Let ϕ(x) be a smooth function supported on [1,2] with derivatives bounded by ϕ(j)(x)≪1 and d3(n) be the number of ways to write n as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum ∑n ≡ l mod qd3(n)ϕ(nX)e(33√knq).
Citation: Rui Zhang, Yang Li, Xiaofei Yan. Exponential sums involving the divisor function over arithmetic progressions[J]. AIMS Mathematics, 2023, 8(5): 11084-11094. doi: 10.3934/math.2023561
[1] | Huafeng Liu, Rui Liu . The sum of a hybrid arithmetic function over a sparse sequence. AIMS Mathematics, 2024, 9(2): 4830-4843. doi: 10.3934/math.2024234 |
[2] | Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96 |
[3] | Li Zhou, Liqun Hu . Sum of the triple divisor function of mixed powers. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713 |
[4] | Long Chen, Shaofang Hong . Divisibility among determinants of power matrices associated with integer-valued arithmetic functions. AIMS Mathematics, 2020, 5(3): 1946-1959. doi: 10.3934/math.2020130 |
[5] | Aleksa Srdanov . Invariants in partition classes. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401 |
[6] | Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641 |
[7] | Huimin Wang, Liqun Hu . Sums of the higher divisor function of diagonal homogeneous forms in short intervals. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150 |
[8] | Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186 |
[9] | Zhen Guo . On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415 |
[10] | Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537 |
Let ϕ(x) be a smooth function supported on [1,2] with derivatives bounded by ϕ(j)(x)≪1 and d3(n) be the number of ways to write n as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum ∑n ≡ l mod qd3(n)ϕ(nX)e(33√knq).
The divisor functions
dk(n)=∑n1n2⋯nk=n1 |
are the basic arithmetic functions in number theory, and it generate the Dirichlet series ζk(s) which are the simplest GLkL-functions. Hence the behavior of the divisor functions are very important in the theory of automorphic L-funcions. In this article, we will study the sum of the type
∑n ≡ l mod qd3(n)ϕ(nX)e(33√knq), | (1.1) |
where ϕ(x) is a C∞-function supported on [1,2] with derivatives bounded by ϕ(j)(x)≪1 and k∈Z+.
Studying the asymptotic distribution of this type of sums that involving the Fourier coefficients and the nonlinear exponential functions are very classical in analytic number theory. The oscillation behavior of Fourier coefficients of GL2 automorphic forms is studied by Ren and Ye [13] and they proved an asymptotic formula for the sum
∑X<n≤2Xλf(n)e(α√n), |
where λf(n) is the n-th Fourier coefficient of a holomorphic cusp form for GL2. The analytic properties of λf(n) were studied by many authors, see [7,8,9,10,19,20,21,22,23]. For the Maass forms on GL2, Sun and Wu [16] proved the similar asymptotic formula. Acharya and Singh [1] gave the upper bound of the sum
∑N<n≤2Nλf(n)ν(n)e(αnθ), |
where α, θ are real numbers with 0<θ<1, and ν(n) is either μ(n) or Λ(n). If f(x) is a Hecke-Maass cusp form for SL(3,Z), Ren and Ye [14] proved an asymptotic formula for the sum
∑n≥1Af(1;n)ϕ(nX)e(33√kn), |
where Af(1;n) is the (1,n)-th Fourier coefficients of f. Let f be a full-level cusp form for GLm(Z) with Fourier coefficients Af(n1,⋯,nm−1), Ren and Ye [15] considered the following exponential sums:
∑X<|n|≤2XAf(n,1,⋯,1)e(±α|n|1/m), |
∑n≠0Af(n,1,⋯,1)e(±α|n|1/m)ϕ(|n|X). |
They obtained the asymptotic formulas and upper bounds for these sums.
When the summation is restricted in arithmetic progressions, Yan [18] has proved an asymptotic formula for
∑X<n≤2Xn ≡ l mod qλf(n)e(±2√knq), k∈Z+, |
where λf(n) is the n-th Fourier coefficient of a holomorphic cusp form for SL(2,Z). Ma and Yan [12] also focused on the oscillation behavior of the exponential sum twisted by r(n) over the arithmetic progressions, where r(n) denote{s} the number of representations of a positive integer n as a sum of two squares. He [3] studied the asymptotic formula for the corresponding GL3 exponential sum
∑X<n≤2Xn ≡ l mod qAf(m;n)ϕ(nX)e(33√knq), k∈Z+. |
The divisor functions are involving the theory of GLkL-functions. Sun and Zhang [17] studied the average behavior of the divisor functions over values of quadratic forms and got its asymptotic formula. And the general divisor problems involving Hecke eigenvalues also have attracted many authors, see [4,5]. In this paper, we consider the oscillation behavior of the divisor functions dk(n) in arithmetic progressions when k=3. More precisely, the aim of this paper is to prove the following result.
