The development of certain aspects of geometric function theory after incorporating fractional calculus and q-calculus aspects is obvious and indisputable. The study presented in this paper follows this line of research. New results are obtained by applying means of differential subordination and superordination theories involving an operator previously defined as the Riemann-Liouville fractional integral of the q-hypergeometric function. Numerous theorems are stated and proved involving the fractional q-operator and differential subordinations for which the best dominants are found. Associated corollaries are given as applications of those results using particular functions as best dominants. Dual results regarding the fractional q-operator and differential superordinations are also considered and theorems are proved where the best subordinants are given. Using certain functions known for their remarkable geometric properties applied in the results as best subordinant, interesting corollaries emerge. As a conclusion of the investigations done by applying the means of the two dual theories considering the fractional q-operator, several sandwich-type theorems combine the subordination and superordiantion established results.
Citation: Alina Alb Lupaş, Georgia Irina Oros. Differential sandwich theorems involving Riemann-Liouville fractional integral of q-hypergeometric function[J]. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246
[1] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[2] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[3] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[4] | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374 |
[5] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[6] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[7] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[8] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
The development of certain aspects of geometric function theory after incorporating fractional calculus and q-calculus aspects is obvious and indisputable. The study presented in this paper follows this line of research. New results are obtained by applying means of differential subordination and superordination theories involving an operator previously defined as the Riemann-Liouville fractional integral of the q-hypergeometric function. Numerous theorems are stated and proved involving the fractional q-operator and differential subordinations for which the best dominants are found. Associated corollaries are given as applications of those results using particular functions as best dominants. Dual results regarding the fractional q-operator and differential superordinations are also considered and theorems are proved where the best subordinants are given. Using certain functions known for their remarkable geometric properties applied in the results as best subordinant, interesting corollaries emerge. As a conclusion of the investigations done by applying the means of the two dual theories considering the fractional q-operator, several sandwich-type theorems combine the subordination and superordiantion established results.
Convex functions has applications in almost all branches of mathematics for example in mathematical analysis, optimization theory and mathematical statistics etc. A convex function can be expressed and visualized in many different ways which further provide the motivation and encouragement for defining new concepts. Let us recall its definition as follows:
A function f:J⊆R→R is said to be convex, if
f(tx+(1−t)y)≤tf(x)+(1−t)f(y), | (1.1) |
holds for all x,y∈J and t∈[0,1]. Likewise f is concave if (−f) is convex.
A convex function is generalized in different forms, one of the generalization is the exponentially (θ,h−m)-convex function. Farid and Mahreen [11] introduced exponentially (θ,h−m)-convex functions as follows:
Definition 1.1. Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. For fix t∈(0,1), (θ,m)∈(0,1]2 and η∈R. A function f:[0,b]→R is called exponentially (θ,h−m)-convex function, if f is non-negative and for all x,y∈[0,b] one has
f(tx+m(1−t)y)≤h(tθ)f(x)eηx+mh(1−tθ)f(y)eηy. | (1.2) |
Remark 1.2. By selecting suitable function h and particular values of parameter m and η, the above definition produces the functions comprise in the following remark:
(i) By setting η=0, (θ,h−m)-convex function [12] can be obtained.
(ii) By taking η=0 and θ=1, (h−m)-convex function can be captured.
(iii) By choosing η=0 and h(tθ)=tθ, (θ,m)-convex function can be obtained.
(iv) By setting η=0, θ=1 and m=1, h-convex function [32] can be captured.
(v) By taking η=0, θ=1 and h(t)=t, m-convex function [31] can be obtained.
(vi) By choosing η=0, θ=1, m=1 and h(t)=t, convex function can be captured.
(vii) By setting η=0, m=1, θ=1 and h(t)=1, P-function [6] can be obtained.
(viii) By taking θ=1 and h(t)=ts, exponentially (s,m)-convex function [28] can be captured.
(ix) By choosing θ=1, m=1 and h(t)=ts, exponentially s-convex function [23] can be obtained.
(x) By setting θ=1, and h(t)=t, exponentially m-convex function [29] can be captured.
(xi) By taking θ=1, m=1 and h(t)=t, exponentially convex function [3] can be obtained.
(xii) By choosing η=0, θ=1 and h(t)=ts, (s,m)-convex function [2] can be captured.
(xiii) By setting θ=1, η=0, m=1 and h(t)=ts, s-convex function [23] can be obtained.
(xiv) By taking θ=1, η=0, m=1 and h(t)=1t, Godunova-Levin function [14] can be captured.
(xv) By choosing θ=1, η=0, m=1 and h(t)=1ts, s-Godunova-Levin function of second kind can be obtained.
The following inequality, named Hermite–Hadamard inequality, is one of the most famous inequalities in the literature for convex functions.
