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.18). Moreover, there will be

    ((p(ν,ρ;)f(z))(j)zpj)>p!(pj)!η,  zU, (3.19)

    where η is given by:

    η={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+(1α+αp)α;DD1)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;C)                                     (D=0),

    then (3.19) is the best possible.

    Proof. By using the definition (3.16) and the inequality (3.6), we have

    F(j)α(z)=αz(p(ν,ρ;)f(z))(j+1)+(1α+αj)(p(ν,ρ;)f(z))(j),  (3.20)

    for 0j<p. Putting

    ϕ(z)=(pj)!p!(p(ν,ρ;)f(z))(j)zpj,   (zU), (3.21)

    we have that ϕH. Differentiating (3.21), and using (3.17), (3.20), we get

    ϕ(z)+zϕ(z)(1α+αp)α(1+Cz1+Dz )r     (zU).

    Following the techniques of Theorem 1, we can obtain the remaining part of the proof.

    If we choose j=1 and r=1 in Theorem 2, we get:

    Corollary 4. For fA(p) let the function Fα define by 3.16. If

    Fα(z)zp1p(1α+αp)1+Cz1+Dz ,

    then

    ((p(ν,ρ;)f(z))zp1)>pη1,  zU, (3.22)

    where η1 is given by:

    η1={CD+(1CD)(1D)1 2F1(1,1;1+1α+αpα;DD1)(D0);11α+αp1+αpC                                                         (D=0),

    then (3.22) is the best possible.

    Example 2. If we choose p=C=α=1 and D=1 in Corollary 4, we obtain:

    For

    F(z)=(ν+1)((ν+1,ρ;)f(z))(ν)((ν,ρ;)f(z)).

    If

    F(z)1+z1z,

    then

    (((ν,ρ;)f(z)))>1+2ln2,  zU,

    the result is the best possible.

    Theorem 3. Let 0j<p, 0<r1 as for θ>p assume that Jp,θ:A(p)A(p) defined by

    Jp,θ(f)(z)=p+θzθz0tθ1f(t)dt,    zU. (3.23)

    If

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!(1+Cz1+Dz )r, (3.24)

    then

    (p(ν,ρ;)Jp,θ(f)(z))(j)zpjp!(pj)!p(z), (3.25)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+θ+p;Dz1+Dz)(D0);2F1(r,θ+p;1+θ+p;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.25). Moreover, there will be

    ((p(ν,ρ;)Jp,θ(f)(z))(j)zpj)>p!(pj)!β,      zU, (3.26)

    where β is given by:

    β={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+θ+p;DD1)(D0);2F1(r,θ+p;1+θ+p;C)                                     (D=0),

    then (3.26) is the best possible.

    Proof. Suppose

    ϕ(z)=(pj)!p!(p(ν,ρ;)Jp,θ(f)(z))(j)zpj,   (zU),

    we have that ϕH. Differentiating the above definition, by using (3.24) and

    z(p(ν,ρ;)Jp,θ(f)(z))(j+1)=(θ+p)(p(ν,ρ;)f(z))(j)(θ+j)(p(ν,ρ;)Jp,θ(f)(z))(j)   (0j<p),

    we get

    ϕ(z)+zϕ(z)θ+p(1+Cz1+Dz )r.

    Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1.

    If we set j=1 and r=1 in Theorem 3, we get:

    Corollary 5. For θ>p, let the operator Jp,θ:A(p)A(p) defined by (3.25). If

    (p(ν,ρ;)f(z))zp1p1+Cz1+Dz ,

    then

    ((p(ν,ρ;)Jp,θ(f)(z))zp1)>pβ1,     zU, (3.27)

    where β1 is given by:

    β1={CD+(1CD)(1D)1 2F1(1,1;1+θ+p;DD1)(D0);1θ+p1+θ+pC                                                   (D=0),

    then (3.27) is the best possible.

    Example 3. If we choose p=C=θ=1 and D=1 in Corollary 5, we get:

    If

    ((ν,ρ;)f(z))1+z1z,

    then

    (((ν,ρ;)J1,1(f)(z)))>1+4(1ln2),

    the result is the best possible.

    Theorem 4. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δ(ν+p)α},  zU. (3.28)

    Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδ(ν+p)zq(z). (3.29)

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq(z), (3.30)

    and q(z) is the best dominant of (3.30).

    Proof. Let ϕ(z) is defined by (3.5), from Theorem 1 we get

    [(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z). (3.31)

    Combining (3.29) and (3.31) we find that

    ϕ(z)+αδ(ν+p)zϕ(z)q(z)+αδ(ν+p)zq(z). (3.32)

    The proof of Theorem 4 follows by using Lemma 2 and (3.32).

