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Oradea, Romania

* Correspondence: Email: alblupas@gmail.com.

Abstract: The development of certain aspects of geometric function theory after incorporating
fractional calculus and q-calculus aspects is obvious and indisputable. The study presented in this
paper follows this line of research. New results are obtained by applying means of differential
subordination and superordination theories involving an operator previously defined as the Riemann-
Liouville fractional integral of the q-hypergeometric function. Numerous theorems are stated and
proved involving the fractional q-operator and differential subordinations for which the best dominants
are found. Associated corollaries are given as applications of those results using particular functions
as best dominants. Dual results regarding the fractional q-operator and differential superordinations
are also considered and theorems are proved where the best subordinants are given. Using certain
functions known for their remarkable geometric properties applied in the results as best subordinant,
interesting corollaries emerge. As a conclusion of the investigations done by applying the means of the
two dual theories considering the fractional q-operator, several sandwich-type theorems combine the
subordination and superordiantion established results.
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1. Introduction

The benefits of the fractional calculus and q-calculus added to geometric function theory underlined
in the recent review paper published by Srivastava [1] have encouraged and motivated new studies
connecting the two prolific tools with univalent functions theory. The same paper highlights the added
value given to the studies by the use of convolution and fractional operators and also the applicability
of q- hypergeometric functions and q- hypergeometric polynomials in various mathematical fields and
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in geometric function theory.
Fractional calculus applied in studies regarding geometric function theory has provided a

tremendous amount of new and interesting results in recent years. Mittag-Leffler–confluent
hypergeometric function is associated with fractional calculus in [2, 3], convexity aspects are
investigated using fractional calculus in [4, 5] and certain inequality results can also be listed [6–8].
Riemann-Liouville fractional integral is a particularly interesting function that was combined with
many powerful functions for defining new operators involved in studies. The confluent
hypergeometric function was combined with Riemann-Liouville fractional integral in [9, 10],
Ruscheweyh and Sălăgean operators were considered for a new operator involving Riemann-Liouville
fractional integral in [11] and Riemann-Liouville fractional integral of Gaussian hypergeometric
function was applied in the study seen in [12].

Research including quantum calculus aspects in studies related to geometric function theory started
to develop when the general context for such studies was described by Srivastava in a book chapter
in 1989 [13]. The same publication highlights q-hypergeometric function as potentially important in
studies related to univalent functions.

Indeed, the q-hypergeometric function is associated with many studies in geometric function theory.
New operators were defined using q-hypergeometric function [14, 15], subclasses of meromorphic
functions were introduced and studied using q-hypergeometric function [16,17] and q-hypergeometric
polynomials are defined in [18].

Some basic notations and definitions in geometric function theory are the folowing:
U = {z ∈ C : |z| < 1} denotes the unit disc of the complex plane and H (U) represents the class of

holomorphic functions in U. Particularly interesting subclasses ofH (U) are written as:

An =
{
f ∈ H (U) : f (z) = z + an+1zn+1 + . . . , z ∈ U

}
, withA1 = A,

and
H (a, n) =

{
f ∈ H (U) : f (z) = a + anzn + an+1zn+1 + . . . , z ∈ U

}
,

when a ∈ C, n ∈ N∗.
Riemann-Liouville fractional integral is considered as defined in [19, 20].

Definition 1. ( [19, 20]) For a function f the fractional integral of order α (α > 0) is defined by

D−αz f (z) =
1
Γ (α)

∫ z

0

f (t)
(z − t)1−αdt.

Riemann-Liouville fractional integral of q-hypergeometric function is considered in this study in
the context of differential subordination [21, 22] and superordination [23] theories.

Definition 2. ( [21,22]) The analytic function f is subordinate to the analytic function g, written f ≺ g,
if there exists an analytic Schwarz function u, with u(0) = 0 and |u(z)| < 1, for all z ∈ U, such that
f (z) = g(u(z)), for all z ∈ U. When the function g is univalent in U, the subordination is equivalent to
f (0) = g(0) and f (U) ⊂ g(U).

Definition 3. ( [24]) Let ψ : C3 × U → C and h a univalent function in U. When p is an analytic
function in U which verifies the second order differential subordination

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z), z ∈ U, (1.1)
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then p is a solution of the differential subordination. The univalent function g is a dominant of the
solutions of the differential subordination, when p ≺ g for all p verifies the relation (1.1). A dominant
g̃ with the property g̃ ≺ g for all dominants g of (1.1) is the best dominant of (1.1).