Theorem 1.3. Let f:J⊆R→R be a convex function on J and a,b∈J with a<b. Then the following double inequality holds:
f(a+b2)≤1b−a∫baf(x)dx≤f(a)+f(b)2. | (1.3) |
Various extensions of this notion have been reported in the literature in recent years, see [1,4,7,16,17,18,21,22,26,30].
The objective of this paper is to obtain inequalities of Hadamard type via Caputo k-fractional derivatives of exponentially (θ,h−m)-convex functions. Study of integration or differentiation of fractional order is known as fractional calculus. Its history is as old as the history of calculus. A lot of work has been published since the day of Leibniz (1695) and since then has occupied great number of mathematicians of their time [15,20,25,27].
Fractional integral inequalities are in the study of several researchers, see [5,9,13] and references therein. The classical Caputo fractional derivatives are defined as follows:
Definition 1.4. [20] Let α>0 and α∉{1,2,3,…}, n=[α]+1, f∈ACn[a,b] (the set of all functions f such that f(n) are absolutely continuous on [a,b]). The Caputo fractional derivatives of order α are defined by
CDαa+f(x)=1Γ(n−α)∫xaf(n)(t)(x−t)α−n+1dt,x>a, | (1.4) |
and
CDαb−f(x)=(−1)nΓ(n−α)∫bxf(n)(t)(t−x)α−n+1dt,x<b. | (1.5) |
If α=n∈{1,2,3,…} and usual derivative of order n exists, then Caputo fractional derivative (CDαa+f)(x) coincides with f(n)(x), whereas (CDαb−f)(x) coincides with f(n)(x) with exactness to a constant multiplier (−1)n. In particular, we have
(CD0a+f)(x)=(CD0b−f)(x)=f(x), | (1.6) |
where n=1 and α=0.
In [9], Farid et al. defined Caputo k−fractional derivatives as follows:
Definition 1.5. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1, f∈ACn[a,b]. The Caputo k-fractional derivatives of order α are given as
CDα,ka+f(x)=1kΓk(n−αk)∫xaf(n)(t)(x−t)αk−n+1dt,x>a, | (1.7) |
and
CDα,kb−f(x)=(−1)nkΓk(n−αk)∫bxf(n)(t)(t−x)αk−n+1dt,x<b, | (1.8) |
where Γk(α) is the k-gamma function defined as
Γk(α)=∫∞0tα−1e−tkkdt. |
Also
Γk(α+k)=αΓk(α). |
Motivated by above results and literatures, the paper is organized in the following manner:
In section 2, we present some inequalities of Hadamard type for exponentially (θ,h−m)−convex functions via Caputo k−fractional derivatives. In section 3, we use the integral identity including the (n+1)-order derivative of f to establish interesting Hadamard type inequalities for exponentially (θ,h−m)−convexity via Caputo k-fractional derivatives. In section 4, a briefly conclusion will be provided as well.
In this section, we give the Caputo k–fractional derivatives inequality of Hadamard type for a function whose n-th derivatives are exponentially (θ,h−m)–convex.
Theorem 2.1. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequalities for Caputo k-fractional derivatives hold:
1g(η)f(n)(bm+a2)≤kΓk(n−αk+k)(mb−a)n−αk×(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))≤kn−αk×{(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h(tθ)dt}, | (2.1) |
where g(η)=1eηbforη<0 and g(η)=1eηamforη≥0.
Proof. Since f(n) is an exponentially (θ,h−m)-convex function on [a,b], then
f(n)(um+v2)≤h(1−12θ)mf(n)(u)eηu+h(12θ)f(n)(v)eηv,u,v∈[a,b]. |
By setting u=(1−t)am+tb≤b and v=m(1−t)b+ta≥a in the above inequality for t∈[0,1], then by integrating with respect to t over [0,1] after multiplying with tn−αk−1, we have
f(n)(bm+a2)∫10tn−αk−1dt≤h(1−12θ)(∫10tn−αk−1mf(n)((1−t)am+tb)eη((1−t)am+tb)dt+h(12θ)∫10tn−αk−1f(n)(m(1−t)b+ta)eη(m(1−t)b+ta)dt). |
Now, if we let w=(1−t)am+tb and z=m(1−t)b+ta in right hand side of above inequality, we get
f(n)(bm+a2)1n−αk≤h(1−12θ)(∫bam(w−amb−am)n−αk−1mf(n)(w)dweηw(b−am)+h(12θ)∫mba(mb−zmb−a)n−αk−1f(n)(z)dzeηz(mb−a)). |
Hence
f(n)(bm+a2)≤{g(η)kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))}. | (2.2) |
On the other hand by using exponentially (θ,h−m)-convexity of f(n), we have
mf(n)((1−t)am+tb)≤m2h(1−tθ)f(n)(am2)eηam2+mh(tθ)f(n)(b)eηb. |
By multiplying both sides of above inequality with (n−αk)h(1−12θ)tn−αk−1 and integrating with respect to t over [0,1], after some calculations we get
kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am))≤h(1−12θ)(n−αk){m2f(n)(am2)eηam2∫10tn−αk−1h(1−tθ)dt+mf(n)(b)eηb∫10tn−αk−1h(tθ)dt}. | (2.3) |
Similarly,
f(n)(m(1−t)b+ta)≤mh(1−tθ)f(n)(b)eηb+h(tθ)f(n)(a)eηa. |
By multiplying both sides of above inequality with (n−αk)h(12θ)tn−αk−1 and integrating with respect to t over [0,1], after some calculations we get
kΓk(n−αk+k)(mb−a)n−αk(h(12θ)(CDα,ka+f)(mb))≤h(12θ)(n−αk){mf(n)(b)eηb∫10tn−αk−1h(1−tθ)dt+f(n)(a)eηa∫10tn−αk−1h(tθ)dt}. | (2.4) |
By adding (2.3) and (2.4), we obtain
kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))≤(n−αk){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h(tθ)dt}. |
Combining above with (2.2), we get required result.
