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1. Introduction

Though periodic boundary conditions do not belong to three traditional boundary conditions
(Dirichlet, Neumann, and Robin boundary conditions), which are commonly used in mathematical
physics, they still can be found in the research of scientific and engineering problems, such as the
interaction between solutions of the nonlinear Schrödinger equation [1] or KdV equation [2],
isotropic uniform turbulence problem [3], and so on. In addition, under the polar, cylindrical, and
spherical coordinates, we note that they are also periodic [4, 5] in the θ direction. Thus, it’s obvious
that physical models with periodic boundary conditions also have significant application. As a model,
we first consider the following two dimensional fourth-order problem with periodic boundary
conditions and variable coefficients:

∆2ψ − ∇(α∇ψ) + βψ = f , x ∈ Ω, (1.1)
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ψ(x) = ψ(x1 + Lx1 , x2),
∂ψ(x)
∂x1

=
∂ψ(x1 + Lx1 , x2)

∂x1
, (1.2)

ψ(x) = ψ(x1, x2 + Lx2),
∂ψ(x)
∂x2

=
∂ψ(x1, x2 + Lx2)

∂x2
, (1.3)

where α is a nonnegative bounded periodic function, β is a positive bounded function, x = (x1, x2),
Lx1 = x1R − x1L, Lx2 = x2R − x2L, Ω = (x1L, x1R) × (x2L, x2R).

The fourth-order problems can be found in the applications to thin beams and plates [6, 7].
Besides, many complex nonlinear problems also need to solve a fourth order problem
repeatedly [8–13]. In the past decades, there have been many existing results for the theoretical
analysis and numerical research of the fourth-order problems, mainly including various finite element
methods [14–17], spectral methods and some high-order numerical methods [18–27]. However, to the
best of our knowledge, there are few report on the fourth-order problems with periodic boundary
conditions and variable coefficients [28]. As aforementioned, periodic boundary conditions have
significant applications in some science and engineering [29, 30]. Thus, it is meaningful to construct
an efficient and high-order numerical scheme for the fourth-order problems with periodic boundary
conditions and variable coefficients.

The aim of this paper is to propose an efficient algorithm based on the Fourier spectral-Galerkin
approximation for the fourth-order elliptic equation with periodic boundary conditions and variable
coefficients. First, by using the Lax-Milgram theorem, we prove the existence and uniqueness of
weak solution and its approximate solution. Then we define a high-dimensional L2 projection
operator and prove its approximation properties. Combined with Céa lemma, we further prove the
error estimate of the approximate solution. In addition, from the Fourier basis function expansion and
the properties of the tensor, we establish the equivalent matrix form based on tensor product for the
discrete scheme. Finally, some numerical experiments are carried out to demonstrate the efficiency of
the algorithm and correctness of the theoretical analysis.

The rest of this paper is organized as follows. In next section, we derive the weak form and
associated discrete scheme. We give the error estimation of approximate solutions in section 3. In
section 4, we present an efficient implementation of the algorithm. In section 5, we extend the
algorithm to a three-dimensional case. In section 6, we carry out some numerical experiments.
Finally, we make some concluding remarks in section 7.

2. Weak form and discrete scheme

We shall derive the weak form and discrete scheme associated with problem (1.1)–(1.3). Denote
by Hm(Ω) the usual m-order Sobolev space, ∥ · ∥m and | · |m denote the norm and semi-norm in Hm(Ω),
respectively. In particular, we have

H0(Ω) = L2(Ω) =
{
ψ :
∫
Ω

|ψ|2dx < ∞
}

with the following inner product and norm

(ψ, φ) =
∫
Ω

ψφ̄dx, ∥ψ∥ =
( ∫
Ω

|ψ|2dx
) 1

2
,

AIMS Mathematics Volume 8, Issue 4, 9585–9601.



9587

where φ̄ is the complex conjugate of φ. Define

H2
p(Ω) =

{
ψ ∈ H2(Ω) : ψ satisfies the periodic boundary conditions (1.2) and (1.3)

}
with the following inner product, norm and semi-norm:

(ψ, φ)2,Ω =

2∑
|α|=0

∫
Ω

DαψDαφ̄dx,

∥ψ∥2,Ω =
( 2∑
|α|=0

∥Dαψ∥2
) 1

2
,

|ψ|2,Ω =
(∑
|α|=2

∥Dαψ∥2
) 1

2
,

where Dα = ∂|α|

∂x1
α1∂x2

α2 , α = (α1, α2), |α| = α1+α2. We further denote by Hm
p (Ω) the subspace of Hm(Ω),

which consists of functions with derivatives of order up to m − 1 being 2π-periodic.
Then a weak form of problem (1.1)–(1.3) is: Find ψ ∈ H2

p(Ω), such that

a(ψ, φ) = F(φ), ∀φ ∈ H2
p(Ω), (2.1)

where

a(ψ, φ) =
∫
Ω

∆ψ∆φ̄dx +
∫
Ω

α∇ψ∇φ̄dx +
∫
Ω

βψφ̄dx,

F(φ) =
∫
Ω

f φ̄dx.

Define an approximation space of H2
p(Ω) as follows:

XM(Ω) = span{ei2πt x1−x1L
Lx1 ei2πq x2−x2L

Lx2 : |t| = 0, 1, · · · ,M, |q| = 0, 1, · · · ,M}.

Then the corresponding discrete scheme of the weak form (2.1) is: Find ψM ∈ XM(Ω), such that

a(ψM, φM) = F(φM), ∀φM ∈ XM(Ω). (2.2)

3. Error estimation of the approximation solution

In this section, we shall first prove the existence and uniqueness of weak solution and its
approximate solution, and then further prove the error estimate between them.

3.1. Existence and uniqueness

For the sake of brevity, we denote by a ≲ b that a ≤ cb, where c is a positive constant. Without loss
of generality, we shall confine our discussion to the following assumptions:

α∗ := inf
x∈Ω

α(x) ≥ 0, α∗ := sup
x∈Ω

α(x) < ∞, (3.1)

β∗ := inf
x∈Ω

β(x) > 0, β∗ := sup
x∈Ω

β(x) < ∞, (3.2)

Ω = (0, 2π) × (0, 2π). (3.3)
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Lemma 1. For any ψ, φ ∈ H2
p(Ω), the following equalities hold:∫

Ω

∂2ψ

∂x1∂x2

∂2φ̄

∂x1∂x2
dx =

∫
Ω

∂2ψ

∂x2
1

∂2φ̄

∂x2
2

dx =
∫
Ω

∂2ψ

∂x2
2

∂2φ̄

∂x2
1

dx,∫
Ω

∂2ψ

∂x1∂x2

∂2ψ̄

∂x1∂x2
dx =

∫
Ω

∂2ψ

∂x2
1

∂2ψ̄

∂x2
2

dx =
∫
Ω

∂2ψ̄

∂x2
1

∂2ψ

∂x2
2

dx.

Proof. Using the integration by parts, we have∫
Ω

∂2ψ

∂x1∂x2

∂2φ̄

∂x1∂x2
dx =

∫ 2π

0

∂2ψ

∂x1∂x2

∂φ̄

∂x2

∣∣∣∣x1=2π

x1=0
dx2 −

∫
Ω

∂3ψ

∂x2
1∂x2

∂φ̄

∂x2
dx

=

∫ 2π

0

∂2ψ

∂x1∂x2

∂φ̄

∂x2

∣∣∣∣x1=2π

x1=0
dx2 −

∫ 2π

0

∂2ψ

∂x2
1

∂φ̄

∂x2

∣∣∣∣x2=2π

x2=0
dx1

+

∫
Ω

∂2ψ

∂x2
1

∂2φ̄

∂x2
2

dx.

From (1.2) and (1.3), we derive that

∂2ψ(x)
∂x1∂x2

=
∂2ψ(x1, x2 + 2π)

∂x1∂x2
,
∂φ̄

∂x2
(x) =

∂φ̄(x1 + 2π, x2)
∂x2

,

∂2ψ(x)
∂x1∂x2

=
∂2ψ((x1 + 2π, x2)

∂x1∂x2
,
∂φ̄(x)
∂x2

=
∂φ̄(x1, x2 + 2π)

∂x2
.

Then we have ∫ 2π

0

∂2ψ

∂x1∂x2

∂φ̄

∂x2

∣∣∣∣x1=2π

x1=0
dx2 =

∫ 2π

0

∂2ψ

∂x2
1

∂φ̄

∂x2

∣∣∣∣x2=2π

x2=0
dx1 = 0.

It follows from the above equality that∫
Ω

∂2ψ

∂x1∂x2

∂2φ̄

∂x1∂x2
dx =

∫
Ω

∂2ψ

∂x2
1

∂2φ̄

∂x2
2

dx.

We can obtain the following equalities in the same way∫
Ω

∂2ψ

∂x1∂x2

∂2φ̄

∂x1∂x2
dx =

∫
Ω

∂2ψ

∂x2
1

∂2φ̄

∂x2
2

dx =
∫
Ω

∂2ψ

∂x2
2

∂2φ̄

∂x2
1

dx,∫
Ω

∂2ψ

∂x1∂x2

∂2ψ̄

∂x1∂x2
dx =

∫
Ω

∂2ψ

∂x2
1

∂2ψ̄

∂x2
2

dx =
∫
Ω

∂2ψ̄

∂x2
1

∂2ψ

∂x2
2

dx.

□

Lemma 2. For any ψ ∈ H2
p(Ω), the following inequalities hold:∫

Ω

|
∂ψ

∂x1
|2dx ≤

1
2
∥ψ∥2 +

1
2

∫
Ω

|
∂2ψ

∂x2
1

|2dx,∫
Ω

|
∂ψ

∂x2
|2dx ≤

1
2
∥ψ∥2 +

1
2

∫
Ω

|
∂2ψ

∂x2
2

|2dx.
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Proof. We derive from integration by parts that∫
Ω

|
∂ψ

∂x1
|2dx =

∫ 2π

0

∫ 2π

0

∂ψ

∂x1

∂ψ̄

∂x1
dx

=

∫ 2π

0
ψ
∂ψ̄

∂x1

∣∣∣∣x1=2π

x1=0
dx2 −

∫ 2π

0

∫ 2π

0
ψ
∂2ψ̄

∂x2
1

dx

= −

∫ 2π

0

∫ 2π

0
ψ
∂2ψ̄

∂x2
1

dx ≤
( ∫
Ω

|ψ|2dx
) 1

2
( ∫
Ω

|
∂2ψ

∂x2
1

|2dx
) 1

2

≤
1
2
∥ψ∥2 +

1
2

∫
Ω

|
∂2ψ

∂x2
1

|2dx.

Similarly, we can obtain ∫
Ω

|
∂ψ

∂x2
|2dx ≤

1
2
∥ψ∥2 +

1
2

∫
Ω

|
∂2ψ

∂x2
2

|2dx.

This finishes our proof. □

Lemma 3. Let α(x), β(x) ∈ L∞(Ω) satisfy the assumptions (3.1) and (3.2). Then a(ψ, φ) is a continuous
and coercive bilinear form in H2

p(Ω) × H2
p(Ω), i.e.,

|a(ψ, φ)| ≤ Q∗∥ψ∥2,Ω∥φ∥2,Ω,

a(ψ, ψ) ≥ Q∗∥ψ∥22,Ω,

where Q∗ = max{1, α∗, β∗}, Q∗ = 1
2 min{1, β∗}.

Proof. Employing Lemma 1, we obtain that∫
Ω

∆ψ∆φ̄dx =
∫
Ω

(
∂2ψ

∂x2
1

∂2φ̄

∂x2
1

+
∂2ψ

∂x2
1

∂2φ̄

∂x2
2

+
∂2ψ

∂x2
2

∂2φ̄

∂x2
1

+
∂2ψ

∂x2
2

∂2φ̄

∂x2
2

)dx

=

∫
Ω

(
∂2ψ

∂x2
1

∂2φ̄

∂x2
1

+ 2
∂2ψ

∂x1∂x2

∂2φ̄

∂x1∂x2
+
∂2ψ

∂x2
2

∂2φ̄

∂x2
2

)dx.

Then, using Cauchy-Schwarz inequality, we can derive that

|a(ψ, φ)| = |
∫
Ω

∆ψ∆φ̄dx +
∫
Ω

α∇ψ∇φ̄dx +
∫
Ω

βψφ̄dx|

≤

∫
Ω

(|
∂2ψ

∂x2
1

∂2φ

∂x2
1

| + 2|
∂2ψ

∂x1∂x2

∂2φ

∂x1∂x2
| + |

∂2ψ

∂x2
2

∂2φ

∂x2
2

|)dx

+ α∗
∫
Ω

(|
∂ψ

∂x1

∂φ

∂x1
| + |

∂ψ

∂x2

∂φ

∂x2
|)dx + β∗

∫
Ω

|ψφ|dx

≤ max{1, α∗, β∗}∥ψ∥2,Ω∥φ∥2,Ω.

On the other hand, using Lemma 2, we can derive that

a(ψ, ψ) =
∫
Ω

(|
∂2ψ

∂x2
1

|2 + 2|
∂2ψ

∂x1∂x2
|2 + |

∂2ψ

∂x2
2

|2)dx
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+

∫
Ω

α(|
∂ψ

∂x1
|2 + |

∂ψ

∂x2
|2)dx +

∫
Ω

β|ψ|2dx

≥

∫
Ω

(|
∂2ψ

∂x2
1

|2 + 2|
∂2ψ

∂x1∂x2
|2 + |

∂2ψ

∂x2
2

|2)dx + β∗
∫
Ω

|ψ|2dx

≥ min{1, β∗}
∫
Ω

(|
∂2ψ

∂x2
1

|2 + 2|
∂2ψ

∂x1∂x2
|2 + |

∂2ψ

∂x2
2

|2 + |ψ|2)dx

≥
1
2

min{1, β∗}∥ψ∥22,Ω.

This finishes our proof. □

Lemma 4. If f (x) ∈ L2(Ω), then F(φ) is a bounded linear functions on H2
p(Ω), i.e.,

|F(φ)| ≲ ∥φ∥2,Ω.

Proof. In light of definition of F(φ) and Cauchy-Schwarz inequality, we have

|F(φ)| =
∣∣∣∣ ∫
Ω

f φ̄dx
∣∣∣∣

≤
( ∫
Ω

| f |2dx
) 1

2
( ∫
Ω

|φ|2dx
) 1

2

≲∥φ∥2,Ω.

The proof is completed. □

From Lemma 3, Lemma 4 and Lax-Milgram theorem, we have following theorem:

Theorem 1. If f (x) ∈ L2(Ω), then problems (2.1) and (2.2) have unique solutions ψ(x) and ψM(x),
respectively.

3.2. Error estimation

Theorem 2. Let ψ(x) and ψM(x) be the solutions of the variational form (2.1) and discrete scheme (2.2),
respectively. Then it holds that

∥ψ − ψM∥2,Ω ≲ inf
φ∈XM
∥ψ − φM∥2,Ω.

Proof. We obtain from (2.1) and (2.2) that

a(ψ, φM) = F(φM), ∀φM ∈ XM(Ω),
a(ψM, φM) = F(φM), ∀φM ∈ XM(Ω).

Then we have

a(ψ − ψM, φM) = 0, ∀φM ∈ XM(Ω). (3.4)
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Form Lemma 3 and (3.4), we arrive at

∥ψ − ψM∥
2
2,Ω ≲ a(ψ − ψM, ψ − ψM)
= a(ψ − ψM, ψ − φM + φM − ψM)
= a(ψ − ψM, φ − φM) + a(ψ − ψM, φM − ψM)
≲ ∥ψ − ψM∥2,Ω∥ψ − φM∥2,Ω,

which is equivalent to the following form

∥ψ − ψM∥2,Ω ≲ ∥ψ − φM∥2,Ω, ∀φM ∈ XM(Ω). (3.5)

From (3.5) and the arbitrariness of φM, the desired result follows. □

Let ΠM : L2(Ω)→ XM(Ω) be a L2-orthogonal projection:

(ΠMψ − ψ, φ) = 0, ∀φ ∈ XM(Ω).

Theorem 3. For any ψ(x) ∈ Hm
p (Ω) and 0 ≤ µ ≤ m, there is a constant C such that the following

inequality holds:

∥ΠMψ − ψ∥µ,Ω ≤ CMµ−m|ψ|m,Ω.

Proof. We first derive that

Dα(ψ − ΠMψ) = Dα
( ∑
|t|>M,|q|>M

ψtqeitx1+iqx2

)
=
∑

|t|>M,|q|>M

(it)α1(iq)α2ψtqeitx1+iqx2 .

For any |α| : 0 ⩽ |α| ⩽ µ ≤ m, taking α1 ≤ m1, α2 ≤ m − m1, we have

∥Dα(ψ − ΠMψ)∥2 = (2π)2
∑

|t|>M,|q|>M

t2α1q2α2 |ψtq|
2

= (2π)2
∑

|t|>M,|q|>M

t2(α1−m1)q2[α2−(m−m1)]|ψtq|
2t2m1q2(m−m1)

≤ (2π)2M2(α1−m1)M2[α2−(m−m1)]
∑

|t|>M,|q|>M

|ψtq|
2t2m1q2(m−m1)

≤ M2(|α|−m)
∑

|t|≥0,|q|≥0

(2π)2|ψtq|
2t2m1q2(m−m1)

≤ M2(µ−m)|ψ|2m,Ω,

by making a summation for |α| from 0 to µ, we can obtain the expected results. □

Theorem 4. Let ψM(x) be the approximation solution of ψ(x). If ψ(x) ∈ Hm
p (Ω), the following inequality

holds

∥ψ − ψM∥2,Ω ≲ M2−m|ψ|m,Ω.

Proof. According to Theorem 2, we have

∥ψ − ψM∥2,Ω ≲ inf
φ∈XM
∥ψ − φM∥2,Ω.

We derive form Theorem 3 that

∥ψ − ψM∥2,Ω ≲ ∥ψ − ΠMψ∥2,Ω ≲ M2−m|ψ|m,Ω.

The proof is completed. □
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4. Efficient implementation of the algorithm

In this section, we will describe the implementation process of the algorithm in detail, and give a
brief pseudo code. To solve (2.2) by Fourier spectral method, we shall look for

ψM =

M∑
|t|=0

M∑
|q|=0

ψtqeitx1eiqx2 . (4.1)

Let

Ψ =



ψ−M,−M · · · ψ−M,0 · · · ψ−M,M

· · ·
. . . · · ·

. . . · · ·

ψ0,−M · · · ψ0,0 · · · ψ0,M

...
. . .

...
. . .

...

ψM,−M · · · ψM,0 · · · ψM,M


.

We denote by Ψ a column vectors with (2M + 1)2 elements, which consist of 2M + 1 columns of Ψ.
Let φM(x) = e−ikx1e−ilx2 , (|k|, |l| = 0, 1, · · · ,M) , then we have

∫
Ω

∆ψM∆φMdx

=

M∑
|t|=0

M∑
|q|=0

ψtq

∫ 2π

0

∫ 2π

0
∆(eitx1eiqx2)∆(e−ikx1e−ilx2)dx

=

M∑
|t|=0

M∑
|q|=0

ψtq(sktmlq + oktglq + gktolq + mkt slq)

=S (k, :)UM(l, :)T + O(k, :)UG(l, :)T +G(k, :)UO(l, :)T + M(k, :)US (l, :)T

=[M(l, :) ⊗ S (k, :) +G(l, :) ⊗ O(k, :) + O(l, :) ⊗G(k, :) + S (l, :) ⊗ M(k, :)]Ψ,

where

skt = 2πk2t2δkt, S = (skt)2M+1
|k|,|t|=0, mkt = 2πδkt, M = (mkt)2M+1

|k|,|t|=0,

okt = 2πk2δkt, O = (okt)2M+1
|k|,|t|=0, gkt = 2πt2δkt, G = (dkt)2M+1

|k|,|t|=0,

S (k, :) indicates the k-th row of the matrix S , M(k, :), O(k, :) and G(k, :) are similar to S (k, :).
⊗ represents the tensor product of matrix, i.e. M ⊗ S = (mktS )2M+1

|k|,|t|=0.

∫
Ω

α(x)∇ψM∇φMdx =
M∑
|t|=0

M∑
|q|=0

ψtq

∫
Ω

α(x)∇(eitx1eiqx2)∇(e−ikx1e−ilx2)dx

=

M∑
|t|=0

M∑
|q|=0

ψtq(tk + ql)
∫
Ω

α(x)eitx1eiqx2e−ikx1e−ilx2dx

=A((l + M + 1) + (2M + 1)(k + M), :)Ψ,

AIMS Mathematics Volume 8, Issue 4, 9585–9601.
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Ω

β(x)ψMφMdx =
M∑
|t|=0

M∑
|q|=0

ψtq

∫
Ω

β(x)eitx1eiqx2e−ikx1e−ilx2dx

=B((l + M + 1) + (2M + 1)(k + M), :)Ψ,

where

A = (aktlq)2M+1
|k|,|t|,|l|,|q|=0, aktlq = (tk + ql)

∫
Ω

α(x)eitx1eiqx2e−ikx1e−ilx2dx,

B = (bktlq)2M+1
|k|,|t|,|l|,|q|=0, bktlq =

∫
Ω

β(x)eitx1eiqx2e−ikx1e−ilx2dx.

Then the equivalent matrix form based on tensor product for the discrete scheme (2.2) is as follows:

(M ⊗ S +G ⊗ O + O ⊗G + S ⊗ M + A + B)Ψ = F, (4.2)

where

F = ( fkl)2M+1
|k|,|l|=0, fkl =

∫
Ω

f (x)e−ikx1e−ilx2dx.

Note that when α, β are constants, we know from the orthogonal property of Fourier basis functions
that the stiffness matrix and mass matrix in (4.2) are all sparse, so we can solve (4.2) efficiently.
However, for general variable coefficients α, β, the stiffness matrix and mass matrix are usually full. In
that case, we can use the preconditioned iteration method or Schur-complement approach, i.e., block
Gaussian elimination to solve (4.2).

5. Extension to three-dimensional case

In this section, we shall extend our algorithm to three-dimensional case. As a model, we consider
the following three dimensional fourth-order problem with periodic boundary conditions:

∆2ψ − ∇(α∇ψ) + βψ = f , x ∈ Ω, (5.1)

ψ(x) = ψ(x1 + Lx1 , x2, x3),
∂ψ(x)
∂x1

=
∂ψ(x1 + Lx1 , x2, x3)

∂x1
, (5.2)

ψ(x) = ψ(x1, x2 + Lx2 , x3),
∂ψ(x)
∂x2

=
∂ψ(x1, x2 + Lx2 , x3)

∂x2
, (5.3)

ψ(x) = ψ(x1, x2, x3 + Lx3),
∂ψ(x)
∂x3

=
∂ψ(x1, x2, x3 + Lx3)

∂x3
, (5.4)

where α and β are constant coefficients, Lx1 = x1R − x1L, Lx2 = x2R − x2L, Lx3 = x3R − x3L, x = (x1, x2, x3),
Ω = (x1L, x1R) × (x2L, x2R) × (x3L, x3R).

Similar to two-dimensional case, we can derive the weak form and discrete scheme for the three-
dimensional case. Define a Sobolev space:

H2
p(Ω) =

{
ψ ∈ H2(Ω) : ψ satisfies the periodic boundary conditions (5.2) − (5.4)

}
.
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Then a weak form of (5.1)–(5.4) is to find ψ ∈ H2
p(Ω), such that

a(ψ, φ) = F(φ), ∀φ ∈ H2
p(Ω). (5.5)

Define an approximation space:

XM(Ω) = span{ei2πt x1−x1L
Lx1 ei2πq x2−x2L

Lx2 ei2π j x3−x3L
Lx3 : |t|, |q|, | j| = 0, 1, · · · ,M}.

Then the corresponding discrete scheme for the weak form (5.5) is to find ψM ∈ XM(Ω), such that

a(ψM, φM) = F(φM), ∀φM ∈ XM(Ω). (5.6)

We shall derive the equivalent matrix form based on tensor product for the discrete scheme (5.6).
Let

ψM =

M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tqe

itx1eiqx2ei jx3 , (5.7)

Ψ j =



ψ
j
−M,−M · · · ψ

j
−M,0 · · · ψ

j
−M,M

· · ·
. . . · · ·

. . . · · ·

ψ
j
0,−M · · · ψ

j
0,0 · · · ψ

j
0,M

...
. . .

...
. . .

...

ψ
j
M,−M · · · ψ

j
M,0 · · · ψ

j
M,M


.

We denote by Ψ̃ j a column vectors with (2M + 1)2 elements consisting of 2M + 1 columns of Ψ j. Let
Ψ = (Ψ̃−M, Ψ̃−M+1, · · · , Ψ̃M), and denote by Ψ̃ a column vectors with (2M + 1)3 elements consisting of
2M + 1 columns of Ψ. Taking φM(x) = e−ikx1e−ilx2e−ipx3 , (|k|, |l|, |p| = 0, 1, · · · ,M) , then we have

∫
Ω

∆ψM∆φMdx =
M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tq

∫
Ω

∆(eitx1eiqx2ei jx3)∆(e−ikx1e−ilx2e−ipx3)dx

=

M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tq(sktmlqmp j + oktolqmp j + oktmlqop j + oktolqmp j

+ mkt slqmp j + mktolqop j + oktmlqop j + mktolqop j

+ mktmlqsp j)
=
[
M(p, :) ⊗ M(l, :) ⊗ S (k, :) + M(p, :) ⊗ O(l, :) ⊗ O(k, :)
+ O(p, :) ⊗ M(l, :) ⊗ O(k, :) + M(p, :) ⊗ O(l, :) ⊗ O(k, :)
+ M(p, :) ⊗ S (l, :) ⊗ M(k, :) + O(p, :) ⊗ O(l, :) ⊗ M(k, :)
+ O(p, :) ⊗ M(l, :) ⊗ O(k, :) + O(p, :) ⊗ O(l, :) ⊗ M(k, :)
+ S (p, :) ⊗ M(l, :) ⊗ M(k, :)

]
Ψ̃,∫

Ω

∇ψM∇φMdx =
M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tq

∫
Ω

∇(eitx1eiqx2ei jx3)∇(e−ikx1e−ilx2e−ipx3)dx
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=

M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tq(oktmlqmp j + oktmlqop j + mktmlqop j)

=[M(p, :) ⊗ M(l, :) ⊗ O(k, :) + O(p, :) ⊗ M(l, :) ⊗ O(k, :)
+ M(p, :) ⊗ M(l, :) ⊗ O(k, :)]Ψ̃,∫

Ω

ψMφMdx =
M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tq

∫
Ω

eitx1eiqx2ei jx3e−ikx1e−ilx2e−ipx3dx

=

M∑
|t|=0

M∑
|q|=0

M∑
| j|=0

ψ j
tqmktmlqmp j

=[M(p, :) ⊗ M(l, :) ⊗ M(k, :)]Ψ̃.

Then the equivalent matrix form based on tensor product for the discrete scheme (5.6) is as follows:

(A + B + C)Ψ̃ = F ,

where

A = M ⊗ M ⊗ S + M ⊗ O ⊗ O + O ⊗ M ⊗ O + M ⊗ O ⊗ O

+ M ⊗ S ⊗ M + O ⊗ O ⊗ M + O ⊗ M ⊗ O + O ⊗ O ⊗ M + S ⊗ M ⊗ M,

B = M ⊗ M ⊗ O + O ⊗ M ⊗ O + M ⊗ M ⊗ O, C = M ⊗ M ⊗ M,

F = ( fklp)2M+1
|k|,|l|,|p|=0, fklp =

∫
Ω

f (x)e−ikx1e−ilx2e−ipx3dx.

6. Numerical experiments

In this section, we shall perform some numerical experiments to confirm the correctness of
theoretical analysis and the effectiveness of our algorithm. The programs are compiled and operated
in MATLAB 2018b.

6.1. Two dimensional case

Example 1. We take α = 1, β = 10 and choose the exact solution ψ = sin 4x1 sin 8x2. Then f can be
obtained by plugging ψ into the Eq (1.1). We shall solve (1.1)–(1.3) by using the algorithm proposed in
section 4. We list in Table 1 the errors between the exact solution and the approximate solution under
H2 norm, H2 seminorm and L2 norm respectively for different M. In addition, we also present their
comparison figures and absolute error figures for different M in Figures 1 and 2.

We observe from Table 1 that the approximate solution ψM(x) reaches about 10−12 accuracy when
M ≥ 8. Besides, we also see from Figures 1 and 2 that the approximation solution converges to the
exact solution.

Remark 1. Though the proof of well-posedness of weak solution requires α to be a nonnegative
bounded periodic function and β to be a positive bounded function, our algorithm is still valid for
some large and negative α and β, and the corresponding numerical results are listed in Table 2.
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Table 1. The error between exact solution and approximation solution.

M M = 4 M = 6 M = 8 M = 10

∥ψ − ψM∥2 153.4243 153.4243 8.8628e-13 8.9344e-13
|ψ − ψM |2 150.7964 150.7964 8.6829e-13 8.7548e-13
∥ψ − ψM∥ 3.1416 3.1416 12.9165e-14 2.9192e-14

Figure 1. Comparison figures between exact solution (left) and approximation solution
(right) with M = 10.

Figure 2. Error figures between exact solution and approximation solution with M = 10
(left) and M = 15 (right).

Table 2. The error ∥ψ−ψM∥2 between exact solution and approximation solution for different
α and β.

α, β M = 4 M = 6 M = 8 M = 10

α = 1, β = −10 153.4243 153.4243 1.2239e-12 1.2306e-12
α = 1, β = −100 153.4243 153.4243 1.7578e-12 1.7625e-12
α = 1, β = −1000 153.4243 153.4243 6.2198e-12 6.2216e-12
α = −10, β = 1 153.4243 153.4243 2.7402e-12 2.7431e-12
α = −100, β = 1 153.4243 153.4243 6.1361e-10 6.1371e-10
α = −1000, β = 1 153.4243 153.4243 9.3114e-13 9.6030e-13
α = −10, β = −10 153.4243 153.4243 2.7778e-12 2.7800e-12
α = −100, β = −100 153.4243 153.4243 6.7819e-12 1.4656e-11
α = −1000, β = −1000 153.4243 153.4243 3.3564e-13 4.1513e-13
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Example 2. We take α = sin(x1 + x2) + 2, β = ecos(x1+x2), and choose the exact solution ψ = esin(x1+x2).
We list in Table 3 the errors between the exact solution and the approximate solution under H2 norm,
H2 seminorm and L2 norm respectively for different M. Similarly, we also present their comparison
figures and absolute error figures for different M in Figures 3 and 4. In order to further show the
spectral accuracy of our algorithm, we present in Figure 5 error figures between exact solution and
approximation solutions under L2 and H2 norms for different M.

We observe from Table 3 that the approximate solution ψM(x) reach about 10−11 accuracy when
M ≥ 12. We see from Figures 3–5 that the approximation solution exponentially converges to the exact
solution.

Table 3. The error between exact solution and approximation solution.

M M = 8 M = 10 M = 12 M = 14

∥ψ − ψM∥2 6.9210e-06 2.3352e-08 5.2053e-11 3.7072e-14
|ψ − ψM |2 6.8925e-06 2.3288e-08 5.1950e-11 3.1910e-14
∥ψ − ψM∥ 4.9097e-08 1.1108e-10 1.7815e-13 9.4959e-15

Figure 3. Comparison figures between exact solution (left) and approximation solution
(right) with M = 14.

Figure 4. The error figures between exact solution and approximation solution with M = 12
(left) and M = 14 (right).
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Figure 5. The error figures between exact solution and approximation solutions under L2

(left) and H2 (right) norms for different M.

6.2. Three dimensional case

Example 3. We take α = 1, β = 1 and choose the exact solution ψ = cos 3x1 cos 4x2 cos 5x3. We
list in Table 4 the errors between the exact solution and the approximate solution under H2 norm, H2

seminorm and L2 norm respectively for different M.
We observe from Table 4 that the approximate solution reach about 10−13 accuracy when M ≥ 8.

That is to say, even in the three-dimensional case, our algorithm still has spectral accuracy.

Table 4. The error between exact solution and approximation solution.

M M = 4 M = 6 M = 8 M = 10

∥ψ − ψM∥2 281.2419 7.5429e-13 7.8632e-13 7.9945e-13
|ψ − ψM |2 278.4164 7.4226e-13 7.7431e-13 7.8757e-13
∥ψ − ψM∥ 0.0512 2.2170e-16 2.2428e-16 2.2440e-16

Example 4. We take α = 1, β = 1 and choose the exact solution ψ = ecos x1+cos x2+cos x3 . We list in Table 5
the errors between the exact solution and the approximate solution under H2 norm, H2 seminorm and
L2 norm respectively for different M.

We observe from Table 5 that the approximate solution reach about 10−10 accuracy when M ≥ 12.
Again, our algorithm has spectral accuracy.

Table 5. The error between exact solution and approximation solution.

M M = 6 M = 8 M = 10 M = 12

∥ψ − ψM∥2 0.0071 3.9971e-05 1.3439e-07 2.9897e-10
|ψ − ψM |2 0.0070 3.9726e-05 1.3384e-07 2.9809e-10
∥ψ − ψM∥ 1.2946e-06 4.4641e-09 1.0100e-11 1.6372e-14
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7. Conclusions

We have developed an efficient Fourier spectral-Galerkin method to solve the fourth-order elliptic
equation with periodic boundary conditions and variable coefficients. Firstly, we prove the error
estimations between the weak solutions and approximation solutions. Then we derive the equivalent
matrix form based on tensor product for the discrete scheme. Numerical experiments validate the
theoretical analysis and algorithm. Besides, the method proposed in this paper can be extended to
some more complex linear and nonlinear equations, such as fourth-order parabolic equation [31],
Cahn-Hiliard equation, Gross Pitaevskii equation, which is our future research goal.
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