Theorem 1. Let k,l,q∈N. Then for any ϵ>0 and q≪X13−ϵ, we have
∑n ≡ l mod qd3(n)ϕ(nX)e(33√knq)=1q2∑a mod q(a,q)=1e(−alq)∫∞0P(logx)ϕ(xX)e(33√kxq)dx+√3X23q3k13i∑a mod q(a,q)=1e(−alq)(A(k,aq)+B(k,aq))c(ϕ)+O(q52X−23+ϵ+q12+ϵk712+ϵX13), |
where A(k,aq) and B(k,aq) are defined in Lemma 2.1 and c(ϕ)=∫∞0uϕ(u3)du.
An interesting generalization of this problem is to replace the exponential function e(33√knq) in (1.1) with the q-exponential function eq(z) or the degenerate exponential function etλ for their definitions and properties see Chung-Kim-Kwon [2] and Kim-Kim [11] respectively.
To prove our theorem, we need the following lemmas.
Lemma 2.1. Let f(x) be a smooth function of compact support in (0,∞) and d3(n) be the number of ways to write n as a product of three factors. Then we have
∞∑n=1f(n)d3(n)e(hnk)=1k∫∞0P(logx)f(x)dx+π32k3∞∑n=1A(n,hk)∫∞0U(π3nxk3)f(x)dx+iπ32k3∞∑n=1B(n,hk)∫∞0V(π3nxk3)f(x)dx, | (2.1) |
where
A(n,hk)=12∑n1n2n3=nk∑x1=1k∑x2=1k∑x3=1{e(n1x1+n2x2+n3x3+hx1x2x3k) +e(n1x1+n2x2+n3x3−hx1x2x3k)}, | (2.2) |
B(n,hk)=12∑n1n2n3=nk∑x1=1k∑x2=1k∑x3=1{e(n1x1+n2x2+n3x3+hx1x2x3k) −e(n1x1+n2x2+n3x3−hx1x2x3k)} | (2.3) |
and
U(x)=12πi∫13+i∞13−i∞Γ3(s2)Γ3(1−s2)dsxs, V(x)=12πi∫13+i∞13−i∞Γ3(1+s2)Γ3(2−s2)dsxs. | (2.4) |
Proof. See the Section 5 of Ivić [6].
Lemma 2.2. If A(n,hk) is defined by (2.2), then for (h,k)=1 we have
A(n,hk)≪ϵk32+ϵn14+ϵ. |
Proof. See the Section 8 of Ivić [6].
Lemma 2.3. If U(x) and V(x) are defined by (2.4), then for any fixed integer K≥1 and x≥x0>0
U(x)=K∑j=1cjcos(6x1/3)+djsin(6x1/3)xj/3+O(1x(K+1)/3), | (2.5) |
V(x)=K∑j=1ejcos(6x1/3)+fjsin(6x1/3)xj/3+O(1x(K+1)/3), | (2.6) |
∫U(x)dx=K∑j=0gjcos(6x1/3)+hjsin(6x1/3)x(j−1)/3+O(1xK/3), | (2.7) |
∫V(x)dx=K∑j=0kjcos(6x1/3)+ljsin(6x1/3)x(j−1)/3+O(1xK/3) | (2.8) |
with suitable constants cj,⋯,lj, and in particular
c1=0, d1=−2√3π, e1=−2√3π, f1=0,g0=1√3π, h0=0, k0=0, l0=−1√3π. |
Proof. See the Lemma 3 of Ivić [6].
Denote α=33√kq. We consider the sum
S:=S(k,l,q,X)=∑n≡l mod qd3(n)ϕ(nX)e(α3√n). | (3.1) |
Note that
∑c|q∑a mod c(a,c)=1e(anc)={q,q|n;0,otherwise. |
Then
S=1q∑c|q∑a mod c(a,c)=1e(−alc)∑n≥1d3(n)e(anc)ϕ(nX)e(α3√n). | (3.2) |
Applying Lemma 2.1 with f(x)=ϕ(x/X)e(α3√x), we have
∑n≥1d3(n)e(anc)f(n)=1c∫∞0P(logx)f(x)dx+π32c3∑n≥1A(n,ac)∫∞0U(π3nxc3)f(x)dx+iπ32c3∑n≥1B(n,ac)∫∞0V(π3nxc3)f(x)dx=:S0(a,c)+S1(a,c)+S2(a,c), | (3.3) |
where
S0(a,c)=1c∫∞0P(logx)f(x)dx,S1(a,c)=π32c3∑n≥1A(n,ac)ψ1(π3√nc), ψ1(π3√nc)=∫∞0U(π3nxc3)f(x)dx,S2(a,c)=iπ32c3∑n≥1B(n,ac)ψ2(π3√nc), ψ2(π3√nc)=∫∞0V(π3nxc3)f(x)dx. | (3.4) |
Applying Lemma 2.3 with K=3, we obtain
ψ1(π3√nc)=3∑j=1∫∞0f(x)cjcos(6π3√nxc)+djsin(6π3√nxc)πjc−j(nx)j/3dx+O(π−4c4n−43X−23+ϵ), | (3.5) |
ψ2(π3√nc)=3∑j=1∫∞0f(x)ejcos(6π3√nxc)+fjsin(6π3√nxc)πjc−j(nx)j/3dx+O(π−4c4n−43X−23+ϵ). | (3.6) |
By Lemma 2.2, the O-term in (3.5) contributes to S1(a,c)
≪c−3∑n≥1A(n,ac)π−4c4n−43X−23+ϵ≪c52X−23+ϵ. |
By Lemma 2.2, the O-term in (3.6) contributes to S2(a,c)
≪c−3∑n≥1B(n,ac)π−4c4n−43X−23+ϵ≪c52X−23+ϵ. |
For the integral in (3.5) and (3.6), we make a change of variable x=Xu3 to get
∫∞0ϕ(xX)e(α3√x±33√nxc)cj(π3nx)−j/3dx=3X∫∞0ϕ(u3)e((α±33√nc)3√Xu)cjπ−j(nX)−j/3u−ju2du=3Xcj(π3nX)−j/3I±j(nc3), | (3.7) |
where
I±j(nc3)=∫3√21u2−jϕ(u3)e((α±33√nc)3√Xu)du. | (3.8) |
By (3.4)–(3.7), we have
S1(a,c)=3π32c3∑n≥1A(n,ac)3∑j=1Xcj(π3nX)−j/3(cj2I+j(nc3)+cj2I−j(nc3) +dj2iI+j(nc3)−dj2iI−j(nc3))+O(c52X−23+ϵ), |
S2(a,c)=i3π32c3∑n≥1B(n,ac)3∑j=1Xcj(π3nX)−j/3(ej2I+j(nc3)+ej2I−j(nc3) +fj2iI+j(nc3)−fj2iI−j(nc3))+O(c52X−23+ϵ). |
Let
F±(u):=F±(u,n)=(α±33√nc)3√Xu. |
Note that
α3√X=33√kXq>Xϵ |
for q<X13−ϵ. Then
F′+(u)=(α+33√nc)3√X≫α3√X≫Xϵ |
and by integration by parts many times, we show that I+j(nc3) is negligible. For n≥2c3α327 or n≤c3α3100, we also have
F′−(u)=(α−33√nc)3√X≫α3√X≫Xϵ, |
thus, I−j(nc3) is negligible for n≥2c3α327 or n≤c3α3100. Denote
I=(c3α3100,2c3α327). |
Then we can get
S1(a,c)=3π322c3∑n∈IA(n,ac)3∑j=1cjπ−jn−j3X1−j3(cjI−j(nc3)+idjI−j(nc3))+O(c52X−23+ϵ), | (3.9) |
S2(a,c)=i3π322c3∑n∈IB(n,ac)3∑j=1cjπ−jn−j3X1−j3(ejI−j(nc3)+ifjI−j(nc3))+O(c52X−23+ϵ). | (3.10) |
For j≥2, we use the trivial bound I−j(nc3)≪1. Then the contribution from I−j(nc3), j=2,3 to S1(a,c) in (3.9) and S2(a,c) in (3.10) is at most
≪c94+ϵα74X13. |
Then, by Lemma 2.3, (3.9) and (3.10), we have
S1(a,c)=√3c2iX23∑n∈IA(n,ac)n−13I−1(nc3)+O(c52X−23+ϵ+c94+ϵα74X13), | (3.11) |
S2(a,c)=√3c2iX23∑n∈IB(n,ac)n−13I−1(nc3)+O(c52X−23+ϵ+c94+ϵα74X13). | (3.12) |
Thus, by (3.11) and (3.12), we can get
S1(a,c)+S2(a,c)=√3c2iX23∑n∈I(A(n,ac)+B(n,ac))n−13I−1(nc3)+O(c52X−23+ϵ+c94+ϵα74X13). | (3.13) |
Note that the first term in (3.13) disappears when α≤33√2c. For α>33√2c, let nα≥1 be the integer such that
(cα3)3=nα+λ, −12<λ≤12. | (3.14) |
Then for any positive integer n, we have
|33√nc−α|=3c|3√n−cα3|=3|n−nα−λ|c(3√n2+3√n(cα3)+(cα3)2). |
For n≠nα, the right-hand side of above equation
≫|n−nα|c−3α−2, |
and then
F′−(u,n)≫|n−nα|c−3α−23√X. |
By integrating by parts, we can obtain
I−1(nc3)≪c3α23√X|n−nα|. |
Thus, by Lemma 2.2, the contribution of the term n≠nα to (3.13) is at most
c−2X23c3α2X−13∑n∈I∖{nα}(A(n,ac)+B(n,ac))n−13|n−nα|−1≪c1+ϵα2X13∑n∈I∖{nα}c32+ϵn14−13+ϵ|n−nα|−1≪c94+ϵα74+ϵX13∑n∈I∖{nα}|n−nα|−1≪c94+ϵα74+ϵX13. |
When n=nα, we can get
|F′−(u,n)|≍c−3α−2X13|λ|. |
For |λ|≥110, we have I−1(nαc3)≪c3α2X−13 by integrating by parts. Hence, the first term in (3.13) is bounded by c94+ϵα74+ϵX13. If c−3α−2X13|λ|≫Xϵ, then I−1(nαc3) is negligible. This proves that
S1(a,c)+S2(a,c)=ϑα√3ic23√nα3√X2(A(nα,ac)+B(nα,ac))I−1(nαc3)+O(c52X−23+ϵ+c94+ϵα74X13), | (3.15) |
where
ϑα={1, ∃ nα∈I, s.t.|nα−2c3α327|<min{c3α2X−13+ϵ,110};0, otherwise. |
By (3.2), (3.3) and (3.15), we have
S=ϑα√3iq3√nα3√X2∑c|q1c2∑a mod c(a,c)=1e(−alc)(A(nα,ac)+B(nα,ac))I−1(nαc3)+1q∑c|q∑a mod c(a,c)=1e(−alc)S0(a,c)+O(q52X−23+ϵ+q94+ϵα74X13). |
Since α=33√kq with k∈Z, we have c≠q. Then
|k−kc3q3|=kc3q−3|c3q3−1|≥kc3q3≥c3α2X−13+ϵ. |
Thus, kc3q3=0 for c≠q. Otherwise, we take
c=q, nα=k. |
Therefore,
S=√3iq33√k3√X2∑a mod q(a,q)=1e(−alq)(A(k,aq)+B(k,aq))c(ϕ)+1q∑a mod q(a,q)=1e(−alq)S0(a,q)+O(q52X−23+ϵ+q12+ϵk712+ϵX13), | (3.16) |
where
c(ϕ)=∫∞0uϕ(u3)du |
and
S0(a,q)=1q∫∞0P(logx)ϕ(xX)e(33√kxq)dx. |
This proves our theorem.
This paper focused on the study of the nonlinear exponential sum twisting the divisor functions d3(n) over the arithmetic progression and established its asymptotic formula. The main techniques used to prove the theorem were the estimation of exponential sum, Voronoi summation formula, and the weighted stationary phase. Moreover, it is also an interesting question to generalize the resonance theory to the divisor functions dk(n) if there is a better Voronoi summation formula for k>3, and we can try to obtain a better bound for the error term respect to q which is a prime number.
Zhang, Li and Yan are supported by the National Natural Science Foundation of China [Grant No. 12171286].
The authors declare no conflict of interest.
[1] |
R. Acharya, S. Singh, An exponential sum involving Fourier coefficients of eigenforms for SL(2,Z), Ramanujan J., 54 (2021), 699–716. https://doi.org/10.1007/s11139-020-00255-0 doi: 10.1007/s11139-020-00255-0
![]() |
[2] |
W. Chung, T. Kim, H. Kwon, On the q-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156–168. https://doi.org/10.1134/S1061920814020034 doi: 10.1134/S1061920814020034
![]() |
[3] |
X. He, Exponential sums involving automorphic forms for GL(3) over arithmetic progressions, Front. Math. China, 13 (2018), 1355–1368. https://doi.org/10.1007/s11464-018-0732-x doi: 10.1007/s11464-018-0732-x
![]() |
[4] |
J. Huang, T. Li, H. Liu, F. Xu, The general two-dimensional divisor problems involving Hecke eigenvalues, AIMS Math., 7 (2022), 6396–6403. https://doi.org/10.3934/math.2022356 doi: 10.3934/math.2022356
![]() |
[5] | J. Huang, H. Liu, Divisor problems related to Hecke eigenvalues in three dimensions, J. Math., 2021 (2021), 9928233. https://doi.org/10.1155/2021/9928233 |
[6] | A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-function, Sieve Methods, Exponential Sums, and their Applications in Number Theory, London Math Soc Lecture Note Series, 237 (1997), 205–243. https://doi.org/10.1017/CBO9780511526091.015 |
[7] |
H. Lao, The cancellation of Fourier coefficients of cusp forms over different sparse sequences, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1963–1972. https://doi.org/10.1007/s10114-013-2706-y doi: 10.1007/s10114-013-2706-y
![]() |
[8] |
H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58–71. https://doi.org/10.1007/s10474-019-00996-5 doi: 10.1007/s10474-019-00996-5
![]() |
[9] |
H. Lao, S. Luo, Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms, Rocky MT J. Math., 51 (2021), 1701–1714. https://doi.org/10.1216/rmj.2021.51.1701 doi: 10.1216/rmj.2021.51.1701
![]() |
[10] | H. Liu, Notes on general divisor problems related to Maass cusp forms, Period. Math. Hung., In press. |
[11] |
T. Kim, D. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. https://doi.org/10.1134/S1061920817020091 doi: 10.1134/S1061920817020091
![]() |
[12] | L. Ma, X. Yan, Resonance between the representation function and exponential functions over arithemetic progression, J. Math., 2021 (2021), 6616348. https://doi.org/10.1155/2021/6616348 |
[13] |
X. Ren, Y. Ye, Resonance between automorphic forms and exponential functions, Sci. China Math., 53 (2010), 2463–2472. https://doi.org/10.1007/s11425-010-3150-4 doi: 10.1007/s11425-010-3150-4
![]() |
[14] |
X. Ren, Y. Ye, Resonance of automorphic forms for GL(3), Trans. Amer. Math. Soc., 367 (2015), 2137–2157. https://doi.org/10.1007/s11425-010-3150-4 doi: 10.1007/s11425-010-3150-4
![]() |
[15] |
X. Ren, Y. Ye, Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GL(3), Sci. China Math., 58 (2015), 2105–2124. https://doi.org/10.1007/s11425-014-4955-3 doi: 10.1007/s11425-014-4955-3
![]() |
[16] |
Q. Sun, Y. Wu, Exponential sums involving Maass forms, Front. Math. China, 9 (2014), 1349–1366. https://doi.org/10.1007/s11464-014-0360-z doi: 10.1007/s11464-014-0360-z
![]() |
[17] |
Q. Sun, D. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. https://doi.org/10.1016/j.jnt.2016.04.010 doi: 10.1016/j.jnt.2016.04.010
![]() |
[18] |
X. Yan, On some exponential sums involving Maass forms over arithmetic progressions, J. Number Theory, 160 (2016), 44–59. https://doi.org/10.1016/j.jnt.2015.08.010 doi: 10.1016/j.jnt.2015.08.010
![]() |
[19] |
D. Zhang, Y. Lau, Y. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math. (Basel), 108 (2017), 263–269. https://doi.org/10.1007/s00013-016-0996-x doi: 10.1007/s00013-016-0996-x
![]() |
[20] |
D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. https://doi.org/10.1016/j.jnt.2016.12.018 doi: 10.1016/j.jnt.2016.12.018
![]() |
[21] |
D. Zhang, Y. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup Γ0(N), Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6 doi: 10.1007/s11139-018-0051-6
![]() |
[22] |
D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 37 (2021), 1453–1464. https://doi.org/10.1007/s10114-021-0174-3 doi: 10.1007/s10114-021-0174-3
![]() |
[23] | A. Zou, H. Lao, S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math., 2021 (2021), 2462693. https://doi.org/10.1155/2021/2462693 |