Corollary 2.2. By setting k=1 in inequality (2.1), the following inequalities hold for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
1g(η)f(n)(bm+a2)≤Γ(n−α+1)(mb−a)n−α(h(1−12θ)mn−α+1(−1)n(CDαb−f)(am)+h(12θ)(CDαa+f)(mb))≤(n−α){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−α−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−α−1h(tθ)dt}. |
Corollary 2.3. Taking η=0 in (2.1), the following inequalities hold for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
f(n)(bm+a2)≤kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))≤(kn−αk){(h(1−12θ)m2f(n)(am2)+h(12θ)mf(n)(b))∫10tn−αk−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)+h(12θ)f(n)(a))∫10tn−αk−1h(tθ)dt}. |
Corollary 2.4. Choosing η=0 and θ=1 in (2.1), the following inequalities hold for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.1]:
f(n)(bm+a2)≤kΓk(n−αk+k)2(mb−a)n−αk(mn−αk+1(−1)n(CDα,kb−f)(am)+(CDα,ka+f)(mb))≤kn−α2k{(m2f(n)(am2)+mf(n)(b))∫10tn−αk−1h(1−t)dt+(mf(n)(b)+f(n)(a))∫10tn−αk−1h(t)dt}. |
Corollary 2.5. By setting η=0, θ=1 and k=1 in (2.1), the following inequalities hold for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.2]:
f(n)(bm+a2)≤Γ(n−α+1)2(mb−a)n−α(mn−α+1(−1)n(CDαb−f)(am)+(CDαa+f)(mb))≤n−α2{(m2f(n)(am2)+mf(n)(b))∫10tn−α−1h(1−t)dt+(mf(n)(b)+f(n)(a))∫10tn−α−1h(t)dt}. |
Corollary 2.6. Taking θ=1 and h(t)=ts in (2.1), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:
1g(η)f(n)(bm+a2)≤kΓk(n−αk+k)2s(mb−a)n−αk(mn−αk+1(−1)n(CDα,kb−f)(am)+(CDα,ka+f)(mb))≤kn−αk2s{(m2f(n)(am2)eηam2+mf(n)(b)eηb)β(kn−αk,s+1)+(mf(n)(b)eηb+f(n)(a)eηa)kkn−α+ks}, |
where β(⋅,⋅) is well–known beta function.
Corollary 2.7. Choosing η=0, θ=1, m=1 and h(t)=t in (2.1), the following inequalities hold for convex functions via Caputo k-fractional derivatives defined in [[8], Theorem 2.2]:
f(n)(a+b2)≤kΓk(n−αk+k)2(b−a)n−αk((−1)n(CDα,kb−f)(a)+(CDα,ka+f)(b))≤f(n)(a)+f(n)(b)2. |
Corollary 2.8. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.1), the following inequalities hold for convex functions via Caputo fractional derivatives:
f(n)(a+b2)≤Γ(n−α+1)2(b−a)n−α((−1)n(CDαb−f)(a)+(CDαa+f)(b))≤f(n)(a)+f(n)(b)2. |
In the following we generalize the fractional Hadamard type inequalities for exponentially (θ,h−m)−convex function via Caputo k-fractional derivatives.
Theorem 2.9. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequalities for Caputo k-fractional derivatives hold:
1g(η)f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))≤(kn−αk){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h((t2)θ)dt}, | (2.5) |
where g(η)=1eηbforη<0 and g(η)=1eηamforη≥0.