Definition 4. ( [23]) Let φ : C3 × U → C and h an analytic function in U.
When p and φ

(
p (z) , zp′ (z) , z2 p′′ (z) ; z

)
are univalent functions in U that verify the differential

superordination
h(z) ≺ φ(p(z), zp′(z), z2 p′′ (z) ; z), z ∈ U, (1.2)

then p is a solution of the differential superordination. An analytic function g is a subordinant of the
solutions of the differential superordination when g ≺ p for all p verifying relation (1.2). A subordinant
g̃ with the property g ≺ g̃ for all subordinants g of (1.2) is the best subordinant of (1.2).

Definition 5. ( [24]) Q is the set of all analytic and injective functions f on U\E ( f ), with f ′ (z) , 0
for z ∈ ∂U\E ( f ) and E ( f ) = {ζ ∈ ∂U : lim

z→ζ
f (z) = ∞}.

Definition 6. ( [25]) The q-hypergeometric function ϕ (m, n; q, z) is defined by

ϕ (m, n; q, z) =
∞∑
j=0

(m, q) j

(q, q) j (n, q) j
z j,

where

(m, q) j =

 1, j = 0,
(1 − m) (1 − mq)

(
1 − mq2

)
...

(
1 − mq j−1

)
, j ∈ N,

and 0 < q < 1.

Considering Definitions 1 and 6, Riemann-Liouville fractional integral of q-hypergeometric
function in introduced as:

Definition 7. ( [26]) The Riemann-Liouville fractional integral of q-confluent hypergeometric function
is

D−αz ϕ (m, n; q, z) =
1
Γ (α)

∫ z

0

ϕ (m, n; q, t)
(z − t)1−α dt (1.3)

=
1
Γ (α)

∞∑
j=0

(m, q) j

(q, q) j (n, q) j

∫ z

0

t j

(z − t)1−αdt,

where m, n ∈ C with n , 0,−1,−2, ... and α > 0, 0 < q < 1.

After a simple calculation, it can be written using the following form

D−αz ϕ (m, n; q, z) =
∞∑
j=0

(m, q) j

(q, q) j (n, q) j ( j + 1)α
zα+ j, (1.4)

and D−αz ϕ (m, n; q, z) ∈ H [0, α] .
The next two lemmas are used in the proofs of the new results presented in the next section.
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Lemma 1. ( [24]) Consider the univalent function g in U and the analytic functions φ, γ in a domain
D ⊃ g (U) with γ (u) , 0 when u ∈ g (U). Set G (z) = zγ (g (z)) g′ (z) and h (z) = G (z) + φg (z). Assume
that G is starlike univalent in U and Re

(
zh′(z)
G(z)

)
> 0 for z ∈ U. When p is analytic with the properties

p (0) = g (0), p (U) ⊆ D and φ (p (z))+ zγ (p (z)) p′ (z) ≺ φ (g (z))+ zγ (g (z)) g′ (z) , then p ≺ g and g is
the best dominant.

Lemma 2. ( [27]) Consider the convex univalent function g in U and the analytic functions φ, γ in
a domain D ⊃ g (U). Assume that Re

(
φ′(g(z))
γ(g(z))

)
> 0 for z ∈ U and G (z) = zγ (g (z)) g′ (z) is starlike

univalent in U. When p (z) ∈ H
[
g (0) , 1

]
∩ Q, with p (U) ⊆ D and φ (p (z)) + zγ (p (z)) p′ (z) is

univalent in U and φ (g (z)) + zγ (g (z)) g′ (z) ≺ φ (p (z)) + zγ (p (z)) p′ (z) , then g ≺ p and g is the best
subordinant.