    Taking q(z)=(1+Cz1+Dz)r in Theorem 4, we obtain:

    Corollary 6. Suppose that

    Re(1Dz1+Dz+(r1)(CD)z(1+Dz)(1+Cz))>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)(1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz).

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+Cz1+Dz )r, (3.33)

    so (1+Cz1+Dz)r is the best dominant of (3.33).

    Taking q(z)=1+Cz1+Dz in Theorem 4, we get:

    Corollary 7. Suppose that

    Re(1Dz1+Dz)>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+Cz1+Dz , (3.34)

    so 1+Cz1+Dz is the best dominant of (3.34).

    If we put ν=ρ=0 and  =1 in Theorem 4, we get:

    Corollary 8. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δpα},  zU.

    For fA(p) satisfies

    f(j)(z)zpj0,    zU.

    Let the function Φj defined by (3.9), satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδpzq(z). (3.35)

    Then,

    ((pj)!p!f(j)(z)zpj)δq(z), (3.36)

    so q(z) is the best dominant of (3.36).

    Taking C=1 and D=1 in Corollaries 6 and 7 we get:

    Example 4. (i) For fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)(1+z1z)r+αδ(ν+p)(1+z1z)r2rz1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+z1z)r, (3.37)

    so (1+z1z)r is the best dominant of (3.37).

    (ii) For fA(p) say it

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)1+z1z+αδ(ν+p)2z1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+z1z, (3.38)

    so 1+z1z is the best dominant of (3.38).

    If we put p=C=α=δ=1, D=1 and j=0 in Corollary 8 we get:

    Example 5. For fA suppose that

    f(z)z0,    zU,

    and

    f(z)(1+z1z)r+(1+z1z)r2rz1z2.

    Then,

    f(z)z(1+z1z)r, (3.39)

    and (1+z1z)r is the best dominant of (3.39).

    Remark 1. For  ν=ρ=0, =p=r=1 and j=0 in Theorem 4, we get the results investigated by Shanmugam et al. ([25], Theorem 3.1).

    Theorem 5. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If q is convex (univalent) function in U, and

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z),

    then

    q(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.40)

    so q(z) is the best subordinate of (3.40).

    Proof. Let ϕ is defined by (3.5), from (3.31) we get

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z).

    The proof of Theorem 5 followes by an application of Lemma 3.

    Taking q(z)=(1+Cz1+Dz)r in Theorem 5, we get:

    Corollary 9. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    (1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz)[(pj)!p!]δΦj(z),

    then

    (1+Cz1+Dz )r((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.41)

    so (1+Cz1+Dz)r is the best dominant of (3.41).

    Taking q(z)=1+Cz1+Dz and r=1 in Theorem 5, we get:

    Corollary 10. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Assume that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2[(pj)!p!]δΦj(z),

    then

    1+Cz1+Dz ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.42)

    so 1+Cz1+Dz is the best dominant of (3.42).

    Combining results of Theorems 4 and 5, we have

    Theorem 6. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δH[q(0),1]Q

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). Let q1 is convex (univalent) function in U, and assume that q2 is convex in U, that q2 satisfies (3.28). If

    q1(z)+αδ(ν+p)zq1(z)[(pj)!p!]δΦj(z)q2(z)+αδ(ν+p)zq2(z),

    then

    q1(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq2(z)

    and q1(z) and q2(z) are respectively the best subordinate and best dominant of the above subordination.

    We used the application of higher order derivatives to obtained a number of interesting results concerning differential subordination and superordination relations for the operator p(ν,ρ;)f(z) of multivalent functions analytic in U, the differential subordination outcomes are followed by some special cases and counters examples. Differential sandwich-type results have been obtained. Our results we obtained are new and could help the mathematicians in the field of Geometric Function Theory to solve other special results in this field.

    This research has been funded by Deputy for Research & innovation, Ministry of Education through initiative of institutional funding at university of Ha'il, Saudi Arabia through project number IFP-22155.

    The authors declare no conflict of interest.



