M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 153.4243 | 153.4243 | 8.8628e-13 | 8.9344e-13 |
|ψ−ψM|2 | 150.7964 | 150.7964 | 8.6829e-13 | 8.7548e-13 |
‖ψ−ψM‖ | 3.1416 | 3.1416 | 12.9165e-14 | 2.9192e-14 |
We propose in this paper an efficient algorithm based on the Fourier spectral-Galerkin approximation for the fourth-order elliptic equation with periodic boundary conditions and variable coefficients. First, by using the Lax-Milgram theorem, we prove the existence and uniqueness of weak solution and its approximate solution. Then we define a high-dimensional L2 projection operator and prove its approximation properties. Combined with Céa lemma, we further prove the error estimate of the approximate solution. In addition, from the Fourier basis function expansion and the properties of the tensor, we establish the equivalent matrix form based on tensor product for the discrete scheme. Finally, some numerical experiments are carried out to demonstrate the efficiency of the algorithm and correctness of the theoretical analysis.
Citation: Tingting Jiang, Jiantao Jiang, Jing An. An efficient Fourier spectral method and error analysis for the fourth order problem with periodic boundary conditions and variable coefficients[J]. AIMS Mathematics, 2023, 8(4): 9585-9601. doi: 10.3934/math.2023484
[1] | Yashar Mehraliyev, Seriye Allahverdiyeva, Aysel Ramazanova . On one coefficient inverse boundary value problem for a linear pseudoparabolic equation of the fourth order. AIMS Mathematics, 2023, 8(2): 2622-2633. doi: 10.3934/math.2023136 |
[2] | Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367 |
[3] | Anwar Ahmad, Dumitru Baleanu . On two backward problems with Dzherbashian-Nersesian operator. AIMS Mathematics, 2023, 8(1): 887-904. doi: 10.3934/math.2023043 |
[4] | Bo Tang, Huasheng Wang . The a posteriori error estimate in fractional differential equations using generalized Jacobi functions. AIMS Mathematics, 2023, 8(12): 29017-29041. doi: 10.3934/math.20231486 |
[5] | Mohammad Reza Foroutan, Mir Sajjad Hashemi, Leila Gholizadeh, Ali Akgül, Fahd Jarad . A new application of the Legendre reproducing kernel method. AIMS Mathematics, 2022, 7(6): 10651-10670. doi: 10.3934/math.2022594 |
[6] | Dongjie Gao, Peiguo Zhang, Longqin Wang, Zhenlong Dai, Yonglei Fang . A novel high-order symmetric and energy-preserving continuous-stage Runge-Kutta-Nyström Fourier pseudo-spectral scheme for solving the two-dimensional nonlinear wave equation. AIMS Mathematics, 2025, 10(3): 6764-6787. doi: 10.3934/math.2025310 |
[7] | Chenghua Gao, Maojun Ran . Spectral properties of a fourth-order eigenvalue problem with quadratic spectral parameters in a boundary condition. AIMS Mathematics, 2020, 5(2): 904-922. doi: 10.3934/math.2020062 |
[8] | Mohamed Adel, Mohamed M. Khader, Mohammed M. Babatin, Maged Z. Youssef . Numerical investigation for the fractional model of pollution for a system of lakes using the SCM based on the Appell type Changhee polynomials. AIMS Mathematics, 2023, 8(12): 31104-31117. doi: 10.3934/math.20231592 |
[9] | Zhenping Li, Xiangtuan Xiong, Jun Li, Jiaqi Hou . A quasi-boundary method for solving an inverse diffraction problem. AIMS Mathematics, 2022, 7(6): 11070-11086. doi: 10.3934/math.2022618 |
[10] | V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong . Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853 |
We propose in this paper an efficient algorithm based on the Fourier spectral-Galerkin approximation for the fourth-order elliptic equation with periodic boundary conditions and variable coefficients. First, by using the Lax-Milgram theorem, we prove the existence and uniqueness of weak solution and its approximate solution. Then we define a high-dimensional L2 projection operator and prove its approximation properties. Combined with Céa lemma, we further prove the error estimate of the approximate solution. In addition, from the Fourier basis function expansion and the properties of the tensor, we establish the equivalent matrix form based on tensor product for the discrete scheme. Finally, some numerical experiments are carried out to demonstrate the efficiency of the algorithm and correctness of the theoretical analysis.
Though periodic boundary conditions do not belong to three traditional boundary conditions (Dirichlet, Neumann, and Robin boundary conditions), which are commonly used in mathematical physics, they still can be found in the research of scientific and engineering problems, such as the interaction between solutions of the nonlinear Schrödinger equation [1] or KdV equation [2], isotropic uniform turbulence problem [3], and so on. In addition, under the polar, cylindrical, and spherical coordinates, we note that they are also periodic [4,5] in the θ direction. Thus, it's obvious that physical models with periodic boundary conditions also have significant application. As a model, we first consider the following two dimensional fourth-order problem with periodic boundary conditions and variable coefficients:
Δ2ψ−∇(α∇ψ)+βψ=f,x∈Ω, | (1.1) |
ψ(x)=ψ(x1+Lx1,x2),∂ψ(x)∂x1=∂ψ(x1+Lx1,x2)∂x1, | (1.2) |
ψ(x)=ψ(x1,x2+Lx2),∂ψ(x)∂x2=∂ψ(x1,x2+Lx2)∂x2, | (1.3) |
where α is a nonnegative bounded periodic function, β is a positive bounded function, x=(x1,x2), Lx1=x1R−x1L, Lx2=x2R−x2L, Ω=(x1L,x1R)×(x2L,x2R).
The fourth-order problems can be found in the applications to thin beams and plates [6,7]. Besides, many complex nonlinear problems also need to solve a fourth order problem repeatedly [8,9,10,11,12,13]. In the past decades, there have been many existing results for the theoretical analysis and numerical research of the fourth-order problems, mainly including various finite element methods [14,15,16,17], spectral methods and some high-order numerical methods [18,19,20,21,22,23,24,25,26,27]. However, to the best of our knowledge, there are few report on the fourth-order problems with periodic boundary conditions and variable coefficients [28]. As aforementioned, periodic boundary conditions have significant applications in some science and engineering [29,30]. Thus, it is meaningful to construct an efficient and high-order numerical scheme for the fourth-order problems with periodic boundary conditions and variable coefficients.
The aim of this paper is to propose an efficient algorithm based on the Fourier spectral-Galerkin approximation for the fourth-order elliptic equation with periodic boundary conditions and variable coefficients. First, by using the Lax-Milgram theorem, we prove the existence and uniqueness of weak solution and its approximate solution. Then we define a high-dimensional L2 projection operator and prove its approximation properties. Combined with Céa lemma, we further prove the error estimate of the approximate solution. In addition, from the Fourier basis function expansion and the properties of the tensor, we establish the equivalent matrix form based on tensor product for the discrete scheme. Finally, some numerical experiments are carried out to demonstrate the efficiency of the algorithm and correctness of the theoretical analysis.
The rest of this paper is organized as follows. In next section, we derive the weak form and associated discrete scheme. We give the error estimation of approximate solutions in section 3. In section 4, we present an efficient implementation of the algorithm. In section 5, we extend the algorithm to a three-dimensional case. In section 6, we carry out some numerical experiments. Finally, we make some concluding remarks in section 7.
We shall derive the weak form and discrete scheme associated with problem (1.1)–(1.3). Denote by Hm(Ω) the usual m-order Sobolev space, ‖⋅‖m and |⋅|m denote the norm and semi-norm in Hm(Ω), respectively. In particular, we have
H0(Ω)=L2(Ω)={ψ:∫Ω|ψ|2dx<∞} |
with the following inner product and norm
(ψ,φ)=∫Ωψˉφdx,‖ψ‖=(∫Ω|ψ|2dx)12, |
where ˉφ is the complex conjugate of φ. Define
H2p(Ω)={ψ∈H2(Ω):ψ satisfies the periodic boundary conditions(1.2)and(1.3)} |
with the following inner product, norm and semi-norm:
(ψ,φ)2,Ω=2∑|α|=0∫ΩDαψDαˉφdx,‖ψ‖2,Ω=(2∑|α|=0‖Dαψ‖2)12,|ψ|2,Ω=(∑|α|=2‖Dαψ‖2)12, |
where Dα=∂|α|∂x1α1∂x2α2,α=(α1,α2),|α|=α1+α2. We further denote by Hmp(Ω) the subspace of Hm(Ω), which consists of functions with derivatives of order up to m−1 being 2π-periodic.
Then a weak form of problem (1.1)–(1.3) is: Find ψ∈H2p(Ω), such that
a(ψ,φ)=F(φ),∀φ∈H2p(Ω), | (2.1) |
where
a(ψ,φ)=∫ΩΔψΔˉφdx+∫Ωα∇ψ∇ˉφdx+∫Ωβψˉφdx,F(φ)=∫Ωfˉφdx. |
Define an approximation space of H2p(Ω) as follows:
XM(Ω)=span{ei2πtx1−x1LLx1ei2πqx2−x2LLx2:|t|=0,1,⋯,M,|q|=0,1,⋯,M}. |
Then the corresponding discrete scheme of the weak form (2.1) is: Find ψM∈XM(Ω), such that
a(ψM,φM)=F(φM),∀φM∈XM(Ω). | (2.2) |
In this section, we shall first prove the existence and uniqueness of weak solution and its approximate solution, and then further prove the error estimate between them.
For the sake of brevity, we denote by a≲b that a≤cb, where c is a positive constant. Without loss of generality, we shall confine our discussion to the following assumptions:
α∗:=infx∈Ωα(x)≥0,α∗:=supx∈Ωα(x)<∞, | (3.1) |
β∗:=infx∈Ωβ(x)>0,β∗:=supx∈Ωβ(x)<∞, | (3.2) |
Ω=(0,2π)×(0,2π). | (3.3) |
Lemma 1. For any ψ,φ∈H2p(Ω), the following equalities hold:
∫Ω∂2ψ∂x1∂x2∂2ˉφ∂x1∂x2dx=∫Ω∂2ψ∂x21∂2ˉφ∂x22dx=∫Ω∂2ψ∂x22∂2ˉφ∂x21dx,∫Ω∂2ψ∂x1∂x2∂2ˉψ∂x1∂x2dx=∫Ω∂2ψ∂x21∂2ˉψ∂x22dx=∫Ω∂2ˉψ∂x21∂2ψ∂x22dx. |
Proof. Using the integration by parts, we have
∫Ω∂2ψ∂x1∂x2∂2ˉφ∂x1∂x2dx=∫2π0∂2ψ∂x1∂x2∂ˉφ∂x2|x1=2πx1=0dx2−∫Ω∂3ψ∂x21∂x2∂ˉφ∂x2dx=∫2π0∂2ψ∂x1∂x2∂ˉφ∂x2|x1=2πx1=0dx2−∫2π0∂2ψ∂x21∂ˉφ∂x2|x2=2πx2=0dx1+∫Ω∂2ψ∂x21∂2ˉφ∂x22dx. |
From (1.2) and (1.3), we derive that
∂2ψ(x)∂x1∂x2=∂2ψ(x1,x2+2π)∂x1∂x2,∂ˉφ∂x2(x)=∂ˉφ(x1+2π,x2)∂x2,∂2ψ(x)∂x1∂x2=∂2ψ((x1+2π,x2)∂x1∂x2,∂ˉφ(x)∂x2=∂ˉφ(x1,x2+2π)∂x2. |
Then we have
∫2π0∂2ψ∂x1∂x2∂ˉφ∂x2|x1=2πx1=0dx2=∫2π0∂2ψ∂x21∂ˉφ∂x2|x2=2πx2=0dx1=0. |
It follows from the above equality that
∫Ω∂2ψ∂x1∂x2∂2ˉφ∂x1∂x2dx=∫Ω∂2ψ∂x21∂2ˉφ∂x22dx. |
We can obtain the following equalities in the same way
∫Ω∂2ψ∂x1∂x2∂2ˉφ∂x1∂x2dx=∫Ω∂2ψ∂x21∂2ˉφ∂x22dx=∫Ω∂2ψ∂x22∂2ˉφ∂x21dx,∫Ω∂2ψ∂x1∂x2∂2ˉψ∂x1∂x2dx=∫Ω∂2ψ∂x21∂2ˉψ∂x22dx=∫Ω∂2ˉψ∂x21∂2ψ∂x22dx. |
Lemma 2. Foranyψ∈H2p(Ω), the following inequalities hold:
∫Ω|∂ψ∂x1|2dx≤12‖ψ‖2+12∫Ω|∂2ψ∂x21|2dx,∫Ω|∂ψ∂x2|2dx≤12‖ψ‖2+12∫Ω|∂2ψ∂x22|2dx. |
Proof. We derive from integration by parts that
∫Ω|∂ψ∂x1|2dx=∫2π0∫2π0∂ψ∂x1∂ˉψ∂x1dx=∫2π0ψ∂ˉψ∂x1|x1=2πx1=0dx2−∫2π0∫2π0ψ∂2ˉψ∂x21dx=−∫2π0∫2π0ψ∂2ˉψ∂x21dx≤(∫Ω|ψ|2dx)12(∫Ω|∂2ψ∂x21|2dx)12≤12‖ψ‖2+12∫Ω|∂2ψ∂x21|2dx. |
Similarly, we can obtain
∫Ω|∂ψ∂x2|2dx≤12‖ψ‖2+12∫Ω|∂2ψ∂x22|2dx. |
This finishes our proof.
Lemma 3. Let α(x), β(x)∈L∞(Ω) satisfy the assumptions (3.1) and (3.2). Then a(ψ,φ) is a continuous and coercive bilinear form in H2p(Ω)×H2p(Ω), i.e.,
|a(ψ,φ)|≤Q∗‖ψ‖2,Ω‖φ‖2,Ω,a(ψ,ψ)≥Q∗‖ψ‖22,Ω, |
where Q∗=max{1,α∗,β∗}, Q∗=12min{1,β∗}.
Proof. Employing Lemma 1, we obtain that
∫ΩΔψΔˉφdx=∫Ω(∂2ψ∂x21∂2ˉφ∂x21+∂2ψ∂x21∂2ˉφ∂x22+∂2ψ∂x22∂2ˉφ∂x21+∂2ψ∂x22∂2ˉφ∂x22)dx=∫Ω(∂2ψ∂x21∂2ˉφ∂x21+2∂2ψ∂x1∂x2∂2ˉφ∂x1∂x2+∂2ψ∂x22∂2ˉφ∂x22)dx. |
Then, using Cauchy-Schwarz inequality, we can derive that
|a(ψ,φ)|=|∫ΩΔψΔˉφdx+∫Ωα∇ψ∇ˉφdx+∫Ωβψˉφdx|≤∫Ω(|∂2ψ∂x21∂2φ∂x21|+2|∂2ψ∂x1∂x2∂2φ∂x1∂x2|+|∂2ψ∂x22∂2φ∂x22|)dx+α∗∫Ω(|∂ψ∂x1∂φ∂x1|+|∂ψ∂x2∂φ∂x2|)dx+β∗∫Ω|ψφ|dx≤max{1,α∗,β∗}‖ψ‖2,Ω‖φ‖2,Ω. |
On the other hand, using Lemma 2, we can derive that
a(ψ,ψ)=∫Ω(|∂2ψ∂x21|2+2|∂2ψ∂x1∂x2|2+|∂2ψ∂x22|2)dx+∫Ωα(|∂ψ∂x1|2+|∂ψ∂x2|2)dx+∫Ωβ|ψ|2dx≥∫Ω(|∂2ψ∂x21|2+2|∂2ψ∂x1∂x2|2+|∂2ψ∂x22|2)dx+β∗∫Ω|ψ|2dx≥min{1,β∗}∫Ω(|∂2ψ∂x21|2+2|∂2ψ∂x1∂x2|2+|∂2ψ∂x22|2+|ψ|2)dx≥12min{1,β∗}‖ψ‖22,Ω. |
This finishes our proof.
Lemma 4. If f(x)∈L2(Ω), then F(φ) is a bounded linear functions on H2p(Ω), i.e.,
|F(φ)|≲‖φ‖2,Ω. |
Proof. In light of definition of F(φ) and Cauchy-Schwarz inequality, we have
|F(φ)|=|∫Ωfˉφdx|≤(∫Ω|f|2dx)12(∫Ω|φ|2dx)12≲‖φ‖2,Ω. |
The proof is completed.
From Lemma 3, Lemma 4 and Lax-Milgram theorem, we have following theorem:
Theorem 1. If f(x)∈L2(Ω), then problems (2.1) and (2.2) have unique solutions ψ(x) and ψM(x), respectively.
Theorem 2. Let ψ(x) and ψM(x) be the solutions of the variational form (2.1) and discrete scheme (2.2), respectively. Then it holds that
‖ψ−ψM‖2,Ω≲infφ∈XM‖ψ−φM‖2,Ω. |
Proof. We obtain from (2.1) and (2.2) that
a(ψ,φM)=F(φM),∀φM∈XM(Ω),a(ψM,φM)=F(φM),∀φM∈XM(Ω). |
Then we have
a(ψ−ψM,φM)=0,∀φM∈XM(Ω). | (3.4) |
Form Lemma 3 and (3.4), we arrive at
‖ψ−ψM‖22,Ω≲a(ψ−ψM,ψ−ψM)=a(ψ−ψM,ψ−φM+φM−ψM)=a(ψ−ψM,φ−φM)+a(ψ−ψM,φM−ψM)≲‖ψ−ψM‖2,Ω‖ψ−φM‖2,Ω, |
which is equivalent to the following form
‖ψ−ψM‖2,Ω≲‖ψ−φM‖2,Ω,∀φM∈XM(Ω). | (3.5) |
From (3.5) and the arbitrariness of φM, the desired result follows.
Let ΠM:L2(Ω)→XM(Ω) be a L2-orthogonal projection:
(ΠMψ−ψ,φ)=0,∀φ∈XM(Ω). |
Theorem 3. For any ψ(x)∈Hmp(Ω) and 0≤μ≤m, there is a constant C such that the following inequality holds:
‖ΠMψ−ψ‖μ,Ω≤CMμ−m|ψ|m,Ω. |
Proof. We first derive that
Dα(ψ−ΠMψ)=Dα(∑|t|>M,|q|>Mψtqeitx1+iqx2)=∑|t|>M,|q|>M(it)α1(iq)α2ψtqeitx1+iqx2. |
For any |α|:0⩽|α|⩽μ≤m, taking α1≤m1,α2≤m−m1, we have
‖Dα(ψ−ΠMψ)‖2=(2π)2∑|t|>M,|q|>Mt2α1q2α2|ψtq|2=(2π)2∑|t|>M,|q|>Mt2(α1−m1)q2[α2−(m−m1)]|ψtq|2t2m1q2(m−m1)≤(2π)2M2(α1−m1)M2[α2−(m−m1)]∑|t|>M,|q|>M|ψtq|2t2m1q2(m−m1)≤M2(|α|−m)∑|t|≥0,|q|≥0(2π)2|ψtq|2t2m1q2(m−m1)≤M2(μ−m)|ψ|2m,Ω, |
by making a summation for |α| from 0 to μ, we can obtain the expected results.
Theorem 4. Let ψM(x) be the approximation solution of ψ(x). If ψ(x)∈Hmp(Ω), the following inequality holds
‖ψ−ψM‖2,Ω≲M2−m|ψ|m,Ω. |
Proof. According to Theorem 2, we have
‖ψ−ψM‖2,Ω≲infφ∈XM‖ψ−φM‖2,Ω. |
We derive form Theorem 3 that
‖ψ−ψM‖2,Ω≲‖ψ−ΠMψ‖2,Ω≲M2−m|ψ|m,Ω. |
The proof is completed.
In this section, we will describe the implementation process of the algorithm in detail, and give a brief pseudo code. To solve (2.2) by Fourier spectral method, we shall look for
ψM=M∑|t|=0M∑|q|=0ψtqeitx1eiqx2. | (4.1) |
Let
Ψ=(ψ−M,−M⋯ψ−M,0⋯ψ−M,M⋯⋱⋯⋱⋯ψ0,−M⋯ψ0,0⋯ψ0,M⋮⋱⋮⋱⋮ψM,−M⋯ψM,0⋯ψM,M). |
We denote by ¯Ψ a column vectors with (2M+1)2 elements, which consist of 2M+1 columns of Ψ. Let ¯φM(x)=e−ikx1e−ilx2,(|k|,|l|=0,1,⋯,M), then we have
∫ΩΔψMΔ¯φMdx=M∑|t|=0M∑|q|=0ψtq∫2π0∫2π0Δ(eitx1eiqx2)Δ(e−ikx1e−ilx2)dx=M∑|t|=0M∑|q|=0ψtq(sktmlq+oktglq+gktolq+mktslq)=S(k,:)UM(l,:)T+O(k,:)UG(l,:)T+G(k,:)UO(l,:)T+M(k,:)US(l,:)T=[M(l,:)⊗S(k,:)+G(l,:)⊗O(k,:)+O(l,:)⊗G(k,:)+S(l,:)⊗M(k,:)]¯Ψ, |
where
skt=2πk2t2δkt,S=(skt)2M+1|k|,|t|=0,mkt=2πδkt,M=(mkt)2M+1|k|,|t|=0,okt=2πk2δkt,O=(okt)2M+1|k|,|t|=0,gkt=2πt2δkt,G=(dkt)2M+1|k|,|t|=0, |
S(k,:) indicates the k-th row of the matrix S, M(k,:), O(k,:) and G(k,:) are similar to S(k,:).
⊗ represents the tensor product of matrix, i.e. M⊗S=(mktS)2M+1|k|,|t|=0.
∫Ωα(x)∇ψM∇¯φMdx=M∑|t|=0M∑|q|=0ψtq∫Ωα(x)∇(eitx1eiqx2)∇(e−ikx1e−ilx2)dx=M∑|t|=0M∑|q|=0ψtq(tk+ql)∫Ωα(x)eitx1eiqx2e−ikx1e−ilx2dx=A((l+M+1)+(2M+1)(k+M),:)¯Ψ, |
∫Ωβ(x)ψM¯φMdx=M∑|t|=0M∑|q|=0ψtq∫Ωβ(x)eitx1eiqx2e−ikx1e−ilx2dx=B((l+M+1)+(2M+1)(k+M),:)¯Ψ, |
where
A=(aktlq)2M+1|k|,|t|,|l|,|q|=0,aktlq=(tk+ql)∫Ωα(x)eitx1eiqx2e−ikx1e−ilx2dx,B=(bktlq)2M+1|k|,|t|,|l|,|q|=0,bktlq=∫Ωβ(x)eitx1eiqx2e−ikx1e−ilx2dx. |
Then the equivalent matrix form based on tensor product for the discrete scheme (2.2) is as follows:
(M⊗S+G⊗O+O⊗G+S⊗M+A+B)¯Ψ=F, | (4.2) |
where
F=(fkl)2M+1|k|,|l|=0,fkl=∫Ωf(x)e−ikx1e−ilx2dx. |
Note that when α,β are constants, we know from the orthogonal property of Fourier basis functions that the stiffness matrix and mass matrix in (4.2) are all sparse, so we can solve (4.2) efficiently. However, for general variable coefficients α,β, the stiffness matrix and mass matrix are usually full. In that case, we can use the preconditioned iteration method or Schur-complement approach, i.e., block Gaussian elimination to solve (4.2).
In this section, we shall extend our algorithm to three-dimensional case. As a model, we consider the following three dimensional fourth-order problem with periodic boundary conditions:
Δ2ψ−∇(α∇ψ)+βψ=f,x∈Ω, | (5.1) |
ψ(x)=ψ(x1+Lx1,x2,x3),∂ψ(x)∂x1=∂ψ(x1+Lx1,x2,x3)∂x1, | (5.2) |
ψ(x)=ψ(x1,x2+Lx2,x3),∂ψ(x)∂x2=∂ψ(x1,x2+Lx2,x3)∂x2, | (5.3) |
ψ(x)=ψ(x1,x2,x3+Lx3),∂ψ(x)∂x3=∂ψ(x1,x2,x3+Lx3)∂x3, | (5.4) |
where α and β are constant coefficients, Lx1=x1R−x1L, Lx2=x2R−x2L, Lx3=x3R−x3L, x=(x1,x2,x3), Ω=(x1L,x1R)×(x2L,x2R)×(x3L,x3R).
Similar to two-dimensional case, we can derive the weak form and discrete scheme for the three-dimensional case. Define a Sobolev space:
H2p(Ω)={ψ∈H2(Ω):ψsatisfies the periodic boundary conditions(5.2)−(5.4)}. |
Then a weak form of (5.1)–(5.4) is to find ψ∈H2p(Ω), such that
a(ψ,φ)=F(φ),∀φ∈H2p(Ω). | (5.5) |
Define an approximation space:
XM(Ω)=span{ei2πtx1−x1LLx1ei2πqx2−x2LLx2ei2πjx3−x3LLx3:|t|,|q|,|j|=0,1,⋯,M}. |
Then the corresponding discrete scheme for the weak form (5.5) is to find ψM∈XM(Ω), such that
a(ψM,φM)=F(φM),∀φM∈XM(Ω). | (5.6) |
We shall derive the equivalent matrix form based on tensor product for the discrete scheme (5.6). Let
ψM=M∑|t|=0M∑|q|=0M∑|j|=0ψjtqeitx1eiqx2eijx3, | (5.7) |
Ψj=(ψj−M,−M⋯ψj−M,0⋯ψj−M,M⋯⋱⋯⋱⋯ψj0,−M⋯ψj0,0⋯ψj0,M⋮⋱⋮⋱⋮ψjM,−M⋯ψjM,0⋯ψjM,M). |
We denote by ˜Ψj a column vectors with (2M+1)2 elements consisting of 2M+1 columns of Ψj. Let Ψ=(˜Ψ−M,˜Ψ−M+1,⋯,˜ΨM), and denote by ˜Ψ a column vectors with (2M+1)3 elements consisting of 2M+1 columns of Ψ. Taking ¯φM(x)=e−ikx1e−ilx2e−ipx3,(|k|,|l|,|p|=0,1,⋯,M), then we have
∫ΩΔψMΔ¯φMdx=M∑|t|=0M∑|q|=0M∑|j|=0ψjtq∫ΩΔ(eitx1eiqx2eijx3)Δ(e−ikx1e−ilx2e−ipx3)dx=M∑|t|=0M∑|q|=0M∑|j|=0ψjtq(sktmlqmpj+oktolqmpj+oktmlqopj+oktolqmpj+mktslqmpj+mktolqopj+oktmlqopj+mktolqopj+mktmlqspj)=[M(p,:)⊗M(l,:)⊗S(k,:)+M(p,:)⊗O(l,:)⊗O(k,:)+O(p,:)⊗M(l,:)⊗O(k,:)+M(p,:)⊗O(l,:)⊗O(k,:)+M(p,:)⊗S(l,:)⊗M(k,:)+O(p,:)⊗O(l,:)⊗M(k,:)+O(p,:)⊗M(l,:)⊗O(k,:)+O(p,:)⊗O(l,:)⊗M(k,:)+S(p,:)⊗M(l,:)⊗M(k,:)]˜Ψ,∫Ω∇ψM∇¯φMdx=M∑|t|=0M∑|q|=0M∑|j|=0ψjtq∫Ω∇(eitx1eiqx2eijx3)∇(e−ikx1e−ilx2e−ipx3)dx=M∑|t|=0M∑|q|=0M∑|j|=0ψjtq(oktmlqmpj+oktmlqopj+mktmlqopj)=[M(p,:)⊗M(l,:)⊗O(k,:)+O(p,:)⊗M(l,:)⊗O(k,:)+M(p,:)⊗M(l,:)⊗O(k,:)]˜Ψ,∫ΩψM¯φMdx=M∑|t|=0M∑|q|=0M∑|j|=0ψjtq∫Ωeitx1eiqx2eijx3e−ikx1e−ilx2e−ipx3dx=M∑|t|=0M∑|q|=0M∑|j|=0ψjtqmktmlqmpj=[M(p,:)⊗M(l,:)⊗M(k,:)]˜Ψ. |
Then the equivalent matrix form based on tensor product for the discrete scheme (5.6) is as follows:
(A+B+C)˜Ψ=F, |
where
A=M⊗M⊗S+M⊗O⊗O+O⊗M⊗O+M⊗O⊗O+M⊗S⊗M+O⊗O⊗M+O⊗M⊗O+O⊗O⊗M+S⊗M⊗M,B=M⊗M⊗O+O⊗M⊗O+M⊗M⊗O,C=M⊗M⊗M,F=(fklp)2M+1|k|,|l|,|p|=0,fklp=∫Ωf(x)e−ikx1e−ilx2e−ipx3dx. |
In this section, we shall perform some numerical experiments to confirm the correctness of theoretical analysis and the effectiveness of our algorithm. The programs are compiled and operated in MATLAB 2018b.
Example 1. We take α=1,β=10 and choose the exact solution ψ=sin4x1sin8x2. Then f can be obtained by plugging ψ into the Eq (1.1). We shall solve (1.1)–(1.3) by using the algorithm proposed in section 4. We list in Table 1 the errors between the exact solution and the approximate solution under H2 norm, H2 seminorm and L2 norm respectively for different M. In addition, we also present their comparison figures and absolute error figures for different M in Figures 1 and 2.
M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 153.4243 | 153.4243 | 8.8628e-13 | 8.9344e-13 |
|ψ−ψM|2 | 150.7964 | 150.7964 | 8.6829e-13 | 8.7548e-13 |
‖ψ−ψM‖ | 3.1416 | 3.1416 | 12.9165e-14 | 2.9192e-14 |
We observe from Table 1 that the approximate solution ψM(x) reaches about 10−12 accuracy when M≥8. Besides, we also see from Figures 1 and 2 that the approximation solution converges to the exact solution.
Remark 1. Though the proof of well-posedness of weak solution requires α to be a nonnegative bounded periodic function and β to be a positive bounded function, our algorithm is still valid for some large and negative α and β, and the corresponding numerical results are listed in Table 2.
α,β | M=4 | M=6 | M=8 | M=10 |
α=1,β=−10 | 153.4243 | 153.4243 | 1.2239e-12 | 1.2306e-12 |
α=1,β=−100 | 153.4243 | 153.4243 | 1.7578e-12 | 1.7625e-12 |
α=1,β=−1000 | 153.4243 | 153.4243 | 6.2198e-12 | 6.2216e-12 |
α=−10,β=1 | 153.4243 | 153.4243 | 2.7402e-12 | 2.7431e-12 |
α=−100,β=1 | 153.4243 | 153.4243 | 6.1361e-10 | 6.1371e-10 |
α=−1000,β=1 | 153.4243 | 153.4243 | 9.3114e-13 | 9.6030e-13 |
α=−10,β=−10 | 153.4243 | 153.4243 | 2.7778e-12 | 2.7800e-12 |
α=−100,β=−100 | 153.4243 | 153.4243 | 6.7819e-12 | 1.4656e-11 |
α=−1000,β=−1000 | 153.4243 | 153.4243 | 3.3564e-13 | 4.1513e-13 |
Example 2. We take α=sin(x1+x2)+2,β=ecos(x1+x2), and choose the exact solution ψ=esin(x1+x2). We list in Table 3 the errors between the exact solution and the approximate solution under H2 norm, H2 seminorm and L2 norm respectively for different M. Similarly, we also present their comparison figures and absolute error figures for different M in Figures 3 and 4. In order to further show the spectral accuracy of our algorithm, we present in Figure 5 error figures between exact solution and approximation solutions under L2 and H2 norms for different M.
M | M=8 | M=10 | M=12 | M=14 |
‖ψ−ψM‖2 | 6.9210e-06 | 2.3352e-08 | 5.2053e-11 | 3.7072e-14 |
|ψ−ψM|2 | 6.8925e-06 | 2.3288e-08 | 5.1950e-11 | 3.1910e-14 |
‖ψ−ψM‖ | 4.9097e-08 | 1.1108e-10 | 1.7815e-13 | 9.4959e-15 |
We observe from Table 3 that the approximate solution ψM(x) reach about 10−11 accuracy when M≥12. We see from Figures 3–5 that the approximation solution exponentially converges to the exact solution.
Example 3. We take α=1,β=1 and choose the exact solution ψ=cos3x1cos4x2cos5x3. We list in Table 4 the errors between the exact solution and the approximate solution under H2 norm, H2 seminorm and L2 norm respectively for different M.
M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 281.2419 | 7.5429e-13 | 7.8632e-13 | 7.9945e-13 |
|ψ−ψM|2 | 278.4164 | 7.4226e-13 | 7.7431e-13 | 7.8757e-13 |
‖ψ−ψM‖ | 0.0512 | 2.2170e-16 | 2.2428e-16 | 2.2440e-16 |
We observe from Table 4 that the approximate solution reach about 10−13 accuracy when M≥8. That is to say, even in the three-dimensional case, our algorithm still has spectral accuracy.
Example 4. We take α=1,β=1 and choose the exact solution ψ=ecosx1+cosx2+cosx3. We list in Table 5 the errors between the exact solution and the approximate solution under H2 norm, H2 seminorm and L2 norm respectively for different M.
M | M=6 | M=8 | M=10 | M=12 |
‖ψ−ψM‖2 | 0.0071 | 3.9971e-05 | 1.3439e-07 | 2.9897e-10 |
|ψ−ψM|2 | 0.0070 | 3.9726e-05 | 1.3384e-07 | 2.9809e-10 |
‖ψ−ψM‖ | 1.2946e-06 | 4.4641e-09 | 1.0100e-11 | 1.6372e-14 |
We observe from Table 5 that the approximate solution reach about 10−10 accuracy when M≥12. Again, our algorithm has spectral accuracy.
We have developed an efficient Fourier spectral-Galerkin method to solve the fourth-order elliptic equation with periodic boundary conditions and variable coefficients. Firstly, we prove the error estimations between the weak solutions and approximation solutions. Then we derive the equivalent matrix form based on tensor product for the discrete scheme. Numerical experiments validate the theoretical analysis and algorithm. Besides, the method proposed in this paper can be extended to some more complex linear and nonlinear equations, such as fourth-order parabolic equation [31], Cahn-Hiliard equation, Gross Pitaevskii equation, which is our future research goal.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article. The research is supported by National Natural Science Foundation of China (Grant No. 12061023), Guizhou Normal University Academic Young Talent Foundation(Qian Teacher Young Talent [2021] A04), and Research Foundation for Scientific Scholars of Moutai Institute (Grant number [2022] 140).
The authors declare that they have no competing interests.
[1] |
D. F. Griffiths, A. R. Mitchell, J. L. Morris, A numerical study of the nonlinear Schrödinger equation, Comput. Method. Appl. Mech. Eng., 45 (1984), 177–215. https://doi.org/10.1016/0045-7825(84)90156-7 doi: 10.1016/0045-7825(84)90156-7
![]() |
[2] |
S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70 (2005), 110–118. https://doi.org/10.1016/j.matcom.2005.05.001 doi: 10.1016/j.matcom.2005.05.001
![]() |
[3] |
M. Boivin, O. Simonin, K. D. Squires, Direct numerical simulation of turbulence modulation by particles in isotropic turbulence, J. Fluid Mech., 375 (1998), 235–263. https://doi.org/10.1017/s0022112098002821 doi: 10.1017/s0022112098002821
![]() |
[4] |
J. Shen, Efficient spectral-Galerkin methods III: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583–1604. https://doi.org/10.1137/S1064827595295301 doi: 10.1137/S1064827595295301
![]() |
[5] |
J. Shen, Efficient spectral-Galerkin methods IV. Spherical geometries, SIAM J. Sci. Comput., 20 (1999), 1438–1455. https://doi.org/10.1137/S1064827597317028 doi: 10.1137/S1064827597317028
![]() |
[6] |
G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Method. Appl. Mech. Eng., 191 (2002), 3669–3750. https://doi.org/10.1016/S0045-7825(02)00286-4 doi: 10.1016/S0045-7825(02)00286-4
![]() |
[7] |
B. Li, G. Fairweather, B. Bialecki, Discrete-time orthogonal spline collocation methods for vibration problems, SIAM J. Numer. Anal., 39 (2002), 2045–2065. https://doi.org/10.1137/S0036142900348729 doi: 10.1137/S0036142900348729
![]() |
[8] |
J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407–416. https://doi.org/10.1016/j.jcp.2017.10.021 doi: 10.1016/j.jcp.2017.10.021
![]() |
[9] |
Y. F. Wei, Q. L. Song, Z. B. Bai, Existence and iterative method for some fourth order nonlinear boundary value problems, Appl. Math. Lett., 87 (2019), 101–107. https://doi.org/10.1016/j.aml.2018.07.032 doi: 10.1016/j.aml.2018.07.032
![]() |
[10] |
J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153 doi: 10.1137/17M1150153
![]() |
[11] |
Z. H. Huo, Y. L. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differ. Equations, 214 (2005), 1–35. https://doi.org/10.1016/j.jde.2004.09.005 doi: 10.1016/j.jde.2004.09.005
![]() |
[12] |
S. Ren, T. Tan, J. An, An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries, Comput. Math. Appl., 80 (2020), 940–955. https://doi.org/10.1016/j.camwa.2020.05.018 doi: 10.1016/j.camwa.2020.05.018
![]() |
[13] |
T. Tan, W. Cao, J. An, Spectral approximation based on a mixed scheme and its error estimates for transmission eigenvalue problems, Comput. Math. Appl., 111 (2022), 20–33. https://doi.org/10.1016/J.CAMWA.2022.02.009 doi: 10.1016/J.CAMWA.2022.02.009
![]() |
[14] |
N. Peng, C. Wang, J. An, An efficient finite-element method and error analysis for the fourth-order elliptic equation in a circular domain, Int. J. Comput. Math., 99 (2022), 1785–1802. https://doi.org/10.1080/00207160.2021.2007240 doi: 10.1080/00207160.2021.2007240
![]() |
[15] |
N. Peng, J. Han, J. An, An efficient finite element method and error analysis for fourth order problems in a spherical domain, Discrete Cont. Dyn. B, 27 (2022), 6807–6821. https://doi.org/10.3934/dcdsb.2022021 doi: 10.3934/dcdsb.2022021
![]() |
[16] |
L. Ge, H. F. Niu, J. W. Zhou, Convergence analysis and error estimate for distributed optimal control problems. governed by Stokes equations with velocity-constraint, Adv. Appl. Math. Mech., 14 (2022), 33–55. https://doi.org/10.4208/aamm.OA-2020-0302 doi: 10.4208/aamm.OA-2020-0302
![]() |
[17] |
H. F. Niu, D. P. Yang, J. W. Zhou, Numerical analysis of an optimal control problem governed by the stationary Navier-Stokes equations with global velocity-constrained, Commun. Comput. Phys., 24 (2018), 1477–1502. https://doi.org/10.4208/cicp.oa-2017-0045 doi: 10.4208/cicp.oa-2017-0045
![]() |
[18] |
Y. P. Chen, J. W. Zhou, Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension, Comput. Math. Appl., 268 (2015), 1217–1226. https://doi.org/10.1016/j.amc.2015.06.082 doi: 10.1016/j.amc.2015.06.082
![]() |
[19] |
J. W. Zhou, J. Zhang, X. Q. Xing, Galerkin spectral approximations for optimal control problems governed by the fourth order equation with an integral constraint on state, Comput. Math. Appl., 72 (2016), 2549–2561. https://doi.org/10.1016/j.camwa.2016.08.009 doi: 10.1016/j.camwa.2016.08.009
![]() |
[20] |
B. Bialecki, A. Karageorghis, A Legendre spectral Galerkin method for the biharmonic Dirichlet problem, SIAM J. Sci. Comput., 22 (2001), 1549–1569. https://doi.org/10.1137/S1064827598342407 doi: 10.1137/S1064827598342407
![]() |
[21] |
P. E. BjØrstad, B. P. TjØstheim, Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method, SIAM J. Sci. Comput., 18 (1997), 621–632. https://doi.org/10.1137/S1064827596298233 doi: 10.1137/S1064827596298233
![]() |
[22] |
E. H. Doha, A. H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math., 58 (2008), 1224–1244. https://doi.org/10.1016/j.apnum.2007.07.001 doi: 10.1016/j.apnum.2007.07.001
![]() |
[23] |
J. T. Jiang, J. An, J. W. Zhou, A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems, Discrete Cont. Dyn. B, 28 (2023), 50–69. https://doi.org/10.3934/dcdsb.2022066 doi: 10.3934/dcdsb.2022066
![]() |
[24] |
D. Q. Jiang, H. Z. Liu, L. L. Zhang, Optimal existence theory for single and multiple positive solutions to fourth-order periodic boundary value problems, Nonlinear Anal. Real World Appl., 7 (2006), 841–852. https://doi.org/10.1016/j.nonrwa.2005.05.003 doi: 10.1016/j.nonrwa.2005.05.003
![]() |
[25] |
J. Fialho, F. Minhós, Fourth order impulsive periodic boundary value problems, Differ. Equat. Dyn. Sys., 23 (2015), 117–127. https://doi.org/10.1007/s12591-013-0186-2 doi: 10.1007/s12591-013-0186-2
![]() |
[26] |
E. H. Doha, A. H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math., 58 (2008), 1224–1244. https://doi.org/10.1016/j.apnum.2007.07.001 doi: 10.1016/j.apnum.2007.07.001
![]() |
[27] |
Y. X. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281 (2003), 477–484. https://doi.org/10.1016/S0022-247X(03)00131-8 doi: 10.1016/S0022-247X(03)00131-8
![]() |
[28] |
A. R. Abdullaev, E. A. Skachkova, Periodic boundary-value problem for a fourth-order differential equation, Russ. Math., 57 (2013), 1–7. https://doi.org/10.3103/S1066369X13120013 doi: 10.3103/S1066369X13120013
![]() |
[29] |
S. B. Kuang, K. Li, R. P. Zou, R. H. Pan, A. B. Yu, Application of periodic boundary conditions to CFD-DEM simulation of gas-solid flow in pneumatic conveying, Chem. Eng. Sci., 93 (2013), 214–228. https://doi.org/10.1016/j.ces.2013.01.055 doi: 10.1016/j.ces.2013.01.055
![]() |
[30] | M. Jbeili, J. F. Zhang, The generalized periodic boundary condition for microscopic simulations of heat transfer in heterogeneous materials, Int. J. Heat Mass Tran., 173 (2021). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121200 |
[31] |
Y. Liu, Z. Fang, H. Li, S. He, W. Gao, A coupling method based on new MFE and FE for fourth-order parabolic equation, J. Appl. Math. Comput., 43 (2013), 249–269. https://doi.org/10.1007/s12190-013-0662-4 doi: 10.1007/s12190-013-0662-4
![]() |
M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 153.4243 | 153.4243 | 8.8628e-13 | 8.9344e-13 |
|ψ−ψM|2 | 150.7964 | 150.7964 | 8.6829e-13 | 8.7548e-13 |
‖ψ−ψM‖ | 3.1416 | 3.1416 | 12.9165e-14 | 2.9192e-14 |
α,β | M=4 | M=6 | M=8 | M=10 |
α=1,β=−10 | 153.4243 | 153.4243 | 1.2239e-12 | 1.2306e-12 |
α=1,β=−100 | 153.4243 | 153.4243 | 1.7578e-12 | 1.7625e-12 |
α=1,β=−1000 | 153.4243 | 153.4243 | 6.2198e-12 | 6.2216e-12 |
α=−10,β=1 | 153.4243 | 153.4243 | 2.7402e-12 | 2.7431e-12 |
α=−100,β=1 | 153.4243 | 153.4243 | 6.1361e-10 | 6.1371e-10 |
α=−1000,β=1 | 153.4243 | 153.4243 | 9.3114e-13 | 9.6030e-13 |
α=−10,β=−10 | 153.4243 | 153.4243 | 2.7778e-12 | 2.7800e-12 |
α=−100,β=−100 | 153.4243 | 153.4243 | 6.7819e-12 | 1.4656e-11 |
α=−1000,β=−1000 | 153.4243 | 153.4243 | 3.3564e-13 | 4.1513e-13 |
M | M=8 | M=10 | M=12 | M=14 |
‖ψ−ψM‖2 | 6.9210e-06 | 2.3352e-08 | 5.2053e-11 | 3.7072e-14 |
|ψ−ψM|2 | 6.8925e-06 | 2.3288e-08 | 5.1950e-11 | 3.1910e-14 |
‖ψ−ψM‖ | 4.9097e-08 | 1.1108e-10 | 1.7815e-13 | 9.4959e-15 |
M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 281.2419 | 7.5429e-13 | 7.8632e-13 | 7.9945e-13 |
|ψ−ψM|2 | 278.4164 | 7.4226e-13 | 7.7431e-13 | 7.8757e-13 |
‖ψ−ψM‖ | 0.0512 | 2.2170e-16 | 2.2428e-16 | 2.2440e-16 |
M | M=6 | M=8 | M=10 | M=12 |
‖ψ−ψM‖2 | 0.0071 | 3.9971e-05 | 1.3439e-07 | 2.9897e-10 |
|ψ−ψM|2 | 0.0070 | 3.9726e-05 | 1.3384e-07 | 2.9809e-10 |
‖ψ−ψM‖ | 1.2946e-06 | 4.4641e-09 | 1.0100e-11 | 1.6372e-14 |
M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 153.4243 | 153.4243 | 8.8628e-13 | 8.9344e-13 |
|ψ−ψM|2 | 150.7964 | 150.7964 | 8.6829e-13 | 8.7548e-13 |
‖ψ−ψM‖ | 3.1416 | 3.1416 | 12.9165e-14 | 2.9192e-14 |
α,β | M=4 | M=6 | M=8 | M=10 |
α=1,β=−10 | 153.4243 | 153.4243 | 1.2239e-12 | 1.2306e-12 |
α=1,β=−100 | 153.4243 | 153.4243 | 1.7578e-12 | 1.7625e-12 |
α=1,β=−1000 | 153.4243 | 153.4243 | 6.2198e-12 | 6.2216e-12 |
α=−10,β=1 | 153.4243 | 153.4243 | 2.7402e-12 | 2.7431e-12 |
α=−100,β=1 | 153.4243 | 153.4243 | 6.1361e-10 | 6.1371e-10 |
α=−1000,β=1 | 153.4243 | 153.4243 | 9.3114e-13 | 9.6030e-13 |
α=−10,β=−10 | 153.4243 | 153.4243 | 2.7778e-12 | 2.7800e-12 |
α=−100,β=−100 | 153.4243 | 153.4243 | 6.7819e-12 | 1.4656e-11 |
α=−1000,β=−1000 | 153.4243 | 153.4243 | 3.3564e-13 | 4.1513e-13 |
M | M=8 | M=10 | M=12 | M=14 |
‖ψ−ψM‖2 | 6.9210e-06 | 2.3352e-08 | 5.2053e-11 | 3.7072e-14 |
|ψ−ψM|2 | 6.8925e-06 | 2.3288e-08 | 5.1950e-11 | 3.1910e-14 |
‖ψ−ψM‖ | 4.9097e-08 | 1.1108e-10 | 1.7815e-13 | 9.4959e-15 |
M | M=4 | M=6 | M=8 | M=10 |
‖ψ−ψM‖2 | 281.2419 | 7.5429e-13 | 7.8632e-13 | 7.9945e-13 |
|ψ−ψM|2 | 278.4164 | 7.4226e-13 | 7.7431e-13 | 7.8757e-13 |
‖ψ−ψM‖ | 0.0512 | 2.2170e-16 | 2.2428e-16 | 2.2440e-16 |
M | M=6 | M=8 | M=10 | M=12 |
‖ψ−ψM‖2 | 0.0071 | 3.9971e-05 | 1.3439e-07 | 2.9897e-10 |
|ψ−ψM|2 | 0.0070 | 3.9726e-05 | 1.3384e-07 | 2.9809e-10 |
‖ψ−ψM‖ | 1.2946e-06 | 4.4641e-09 | 1.0100e-11 | 1.6372e-14 |