The first results obtained using the operator given by (1.3) and (1.4) are related to differential
subordination (see also [28]). The first theorem proved is followed by two corollaries obtained by
using certain functions as best dominant of the differential subordination considered in Theorem 1.
Theorem 4 contains the dual results regarding differential superordinations associated with the
operator given in Definition 7. Associated corollaries are derived by using particular functions with
nice geometrical properties as the best subordinant provided in Theorem 4. Theorem 7 and the
corollaries which accompany it combine the dual results previously obtained into the first
sandwich-type results stated in this paper, familiary to geometric function theory (see also [29]). The
research is continued by choosing different functions for obtaining another series of theorems and
corollaries related to differential subordinations and superordinations. The study is completed by the
statement of the sandwich-type theorem and associated corollaries combining the dual results
obtained in Theorems 10 and 13 and in the corollaries following them.

2. Main results

The first theorem stated is related to a differential subordination obtained by using the
Riemann-Liouville fractional integral of q-hypergeometric function presented in Definition 7. For this
differential subordination, the best dominant is provided.

Theorem 1. Consider the analytic and univalent function g in U with g (z) , 0, for all z ∈ U and
z(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z) ∈ H (U), where m, n ∈ C, n , 0,−1,−2, ... and α > 0, 0 < q < 1. Assume that zg′(z)
g(z) is a

starlike univalent function in U and

Re
(
β

ψ
g (z) +

2δ
ψ

g2 (z) + 1 − z
g′ (z)
g (z)

+ z
g′′ (z)
g′ (z)

)
> 0, (2.1)

for ε, β, ψ, δ ∈ C, ψ , 0, z ∈ U and

Ψm,n,q
α (ε, β, δ, ψ; z) := ε + ψ + (β − ψ)

z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

+ (2.2)

δ

z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)


2

+ δ
z
(
D−αz ϕ (m, n; q, z)

)′′(
D−αz ϕ (m, n; q, z)

)′ .
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When g verifies the differential subordination

Ψm,n,q
α (ε, β, δ, ψ; z) ≺ ε + βg (z) + δ (g (z))2 + ψ

zg′ (z)
g (z)

, (2.3)

for ε, β, ψ, δ ∈ C, ψ , 0, then
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺ g (z) , (2.4)

and the best dominant is the function g.

Proof. Define p (z) := z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) , z ∈ U, z , 0 and differentiating it we get p′ (z) = (D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z) −

z
(
(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z)

)2
+ z (D−αz ϕ(m,n;q,z))′′

D−αz ϕ(m,n;q,z) and

zp′ (z)
p (z)

= 1 − z

(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

+ z

(
D−αz ϕ (m, n; q, z)

)′′(
D−αz ϕ (m, n; q, z)

)′ . (2.5)

Considering φ (u) = δu2 + βu + ε analytic in C, and γ (u) = ψ

u , analytic in C\{0} with γ (u) , 0,
u ∈ C\{0}, we define the starlike univalent function in U, G (z) = zγ (g (z)) g′ (z) = ψ zg′(z)

g(z) and h (z) =

G (z) + φ (g (z)) = ε + βg (z) + δ (g (z))2 + ψ zg′(z)
g(z) .

Differentiating it, we get h′ (z) = βg′ (z) + 2δg (z) g′ (z) + ψ g′(z)
g(z) − ψz

(
g′(z)
g(z)

)2
+ ψzg′′(z)

g(z) and zh′(z)
G(z) =

β

ψ
g (z) + 2δ

ψ
g2 (z) + 1 − zg′(z)

g(z) + zg′′(z)
g(z) and we have

Re
(

zh′(z)
G(z)

)
= Re

(
β

ψ
g (z) + 2δ

ψ
g2 (z) + 1 − zg′(z)

g(z) + zg′′(z)
g(z)

)
> 0 by relation (2.1).

Using relation (2.5), we can write ε + βp (z) + δ (p (z))2 + ψ zp′(z)
p(z) =

ε + ψ + (β − ψ) z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) + δ

(
z(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z)

)2
+ δ

z(D−αz ϕ(m,n;q,z))′′

(D−αz ϕ(m,n;q,z))′ .

Taking into account the differential subordination (2.3), we get ε + βp (z) + δ (p (z))2 + ψ zp′(z)
p(z) ≺

ε+ βg (z)+ δ (g (z))2 + ψ zg′(z)
g(z) and applying Lemma 1, we obtain p ≺ g, i.e. z(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z) ≺ g (z), z ∈ U
and g is the best dominant. □

Corollary 2. Considering g (z) = Mz+1
Nz+1 , −1 ≤ N < M ≤ 1 and relation (2.1) is true, when

Ψm,n,q
α (ε, β, δ, ψ; z) ≺ ε + β

Mz + 1
Nz + 1

+ δ

(
Mz + 1
Nz + 1

)2

+
ψ (M − N) z

(Mz + 1) (Nz + 1)
,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, β, ψ, δ ∈ C, ψ , 0 and ψ
m,n,q
α defined by

relation (2.2), then
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺
Mz + 1
Nz + 1

,

with the best dominant Mz+1
Nz+1 .
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Corollary 3. Considering g (z) =
(

z+1
1−z

)k
, 0 < k ≤ 1, and relation (2.1) is true, when

Ψm,n,q
α (ε, β, δ, ψ; z) ≺ ε + β

(
z + 1
1 − z

)k

+ δ

(
z + 1
1 − z

)2k

+
2kψz
1 − z2 ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, β, ψ, δ ∈ C, ψ , 0 and ψ
m,n,q
α defined by

relation (2.2), then
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺

(
z + 1
1 − z

)k

,

with the best dominant
(

z+1
1−z

)k
.

The next theorem gives the best subordinant of a differential superordination studied in connection
to Riemann-Liouville fractional integral of q-hypergeometric function given in Definition 7.

Theorem 4. Consider the analytic and univalent function g in U such that g (z) , 0 and zg′(z)
g(z) starlike

univalent in U. Assume that

Re
(
β

ψ
g (z) g′ (z) +

2δ
ψ

g2 (z) g′ (z)
)
> 0, for β, ψ, δ ∈ C, ψ , 0. (2.6)

When z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and Ψm,n,q

α (ε, β, δ, ψ; z) defined by relation (2.2) is univalent in
U, α > 0, 0 < q < 1, m, n ∈ C, n , 0,−1,−2, ..., then

ε + βg (z) + δ (g (z))2 +
ψzg′ (z)

g (z)
≺ Ψm,n,q

α (ε, β, δ, ψ; z) (2.7)

implies

g (z) ≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

, z ∈ U, (2.8)

and g is the best subordinant.

Proof. Define p (z) := z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) , z ∈ U, z , 0. and consider the analytic functions φ (u) = δu2 +

βu + ε in C, and γ (u) = ψ

u , respectively in C\{0} with γ (u) , 0, u ∈ C\{0}. Differentiating it, we can

write φ′(g(z))
γ(g(z)) =

[β+2δg(z)]g(z)g′(z)
ψ

, and

Re
(
φ′(g(z))
γ(g(z))

)
= Re

(
β

ψ
g (z) g′ (z) + 2δ

ψ
g2 (z) g′ (z)

)
> 0, for β, ψ, δ ∈ C, ψ , 0, taking account of the

relation (2.6).
Differential subordination (2.7) can be written using relation (2.5) as follows

ε + βg (z) + δ (g (z))2 +
ψzg′ (z)

g (z)
≺ ε + βp (z) + δ (p (z))2 +

τψzp′ (z)
p (z)

,

and applying Lemma 2, we obtain

g (z) ≺ p (z) =
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

, z ∈ U,

and g is the best subordinant. □
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Corollary 5. Considering g (z) = Mz+1
Nz+1 , −1 ≤ N < M ≤ 1 and relation (2.6) is true, when

z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε + β
Mz + 1
Nz + 1

+ δ

(
Mz + 1
Nz + 1

)2

+
ψ (M − N) z

(Mz + 1) (Nz + 1)
≺ Ψm,n,q

α (ε, β, δ, ψ; z) ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, β, ψ, δ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.2), then

Mz + 1
Nz + 1

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

,

with the best subordinant Mz+1
Nz+1 .

Corollary 6. Considering g (z) =
(

z+1
1−z

)k
, 0 < k ≤ 1, and relation (2.6) is true, when z(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z) ∈

H
[
g (0) , 1

]
∩ Q and

ε + β

(
z + 1
1 − z

)k

+ δ

(
z + 1
1 − z

)2k

+
2kψz
1 − z2 ≺ Ψ

m,n,q
α (ε, β, δ, ψ; z) ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, β, ψ, δ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.2), then (
z + 1
1 − z

)k

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

,

with the best subordinant
(

z+1
1−z

)k
.

Combining Theorems 1 and 4, we state the following sandwich theorem.

Theorem 7. Consider the analytic and univalent functions g1, g2 in U with the properties g1 (z) , 0,
g2 (z) , 0, for all z ∈ U, and zg′1(z)

g1(z) ,
zg′2(z)
g2(z) starlike univalent. Assuming that g1 verifies (2.1) and g2

verifies (2.6), when z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and Ψm,n,q

α (ε, β, δ, ψ; z) defined by relation (2.2) is
univalent in U, α > 0, 0 < q < 1, m, n ∈ C, n , 0,−1,−2, ...; ε, β, ψ, δ ∈ C, ψ , 0, then

ε + βg1 (z) + δ (g1 (z))2 +
ψzg′1 (z)

g1 (z)
≺ Ψm,n,q

α (ε, β, δ, ψ; z) ≺ ε + βg2 (z) + δ (g2 (z))2 +
ψzg′2 (z)

g2 (z)
,

implies

g1 (z) ≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺ g2 (z) ,

and g1 and g2 are respectively the best subordinant and the best dominant.

Corollary 8. Considering g1 (z) = M1z+1
N1z+1 , g2 (z) = M2z+1

N2z+1 , where −1 ≤ N2 < N1 < M1 < M2 ≤ 1 and

relations (2.1) and (2.6) are true, if z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε + β
M1z + 1
N1z + 1

+ δ

(
M1z + 1
N1z + 1

)2

+
ψ (M1 − N1) z

(M1z + 1) (N1z + 1)
≺ Ψm,n,q

α (ε, β, δ, ψ; z)
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≺
M2z + 1
N2z + 1

+ δ

(
M2z + 1
N2z + 1

)2

+
ψ (M2 − N2) z

(M2z + 1) (N2z + 1)
,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, β, ψ, δ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.2), then

M1z + 1
N1z + 1

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺
M2z + 1
N2z + 1

,

with the best dominant M2z+1
N2z+1 and the best subordinant M1z+1

N1z+1 .

Corollary 9. Considering g1 (z) =
(

z+1
1−z

)k1
, g2 (z) =

(
z+1
1−z

)k2
0 < k1 < k2 ≤ 1, and relations (2.1) and (2.6)

are true, if z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε + β

(
z + 1
1 − z

)k1

+ δ

(
z + 1
1 − z

)2k1

+
2k1ψz
1 − z2 ≺ Ψ

m,n,q
α (ε, β, δ, ψ; z)

≺ ε + β

(
z + 1
1 − z

)k2

+ δ

(
z + 1
1 − z

)2k2

+
2k2ψz
1 − z2 ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, β, ψ, δ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.2), then (
z + 1
1 − z

)k1

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺

(
z + 1
1 − z

)k2

,

with the best dominant
(

z+1
1−z

)k2
and the best subordinant

(
z+1
1−z

)k1
.

Choosing the functions φ (u) = εu and γ (u) = ψ, u ∈ U, we obtain other subordination and
superordination theorems and corollaries.

Theorem 10. Let the convex and univalent function g in U with g (0) = α and z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H (U) ,

z ∈ U, where α > 0, 0 < q < 1, m, n ∈ C, n , 0,−1,−2, .... Suppose that

Re
(
ε + ψ

ψ
+ z

g′′ (z)
g′ (z)

)
> 0, (2.9)

for ε, ψ ∈ C, ψ , 0, z ∈ U, and

Ψm,n,q
α (ε, ψ; z) := (ε + ψ)

z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

− ψ

z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)


2

(2.10)

+ψ
z2

(
D−αz ϕ (m, n; q, z)

)′′
D−αz ϕ (m, n; q, z)

.

When g verifies the differential subordination

Ψm,n,q
α (ε, ψ; z) ≺ εg (z) + ψzg′ (z) , (2.11)
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for ε, ψ ∈ C, ψ , 0, z ∈ U, then

z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺ g (z) , z ∈ U, (2.12)

and g is the best dominant.

Proof. Define the analytic function p (z) := z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) , z ∈ U, z , 0 in U, with p (0) = α.

Differentiating it, we get p′ (z) = (D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) − z

(
(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z)

)2
+ z (D−αz ϕ(m,n;q,z))′′

D−αz ϕ(m,n;q,z) and

zp′ (z) =
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

−

z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)


2

+
z2

(
D−αz ϕ (m, n; q, z)

)′′
D−αz ϕ (m, n; q, z)

. (2.13)

Considering the analytic functions φ (u) = εu in C and γ (u) = ψ , 0 in C\{0}, we define the starlike
univalent function G (z) = zγ (g (z)) g′ (z) = ψzg′ (z) in U and h (z) = G (z)+φ (g (z)) = εg (z)+ψzg′ (z).
Relation (2.9) can be written Re

(
zh′(z)
G(z)

)
= Re

(
ε+ψ

ψ
+ zg′′(z)

g′(z)

)
> 0 and using relation (2.13), we obtain

εp (z) + ψzp′ (z) = (ε + ψ) z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) − ψ

(
z(D−αz ϕ(m,n;q,z))′

D−αz ϕ(m,n;q,z)

)2
+ ψ

z2(D−αz ϕ(m,n;q,z))′′
D−αz ϕ(m,n;q,z) .

The differential subordination (2.11) can be written εp (z)+ψzp′ (z) ≺ εg (z)+ψzg′ (z) and applying

Lemma 1, we get p ≺ g, i.e. z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ≺ g (z), z ∈ U, and g is the best dominant. □

Corollary 11. Considering g (z) = Mz+1
Nz+1 , −1 ≤ N < M ≤ 1, z ∈ U, and relation (2.9) is true, when

Ψm,n,q
α (ε, ψ; z) ≺ ε

Mz + 1
Nz + 1

+
ψ (M − N) z
(Nz + 1)2 ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, ψ ∈ C, ψ , 0 and ψ
m,n,q
α defined by the

relation (2.10), then
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺
Mz + 1
Nz + 1

,

with the best dominant Mz+1
Nz+1 .

Corollary 12. Considering g (z) =
(

z+1
1−z

)k
, 0 < k ≤ 1, and relation (2.9) is true, when

Ψm,n,q
α (ε, ψ; z) ≺ ε

(
z + 1
1 − z

)k

+
2kψz
1 − z2

(
z + 1
1 − z

)k

,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, ψ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.10), then
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺

(
z + 1
1 − z

)k

,

with the best dominant
(

z+1
1−z

)k
.
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Theorem 13. Consider the convex and univalent function g in U with g (0) = α, where α > 0, 0 < q <
1, m, n ∈ C, n , 0,−1,−2, .... Suppose that

Re
(
ε

ψ
g′ (z)

)
> 0, for ε, ψ ∈ C, ψ , 0. (2.14)

When z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and Ψm,n,q

α (ε, ψ; z) defined by relation (2.10) is univalent in U,
then

εg (z) + ψzg′ (z) ≺ Ψm,n,q
α (ε, ψ; z) (2.15)

implies

g (z) ≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

, z ∈ U, (2.16)

and g is the best subordinant.

Proof. Define the analytic function p (z) = z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) , z ∈ U, z , 0, with p (0) = α and consider the

analytic functions φ (u) = εu in C and γ (u) = ψ , 0 in C\{0}.
Differentiating it we obtain φ′(g(z))

γ(g(z)) =
ε
ψ

g′ (z), and Re
(
φ′(g(z))
γ(g(z))

)
= Re

(
ε
ψ

g′ (z)
)
> 0, for ε, ψ ∈ C, ψ , 0,

taking account of relation (2.14).
The differential superordination (2.15) takes the following form

εg (z) + ψzg′ (z) ≺ εp (z) + ψzp′ (z) , z ∈ U,

and applying Lemma 2, we obtain

g (z) ≺ p (z) =
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

, z ∈ U,

and g is the best subordinant. □

Corollary 14. Considering g (z) = Mz+1
Nz+1 , −1 ≤ N < M ≤ 1, z ∈ U, and the relation (2.14) is true, when

z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε
Mz + 1
Nz + 1

+
ψ (M − N) z
(Nz + 1)2 ≺ Ψ

m,n,q
α (ε, ψ; z) ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, ψ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.10), then

Mz + 1
Nz + 1

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

,

with the best subordinant Mz+1
Nz+1 .
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Corollary 15. Considering g (z) =
(

z+1
1−z

)k
, 0 < k ≤ 1, and the relation (2.14) is true, when

z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε

(
z + 1
1 − z

)k

+
2kψz
1 − z2

(
z + 1
1 − z

)k

≺ Ψm,n,q
α (ε, ψ; z) ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, ψ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.10), then (
z + 1
1 − z

)k

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

,

with the best subordinant
(

z+1
1−z

)k
.

Combining Theorem 10 and 13, we state the following sandwich theorem.

Theorem 16. Consider the convex and univalent functions g1, g2 in U such that g1 (z) , 0 and g2 (z) ,

0, for all z ∈ U. Assuming that g1 satisfies (2.9) and g2 satisfies (2.14), if z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩

Q, and Ψm,n,q
α (ε, ψ; z) defined by relation (2.10) is univalent in U, α > 0, 0 < q < 1, m, n ∈ C,

n , 0,−1,−2, ..., then

εg1 (z) + ψzg′1 (z) ≺ Ψm,n,q
α (ε, ψ; z) ≺ εg2 (z) + ψzg′2 (z) ,

for ε, ψ ∈ C, ψ , 0, implies

g1 (z) ≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺ g2 (z) , z ∈ U,

and g1 and g2 are respectively the best subordinant and the best dominant.

Corollary 17. Considering g1 (z) = M1z+1
N1z+1 , g2 (z) = M2z+1

N2z+1 , where −1 ≤ N2 < N1 < M1 < M2 ≤ 1 and

the relations (2.9) and (2.14) are true, if z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε
M1z + 1
N1z + 1

+
ψ (M1 − N1) z

(N1z + 1)2 ≺ Ψm,n,q
α (ε, ψ; z) ≺ ε

M2z + 1
N2z + 1

+
ψ (M2 − N2) z

(N2z + 1)2 ,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, ψ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.10), then

M1z + 1
N1z + 1

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺
M2z + 1
N2z + 1

,

with the best dominant M2z+1
N2z+1 and the best subordinant M1z+1

N1z+1 .

Corollary 18. Considering g1 (z) =
(

z+1
1−z

)k1
, g2 (z) =

(
z+1
1−z

)k2
0 < k1 < k2 ≤ 1, and the relations (2.9)

and (2.14) are true, if z(D−αz ϕ(m,n;q,z))′
D−αz ϕ(m,n;q,z) ∈ H

[
g (0) , 1

]
∩ Q and

ε

(
z + 1
1 − z

)k1

+
2k1ψz
1 − z2

(
z + 1
1 − z

)k1

≺ Ψm,n,q
α (ε, ψ; z)

AIMS Mathematics Volume 8, Issue 2, 4930–4943.



4941

≺ ε

(
z + 1
1 − z

)k2

+
2k2ψz
1 − z2

(
z + 1
1 − z

)k2

,

where m, n ∈ C, n , 0,−1,−2, ...; α > 0, 0 < q < 1, ε, ψ ∈ C, ψ , 0 and Ψm,n,q
α defined by the

relation (2.10), then (
z + 1
1 − z

)k1

≺
z
(
D−αz ϕ (m, n; q, z)

)′
D−αz ϕ (m, n; q, z)

≺

(
z + 1
1 − z

)k2

,

with the best dominant
(

z+1
1−z

)k2
and the best subordinant

(
z+1
1−z

)k1
.

3. Discussions

Motivated by the interesting and varied results obtained by incorporating fractional calculus and q-
hypergeometric function in the studies regarding geometric function theory, the dual theories of
differential subordination and superordination are applied for obtaining new results involving
Riemann-Liouville fractional integral of q-hypergeometric function presented in Definition 7 and
given in relations (1.3) and (1.4). Best dominants and best subordinants are obtained for each
differential subordination and superordination considered, respectively, in the theorems and
interesting corollaries emerge when functions well-known for their geometric properties as applied in
the theorems as best dominant or best subordinant. The results obtained considering the two dual
theories are connected by sandwich-type results which are familiar to geometric function theory.

Given the geometrical properties which can be interpreted from corollaries, future studies could
consider introducing new subclasses of functions using the Riemann-Liouville fractional integral of
q-hypergeometric function as seen in [27,30,31], for example and other differential subrodinations and
superordinations could be obtained related to those functions. Also, strong differential subordination
and superordination could be connected to the operator given in Definition 7 like seen in [32].
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