Proof. From exponentially (θ,h−m)−convexity of f(n) one can have
f(n)(um+v2)≤h(1−12θ)mf(n)(u)eηu+h(12θ)f(n)(v)eηv. |
Putting u=t2b+(2−t)2am and u=t2a+m(2−t)2b in the above inequality where t∈[0,1], and multiplying with tn−αk−1, then integrating with respect to t over [0,1] one can have
f(n)(a+bm2)∫10tn−αk−1dt≤h(1−12θ)(∫10tn−αk−1mf(n)(t2b+(2−t)2am)eη(t2b+(2−t)2am)dt+h(12θ)∫10tn−αk−1f(n)(t2a+m(2−t)2b)eη(t2a+m(2−t)2b)dt). |
By change of variables, we get
1g(η)f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αk×(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb)). | (2.6) |
Now, using the exponentially (θ,h−m)−convexity of f(n), we can write
f(n)(t2a+m(2−t)2b)≤h((t2)θ)f(n)(a)eηa+mh(1−(t2)θ)f(n)(b)eηb. |
Multiplying both sides of above inequality with (n−αk)h(12θ)tn−αk−1 and integrating with respect to t over [0,1], then by change of variables, we have
h(12θ)2(n−αk)kΓk(n−αk+k)(bm−a)n−αk((CDα,k(a+bm2)+f)(mb))≤(n−αk)h(12θ){mf(n)(b)eηb∫10tn−αk−1h(1−(t2)θ)dt+f(n)(a)eηa∫10tn−αk−1h((t2)θ)dt}. | (2.7) |
Again by using the exponentially (θ,h−m)−convexity of f(n), we can write
mf(n)(t2b+(2−t)2am)≤mh(t2)θf(n)(b)eηb+m2h(1−(t2)θ)f(n)(am2)eηam2. |
Multiplying both sides of above inequality with (n−αk)h(1−12θ)tn−αk−1 and integrating with respect to t over [0,1], then by change of variables, we have
h(1−12θ)2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am))≤(n−αk)h(1−12θ){m2f(n)(am2)eηam2∫10tn−αk−1h(1−(t2)θ)dt+mf(n)(b)eηb∫10tn−αk−1h((t2)θ)dt}. | (2.8) |
Adding (2.7) and (2.8), we get
2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))≤(n−αk){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h((t2)θ)dt}. |
By combining above with (2.6), we get required result.
Corollary 2.10. By setting k=1 in inequality (2.5), the following inequalities hold for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
1g(η)f(n)(a+bm2)≤2(n−α)Γ(n−α+1)(bm−a)n−αk(h(1−12θ)mn−α+1(−1)(n)(CDα(a+bm2m)−f)(am)+h(12θ)(CDα(a+bm2)+f)(mb))≤(n−α){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−α−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−α−1h((t2)θ)dt}. |
Corollary 2.11. Taking η=0 in (2.5), the following inequalities hold for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))≤(kn−αk){(h(1−12θ)m2f(n)(am2)+h(12θ)mf(n)(b))∫10tn−αk−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)+h(12θ)f(n)(a))∫10tn−αk−1h((t2)θ)dt}. |
Corollary 2.12. Choosing η=0 and θ=1 in (2.5), the following inequalities hold for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.4]:
f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αkh(12)(mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+(CDα,k(a+bm2)+f)(mb))≤kn−αkh(12)×{(m2f(n)(am2)+mf(n)(b))∫10tn−αk−1h(2−t2)dt+(mf(n)(b)+f(n)(a))∫10tn−αk−1h(t2)dt}. |
Corollary 2.13. By setting η=0, θ=1 and k=1 in (2.5), the following inequalities hold for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.5]:
f(n)(a+bm2)≤2(n−α)Γ(n−α+1)(bm−a)n−αkh(12)(mn−α+1(−1)(n)(CDα(a+bm2m)−f)(am)+(CDα(a+bm2)+f)(mb))≤(n−α)h(12)×{(m2f(n)(am2)+mf(n)(b))∫10tn−α−1h(2−t2)dt+(mf(n)(b)+f(n)(a))∫10tn−α−1h(t2)dt}. |
Corollary 2.14. Taking θ=1 and h(t)=ts in (2.5), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:
1g(η)f(n)(a+bm2)≤2(n−αk−s)kΓk(n−αk+k)(bm−a)n−αk×(mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+(CDα,k(a+bm2)+f)(mb)).≤122s{(m2f(n)(am2)eηam2+mf(n)(b)eηb)kΓk(n−αk+k)+(mf(n)(b)eηb+f(n)(a)eηa)kn−αkn−α+ks}. |
Corollary 2.15. Choosing η=0, θ=1, m=1 and h(t)=t in (2.5), the following inequalities hold for convex functions via Caputo k-fractional derivatives defined in [[10], Theorem 6]:
f(n)(a+b2)≤2(n−αk)kΓk(n−αk+k)2(b−a)n−αk×((−1)(n)(CDα,k(a+b2)−f)(a)+(CDα,k(a+b2)+f)(b))≤f(n)(a)+f(n)(b)2. |
Corollary 2.16. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.5), the following inequalities hold for convex functions via Caputo fractional derivatives defined in [[19] Theorem 2.2]:
f(n)(a+b2)≤2(n−α)Γ(n−α+1)2(b−a)n−αk×((−1)(n)(CDα(a+b2)−f)(a)+(CDα(a+b2)+f)(b))≤f(n)(a)+f(n)(b)2. |
In the next, some other inequalities of Hadamard type for exponentially (θ,h−m)−convex function via Caputo k−fractional derivatives are given.
Theorem 2.17. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequalities for Caputo k-fractional derivatives hold:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)eηa+f(n)(b)eηb)×∫10tn−αk−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−αk−1h(1−tθ)dt≤1(np−αkp−p+1)1p(∫10(h(tθ))qdt)1q×(f(n)(a)eηa+f(n)(b)eηb+m(f(n)(bm)eηbm+f(n)(am)eηam)), | (2.9) |
where p−1+q−1=1 and p>1.
Proof. Since f(n) is exponentially (θ,h−m)−convex on [a,b], then for (θ,m)∈(0,1]2 and t∈[0,1], we have
f(n)(ta+(1−t)b)+f(n)((1−t)a+tb)≤h(tθ)(f(n)(a)eηa+f(n)(b)eηb)+mh(1−tθ)(f(n)(bm)eηbm+f(n)(am)eηam). |
Multiplying both sides of above inequality with tn−αk−1 and integrating the above inequality with respect to t on [0,1], we have
∫10tn−αk−1(f(n)(ta+(1−t)b)+f(n)((1−t)a+tb))dt≤(f(n)(a)eηa+f(n)(b)eηb)∫10tn−αk−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−αk−1h(1−tθ)dt. |
If we set x=ta+(1−t)b in the left side of above inequality, we get the following inequality
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)eηa+f(n)(b)eηb)∫10tn−αk−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−αk−1h(1−tθ)dt. | (2.10) |
We get the first inequality of (2.9). The second inequality of (2.9) follows by using the Hölder's inequality
∫10tn−αk−1h(tθ)dt≤1(np−αkp−p+1)1p(∫10(h(tθ))qdt)1q. |
Combining it with (2.10) we get (2.9).
Corollary 2.18. By setting k=1 in (2.9), the following inequalities hold for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
Γ(n−α)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤(f(n)(a)eηa+f(n)(b)eηb)×∫10tn−α−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−α−1h(1−tθ)dt≤1(np−αp−p+1)1p(∫10(h(tθ))qdt)1q×(f(n)(a)eηa+f(n)(b)eηb+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Corollary 2.19. Taking η=0 in (2.9), the following inequalities hold for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)+f(n)(b))×∫10tn−αk−1h(tθ)dt+m(f(n)(bm)+f(n)(am))∫10tn−αk−1h(1−tθ)dt≤1(np−αkp−p+1)1p(∫10(h(tθ))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))). |
Corollary 2.20. Choosing η=0 and θ=1 in (2.9), the following inequalities hold for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.7]:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)+f(n)(b))×∫10tn−αk−1h(t)dt+m(f(n)(bm)+f(n)(am))∫10tn−αk−1h(1−t)dt≤1(np−αkp−p+1)1p(∫10(h(t))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))). |
Corollary 2.21. By setting η=0, θ=1 and k=1 in (2.9), the following inequalities hold for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.8]:
Γ(n−α)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤(f(n)(a)+f(n)(b))×∫10tn−α−1h(t)dt+m(f(n)(bm)+f(n)(am))∫10tn−α−1h(1−t)dt≤1(np−αp−p+1)1p(∫10(h(t))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))). |
Corollary 2.22. Taking θ=1 and h(t)=ts in (2.9), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤k(f(n)(a)eηa+f(n)(b)eηb)kn−α+ks+m(f(n)(bm)eηbm+f(n)(am)eηam)β(n−αk,s+1)≤k(f(n)(a)eηa+f(n)(b)eηb)kn−α+ks+m(f(n)(bm)eηbm+f(n)(am)eηam)(np−αkp−p+1)1p(qs+1)1q. |
Corollary 2.23. Choosing η=0, θ=1, m=1 and h(t)=t in (2.9), the following inequalities hold for convex functions via Caputo k-fractional derivatives:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤k(f(n)(a)+f(n)(b))kn−α≤2(f(n)(a)+f(n)(b))(np−αkp−p+1)1p(q+1)1q. |
Theorem 2.24. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb and h be a superadditive function. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequality for Caputo k−fractional derivatives holds:
kΓk(n−αk+k)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). | (2.11) |
Proof. Since f(n) is exponentially (θ,h−m)−convex on [a,b], then for t∈[0,1], we get
f(n)(ta+(1−t)b)+f(n)((1−t)a+tb)≤(h(tθ)+h(1−tθ))2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Since h is superadditive function, then
h(tθ)+h(1−tθ)≤h(1),for allθ∈(0,1]andt∈[0,1]. |
Therefore
f(n)(ta+(1−t)b)+f(n)((1−t)a+tb)≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Multiplying both sides of above inequality with tn−αk−1 and integrating with respect to t over [0,1], yield the following
∫10tn−αk−1(f(n)(ta+(1−t)b)+f(n)((1−t)a+tb))dt≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam))∫10tn−αk−1dt. |
By change of variable, we get the required result.
Corollary 2.25. By setting k=1 in (2.11), the following inequality holds for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
Γ(n−α+1)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Corollary 2.26. Taking η=0 and θ=1 in (2.11), the following inequality holds for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.9]:
kΓk(n−αk+k)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤h(1)2((f(n)(a)+f(n)(b))+m(f(n)(bm)+f(n)(am))). |
Corollary 2.27. Choosing η=0, θ=1 and k=1 in (2.11), the following inequality holds for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Corollary 2.10]:
Γ(n−α+1)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤h(1)2((f(n)(a)+f(n)(b))+m(f(n)(bm)+f(n)(am))). |
Corollary 2.28. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.11), the following inequality holds for convex functions via Caputo fractional derivatives:
Γ(n−α+1)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤f(n)(a)+f(n)(b). |
We need the following known lemma to prove our next results.
Lemma 3.1. [24] Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and f:[a,mb]→R, where a,b∈[0,+∞) be a differentiable mapping on interval (a,mb), with a<mb and m∈(0,1]. If f∈ACn+1[a,mb], then the following equality for Caputo k−fractional derivatives holds:
f(n)(mb)+f(n)(b)2−kΓk(n−αk+k)2(mb−a)n−αk((CDα,ka+f)(mb)+(CDα,kmb−f)(a))=mb−a2∫10((1−t)n−αk−tn−αk)f(n+1)(m(1−t)b+ta)dt. |
Caputo k−fractional derivative inequalities of Hadamard type for exponentially (θ,h−m)−convex function in terms of the (n+1)-th derivatives in absolute, is obtained in the following theorem by using above lemma.
Theorem 3.2. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn+1[a,mb], where a<mb. If |f(n+1)| is an exponentially (θ,h−m)−convex with (θ,m)∈(0,1]2 and η∈R, then the following inequality for Caputo k−fractional derivatives holds:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2((2np−αkp+1−1)1p(2np−αkp+1(np−αkp+1))1p−1)×(|f(n+1)(a)|eηa((∫120(h(tθ))qdt)1q+(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)|eηb((∫120(h(1−tθ))qdt)1q+(∫112(h(1−tθ))qdt)1q)), | (3.1) |
where 1p+1q=1 and p>1.
Proof. From Lemma 3.1 and by using the properties of modulus, we get
|f(n)(mb)+f(n)(b)2−kΓk(n−αk+k)2(mb−a)n−αk((CDα,ka+f)(mb)+(CDα,kmb−f)(a))|≤mb−a2∫10|(1−t)n−αk−tn−αk||f(n+1)(m(1−t)b+ta)|dt. |
By exponentially (θ,h−m)−convexity of |f(n+1)|, we have
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,ka+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2∫120((1−t)n−αk−tn−αk)(mh(1−tθ)|f(n+1)(b)eηb|+h(tθ)|f(n+1)(a)eηa|)dt+∫112(tn−αk−(1−t)n−αk)(mh(1−tθ)|f(n+1)(b)eηb|+h(tθ)|f(n+1)(a)eηa|)dt=mb−a2{|f(n+1)(a)eηa|(∫120(1−t)n−αkh(tθ)dt−∫120tn−αkh(tθ)dt)+m|f(n+1)(b)eηb|(∫120(1−t)n−αkh(1−tθ)dt−∫120tn−αkh(1−tθ)dt)+|f(n+1)(a)eηa|(∫112tn−αkh(tθ)dt−∫112(1−t)n−αkh(tθ)dt)+m|f(n+1)(b)eηb|(∫112tn−αkh(1−tθ)dt−∫112(1−t)n−αkh(1−tθ)dt)}. | (3.2) |
Now, using the Hölder's inequality in the right hand side of (3.2), we obtain
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2{|f(n+1)(a)eηa|((2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫120(h(tθ))qdt)1q+(2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)eηb|((2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫120(h(1−tθ))qdt)1q+(2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫112(h(1−tθ))qdt)1q)}. |
After a little computation one can get inequality (3.1).
Corollary 3.3. By setting k=1 in (3.1), the following inequality holds for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
|f(n)(mb)+f(n)(a)2−Γ(n−α+1)2(mb−a)n−α(CDαb+f)(mb)+(CDαmb−f)(a)|≤mb−a2((2np−αp+1−1)1p(2np−αp+1(np−αp+1))1p−1)×(|f(n+1)(a)|eηa((∫120(h(tθ))qdt)1q+(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)|eηb((∫120(h(1−tθ))qdt)1q+(∫112(h(1−tθ))qdt)1q)). |
Corollary 3.4. Taking η=0 in (3.1), the following inequality holds for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2((2np−αkp+1−1)1p(2np−αkp+1(np−αkp+1))1p−1)×(|f(n+1)(a)|((∫120(h(tθ))qdt)1q+(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)|((∫120(h(1−tθ))qdt)1q+(∫112(h(1−tθ))qdt)1q)). |
Corollary 3.5. Choosing η=0 and θ=1 in (3.1), the following inequality holds for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 3.1]:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤(mb−a)(|f(n+1)(a)|+m|f(n+1)(b)|)[(2np−αkp+1−1)1p]2[(2np−αkp+1(np−αkp+1))1p−1]×((∫120(h(t))qdt)1q+(∫112(h(t))qdt)1q). |
Corollary 3.6. By setting η=0, θ=1 and k=1 in (3.1), the following inequality holds for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 3.2]:
|f(n)(mb)+f(n)(a)2−Γ(n−α+1)2(mb−a)n−α(CDαb+f)(mb)+(CDαmb−f)(a)|≤(mb−a)(|f(n+1)(a)|+m|f(n+1)(b)|)[(2np−αp+1−1)1p]2[(2np−αp+1(np−αp+1))1p−1]×((∫120(h(t))qdt)1q+(∫112(h(t))qdt)1q). |
Corollary 3.7. Taking θ=1 and h(t)=ts in (3.1), the following inequality holds for exponentially (s,m)-convex functions:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(−1)n(CDα,kmb−f)(a)|≤(mb−a)(|f(n+1)(a)eηa|+m|f(n+1)(b)eηb|)2×{(2n−αk+s−12n−αk+s(n−αk+s+1)+(2np−αkp+1−1)1p−(2qs+1−1)1q(2np−αkp+1(np−αkp+1))1p(2qs+1(qs+1))1q)}. |
Corollary 3.8. Choosing η=0, θ=1, m=1, h(t)=t and k=1 in (3.1), the following inequality holds for convex functions via Caputo fractional derivatives:
|f(n)(b)+f(n)(a)2−Γ(n−α+1)2(b−a)n−α(CDαb+f)(b)+(CDαb−f)(a)|≤(b−a)(|f(n+1)(a)|+|f(n+1)(b)|)[(2np−αp+1−1)1p((2q+1−1)1q+1)]2[((2np−αp+1(np−αp+1))1p−1)(2q+1(q+1))1q]. |
In this paper, some inequalities of Hadamard type for exponentially (α,h−m)–convex functions via Caputo k–fractional derivatives are obtained. By applied integral identity including the (n+1)–order derivative of a given function via Caputo k–fractional derivatives, we given some new of its related integral inequalities results. Some new results are given and know results are recaptured as special cases from our results. Since convexity and (exponentially (α,h−m)–convexity) have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, mathematical inequalities and may stimulate further research in different areas of pure and applied sciences.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The authors A. Mukheimer and T. Abdeljawad would like to thank Prince Sultan University for paying APC and for the support through the TAS research lab. The work was also supported by the Higher Education Commission of Pakistan.
The authors declare no conflict of interest.
[1] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
![]() |
[2] |
F. Ghanim, H. F. Al-Janaby, An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator, Math. Methods Appl. Sci., 44 (2021), 3605–3614. https://doi.org/10.1002/mma.6966 doi: 10.1002/mma.6966
![]() |
[3] |
F. Ghanim, S. Bendak, A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. R. Soc. A, 478 (2022), 20210839. https://doi.org/10.1098/rspa.2021.0839 doi: 10.1098/rspa.2021.0839
![]() |
[4] |
S. Rashid, A. Khalid, O. Bazighifan, G. I. Oros, New modifications of integral inequalities via γ-Convexity pertaining to fractional calculus and their applications, Mathematics, 9 (2021), 1753. https://doi.org/10.3390/math9151753 doi: 10.3390/math9151753
![]() |
[5] |
S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract, 6 (2022), 42. ttps://doi.org/10.3390/fractalfract6010042 doi: 10.3390/fractalfract6010042
![]() |
[6] |
H. M. Srivastava, A. Kashuri, P. O. Mohammed, A. M. Alsharif, J. L. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel, AIMS Math., 6 (2021), 11167–11186. ttps://doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648
![]() |
[7] |
H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, K. M. Abualnaja, Interval valued Hadamard, Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, AIMS Math., 7 (2022), 15041–15063. ttps://doi.org/10.3934/math.2022824 doi: 10.3934/math.2022824
![]() |
[8] |
H. M. Srivastava, A. Kashuri, P. O. Mohammed, K. Nonlaopon, Certain inequalities pertaining to some new generalized fractional integral operators, Fractal Fract, 5 (2021), 160. https://doi.org/10.3390/fractalfract5040160 doi: 10.3390/fractalfract5040160
![]() |
[9] |
A. Alb Lupaş, G. I. Oros, Differential subordination and superordination results using fractional integral of confluent hypergeometric function, Symmetry, 13 (2021), 327. https://doi.org/10.3390/sym13020327 doi: 10.3390/sym13020327
![]() |
[10] |
M. Acu, G. Oros, A. M. Rus, Fractional integral of the confluent hypergeometric function related to fuzzy differential subordination theory, Fractal Fract, 6 (2022), 413. https://doi.org/10.3390/fractalfract6080413 doi: 10.3390/fractalfract6080413
![]() |
[11] |
A. Alb Lupaş, G. I. Oros, On special differential subordinations using fractional integral of Sălăgean and Ruscheweyh operators, Symmetry, 13 (2021), 1553. https://doi.org/10.3390/sym13091553 doi: 10.3390/sym13091553
![]() |
[12] |
G. I. Oros, S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10 (2022), 1690. https://doi.org/10.3390/math10101690 doi: 10.3390/math10101690
![]() |
[13] | H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, New York: John Wiley and Sons, 1989. |
[14] | A. Mohammed, M. Darus, A generalized operator involving the q-hypergeometric function, Math. Vesnik, 65 (2013), 454–465. |
[15] | K. A. Challab, M. Darus, F. Ghanim, On subclass of meromorphically univalent functions defined by a linear operator associated with λ-generalized Hurwitz–Lerch zeta function and q-hypergeometric function, Ital. J. Pure Appl. Math., 39 (2018), 410–423. |
[16] |
K. A. Challab, M. Darus, F. Ghanim, On q-hypergeometric function, Far East J. Math. Sci. FJMS, 101 (2017), 2095–2109. https://doi.org/10.17654/MS101102095 doi: 10.17654/MS101102095
![]() |
[17] |
K. A. Challab, M. Darus, F. Ghanim, On meromorphic parabolic starlike functions involving the q-hypergeometric function, AIP Conf. Proc., 1974 (2018), 030003. https://doi.org/10.1063/1.5041647 doi: 10.1063/1.5041647
![]() |
[18] |
H. M. Srivastava, S. Arjika, A general family of q -hypergeometric polynomials and associated generating functions, Mathematics, 9 (2021), 1161. https://doi.org/10.3390/math9111161 doi: 10.3390/math9111161
![]() |
[19] | S. Owa, On the distortion theorems Ⅰ, Kyungpook Math. J., 18 (1978), 53–59. |
[20] |
S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39 (1987), 1057–1077. https://doi.org/10.4153/CJM-1987-054-3 doi: 10.4153/CJM-1987-054-3
![]() |
[21] |
S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6
![]() |
[22] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–172. |
[23] | S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003), 815–826. |
[24] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, New York: Switzerland, 2000. |
[25] | G. Gasper, M. Rahman, Basic hypergeometric series, In: Encyclopedia of mathematics and its applications, Cambridge: Cambridge University Press, 1990. |
[26] | A. Alb Lupas, G. I. Oros, Sandwich type results regarding Riemann-Liouville fractional integral of q-hypergeometric function, Demonstr. Math., 2022. |
[27] |
A. Alb Lupaş, G. I. Oros, Fractional integral of a confluent hypergeometric function applied to defining a new class of analytic functions, Symmetry, 14 (2022), 427. https://doi.org/10.3390/sym14020427 doi: 10.3390/sym14020427
![]() |
[28] |
B. A. Frasin, A new differential operator of analytic functions involving binomial series, Bol. Soc. Paran. Mat., 38 (2020), 205–213. https://doi.org/10.5269/bspm.v38i5.40188 doi: 10.5269/bspm.v38i5.40188
![]() |
[29] |
T. N. Shanmugam, S. Sivasubramanian, B. A. Frasin, S. Kavitha, On sandwich theorems for certain subclasses of analytic functions involving Carlson-Shaffer operator, J. Korean Math. Soc., 45, (2008), 611–620. https://doi.org/10.4134/JKMS.2008.45.3.611 doi: 10.4134/JKMS.2008.45.3.611
![]() |
[30] |
A. Alb Lupaş, G. I. Oros, Fractional calculus and confluent hypergeometric function applied in the study of subclasses of analytic functions, Mathematics, 10 (2022), 705. https://doi.org/10.3390/math10050705 doi: 10.3390/math10050705
![]() |
[31] |
A. Akyar, A new subclass of certain analytic univalent functions associated with hypergeometric functions, Turkish J. Math., 46 (2022), 145–156. https://doi.org/10.3906/mat-2108-101 doi: 10.3906/mat-2108-101
![]() |
[32] |
G. I. Oros, G. Oros, A. M. Rus, Applications of confluent hypergeometric function in strong superordination theory, Axioms, 11 (2022), 209. https://doi.org/10.3390/axioms11050209 doi: 10.3390/axioms11050209
![]() |
1. | Shuhua Wang, Convergence of online learning algorithm with a parameterized loss, 2022, 7, 2473-6988, 20066, 10.3934/math.20221098 |