    [1] R. M. Ali, A. O. Badghaish, V. Ravichandran, Subordination for higher-order derivatives of multivalent functions, J. Inequal. Appl., 2008 (2008), 1–12. https://doi.org/10.1155/2008/830138 doi: 10.1155/2008/830138
    [2] E. E. Ali, H. M. Srivastava, R. M. El-Ashwah, A. M. Albalahi, Differential subordination and differential superordination for classes of admissible multivalent functions associated with a linear operator, Mathematics, 10 (2022), 4690. https://doi.org/10.3390/math10244690 doi: 10.3390/math10244690
    [3] M. K. Aouf, R. M. El-Ashwah, E. E. Ali, On Sandwich theorems for higher-order derivatives of p-valent analytic functions, Se. Asian B. Math., 37 (2013), 7–14.
    [4] M. K. Aouf, R. M. El-Ashwah, A. M. Abd-Eltawab, Some inclusion relationships of certain subclasses of p-valent functions associated with a family of integral operators, ISRN Math. Anal., 2013 (2013), 1–8. https://doi.org/10.1155/2013/384170 doi: 10.1155/2013/384170
    [5] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446.
    [6] N. Breaz, R. M. El-Ashwah, Quasi-Hadamard product of some uniformly analytic and p-valent functions with negative coefficients, Carpathian J. Math., 30 (2014), 39–45. Available from: https://www.jstor.org/stable/43999556.
    [7] T. Bulboaca, Differential subordinations and superordinations, recent results, Hous of Scientific Book Publ., Cluj-Napoca, 2005.
    [8] B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. https://doi.org/10.1137/0515057 doi: 10.1137/0515057
    [9] M. P. Chen, H. Irmak, H. M. Srivastava, Some multivalent functions with negative coefficients defined by using a differential operator, Pan Amer. Math. J., 6 (1996), 55–64. Available from: http://hdl.handle.net/1828/1655.
    [10] J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432–445. https://doi.org/10.1016/S0022-247X(02)00500-0 doi: 10.1016/S0022-247X(02)00500-0
    [11] R. M. El-Ashwah, M. E. Drbuk, Subordination properties of p-valent functions defined by linear operators, Biritish J. Math. Comput. Sci., 4 (2014), 3000–3013.
    [12] D. Z. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191–195.
    [13] I. B. Jung, Y. C. Kim, H. M. Srivastava, The hardy space of analytic functions associated with certain parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 204 (2006).
    [15] V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics, Longman Scientic and Technical, Harlow (Essex), 301 (1993).
    [16] A. Y. Lashin, F. Z. El-Emam, On certain classes of multivalent analytic functions defined with higher-order derivatives, Mathematics, 11 (2023), 83. https://doi.org/10.3390/math11010083 doi: 10.3390/math11010083
    [17] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755–758. http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2 doi: 10.1090/S0002-9939-1965-0178131-2
    [18] J. L. Liu, S. Owa, Properties of certain integral operator, Int. J. Math. Sci., 3 (2004), 45–51.
    [19] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, Boca Raton, 2000.
    [20] S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003), 815–826.
    [21] K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16 (1999), 71–80.
    [22] R. K. Raina, P. Sharma, Subordination preserving properties associated with a class of operators, Le Mat., 68 (2013), 217–228. http://dx.doi.org/10.4418/2013.68.1.16 doi: 10.4418/2013.68.1.16
    [23] S. Ruscheweyh, New criteria for univalent functions, P. Am. Math. Soc., 49 (1975), 109–115.
    [24] H. Saitoh, S. Owa, T. Sekine, M. Nunokawa, R. Yamakawa, An application of a certain integral operator, Appl. Math. Lett., 5 (1992), 21–24. http://dx.doi.org/10.1016/0893-9659(92)90104-H doi: 10.1016/0893-9659(92)90104-H
    [25] T. N. Shanmugam, S. Sivasubramanian, M. Darus, C. Ramachandran, Subordination and superordination results for subclasses of analytic functions, Int. J. Math. Forum, 2007, 1039–1052.
    [26] T. N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), 1–11.
    [27] H. Silverman, Higher order derivatives, Chinese J. Math., 23 (1995), 189–191. Available from: https://www.jstor.org/stable/43836593.
    [28] H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving higher-order derivatives, Filomat, 30 (2016), 113–124. Available from: https://www.jstor.org/stable/24898417.
    [29] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. http://dx.doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340
    [30] E. T. Whittaker, G. N. Watson, A course on modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4 Eds., Cambridge University Press, Cambridge, 1927. https://doi.org/10.1002/zamm.19630430916
    [31] T. Yaguchi, The radii of starlikeness and convexity for certain multivalent functions, Current Topics in Analytic Function Theory, World Scientific, River Edge, NJ, USA, 1992,375–386.
  • This article has been cited by:

    1. Abdul Rahman S. Juma, Nihad Hameed Shehab, Daniel Breaz, Luminiţa-Ioana Cotîrlă, Maslina Darus, Alin Danciu, New Results on Differential Subordination and Superordination for Multivalent Functions Involving New Symmetric Operator, 2024, 16, 2073-8994, 1326, 10.3390/sym16101326
    2. Mustafa I. Hameed, Issa Alkharusi, Israa A. Ibrahim, Wafaa M. Taha, Ali F. Jameel, Sundas Nawaz, Mohammad A. Tashtoush, Certain Subordination and Superordination Properties of Analytic Functions, 2024, 23, 2224-2880, 739, 10.37394/23206.2024.23.76
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1760) PDF downloads(67) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog