Research article Special Issues

Moving average control chart under neutrosophic statistics

  • Continuous monitoring and improving the production process is a crucial step for the entrepreneur to maintain its position in the market. A successful process monitoring scheme depends upon the specification of the quality being monitored. In this paper, the monitoring of temperature is addressed using the specification of moving average under uncertainty. We determined the coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average run lengths using several shift values. A real example of weather-related situation is studied for the practical adoption of the given technique. A comparison study shows that the proposed chart outperforms the existing chart in monitoring temperature-related data.

    Citation: Muhammad Aslam, Khushnoor Khan, Mohammed Albassam, Liaquat Ahmad. Moving average control chart under neutrosophic statistics[J]. AIMS Mathematics, 2023, 8(3): 7083-7096. doi: 10.3934/math.2023357

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [3] Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali . Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646
    [4] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [5] Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
    [6] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [7] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [8] Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228
    [9] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [10] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
  • Continuous monitoring and improving the production process is a crucial step for the entrepreneur to maintain its position in the market. A successful process monitoring scheme depends upon the specification of the quality being monitored. In this paper, the monitoring of temperature is addressed using the specification of moving average under uncertainty. We determined the coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average run lengths using several shift values. A real example of weather-related situation is studied for the practical adoption of the given technique. A comparison study shows that the proposed chart outperforms the existing chart in monitoring temperature-related data.



    The key to solving the general quadratic congruence equation is to solve the equation of the form x2amodp, where a and p are integers, p>0 and p is not divisible by a. For relatively large p, it is impractical to use the Euler criterion to distinguish whether the integer a with (a,p)=1 is quadratic residue of modulo p. In order to study this issue, Legendre has proposed a new tool-Legendre's symbol.

    Let p be an odd prime, the quadratic character modulo p is called the Legendre's symbol, which is defined as follows:

    (ap)={1, if a is a quadratic residue modulo p;1, if a is a quadratic non-residue modulo p;0, if pa.

    The Legendre's symbol makes it easy for us to calculate the level of quadratic residues. The basic properties of Legendre's symbol can be found in any book on elementary number theory, such as [1,2,3].

    The properties of Legendre's symbol and quadratic residues play an important role in number theory. Many scholars have studied them and achieved some important results. For examples, see the [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    One of the most representative properties of the Legendre's symbol is the quadratic reciprocal law:

    Let p and q be two distinct odd primes. Then, (see Theorem 9.8 in [1] or Theorems 4–6 in [3])

    (pq)(qp)=(1)(p1)(q1)4.

    For any odd prime p with p1mod4 there exist two non-zero integers α(p) and β(p) such that

    p=α2(p)+β2(p). (1)

    In fact, the integers α(p) and β(p) in the (1) can be expressed in terms of Legendre's symbol modulo p (see Theorems 4–11 in [3])

    α(p)=12p1a=1(a3+ap)andβ(p)=12p1a=1(a3+rap),

    where r is any integer, and (r,p)=1, (rp)=1, (p)=χ2 denote the Legendre's symbol modulo p.

    Noting that Legendre's symbol is a special kind of character. For research on character, Han [7] studied the sum of a special character χ(ma+ˉa), for any integer m with (m,p)=1, then

    |p1a=1χ(ma+ˉa)|2=2p+(mp)p1a=1χ(a)p1b=1(b(b1)(a2b1)p),

    which is a special case of a general polynomial character sums N+Ma=N+1χ(f(a)), where M and N are any positive integers, and f(x) is a polynomial.

    In [8], Du and Li introduced a special character sums C(χ,m,n,c;p) in the following form:

    C(χ,m,n,c;p)=p1a=0p1b=0χ(a2+nab2nb+c)e(mb2ma2p),

    and studied the asymptotic properties of it. They obtained

    p1c=1|C(χ,m,n,c;p)|2k={p2k+1+k23k22p2k+O(p2k1),ifχ is the Legendre symbol modulo p;p2k+1+k23k22p2k+O(p2k1/2),ifχ is a complex character modulo p.

    Recently, Yuan and Zhang [12] researched the question about the estimation of the mean value of high-powers for a special character sum modulo a prime, let p be an odd prime with p1mod6, then for any integer k0, they have the identity

    Sk(p)=13[dk+(d+9b2)k+(d9b2)k],

    where

    Sk(p)=1p1p1r=1Ak(r),
    A(r)=1+p1a=1(a2+rˉap),

    and for any integer r with (r,p)=1.

    More relevant research on special character sums will not be repeated. Inspired by these papers, we have the question: If we replace the special character sums with Legendre's symbol, can we get good results on p1mod4?

    We will convert β(p) to another form based on the properties of complete residues

    β(p)=12p1a=1(a+nˉap),

    where ˉa is the inverse of a modulo p. That is, ˉa satisfy the equation xa1modp for any integer a with (a,p)=1.

    For any integer k0, G(n) and Kk(p) are defined as follows:

    G(n)=1+p1a=1(a2+nˉa2p)andKk(p)=1p1p1n=1Gk(n).

    In this paper, we will use the analytic methods and properties of the classical Gauss sums and Dirichlet character sums to study the computational problem of Kk(p) for any positive integer k, and give a linear recurrence formulas for Kk(p). That is, we will prove the following result.

    Theorem 1. Let p be an odd prime with p1mod4, then we have

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p),

    for all integer k4 with

    K0(p)=1,K1(p)=0,K2(p)=2p+1,K3(p)=3(4α22p),

    where

    α=α(p)=p12a=1(a+ˉap).

    Applying the properties of the linear recurrence sequence, we may immediately deduce the following corollaries.

    Corollary 1. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=111+p1a=1(a2+nˉa2p)=16α2p28α28p2+14p16α416α2p+4p1.

    Corollary 2. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0(1+p1a=1(a2+nˉa2p))e(nm2p)=p.

    Corollary 3. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0[1+p1a=1(a2+nˉa2p)]2e(nm2p)=(4α22p)p.

    Corollary 4. Let p be an odd prime with p1mod8. Then we have

    p1n=1(1+p1a=1(a2+nˉa2p))p1m=0e(nm4p)=p(1+B(1))p,

    where

    B(1)=p1m=0e(m4p).

    If we consider such a sequence Fk(p) as follows: Let p be a prime with p1mod8, χ4 be any fourth-order character modulo p. For any integer k0, we define the Fk(p) as

    Fk(p)=p1n=11Gk(n),

    we have

    Fk(p)=116α416α2p+4p1Fk4(p)(4p+2)16α416α2p+4p1Fk2(p)+4(4α22p)16α416α2p+4p1Fk1(p).

    Lemma 1. Let p be an odd prime with p1mod4. Then for any fourth-order character χ4modp, we have the identity

    τ2(χ4)+τ2(¯χ4)=2pα,

    where

    τ(χ4)=p1a=1χ4(a)e(ap)

    denotes the classical Gauss sums, e(y)=e2πiy,i2=1, and α is the same as in the Theorem 1.

    Proof. See Lemma 2.2 in [9].

    Lemma 2. Let p be an odd prime. Then for any non-principal character ψ modulo p, we have the identity

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2),

    where χ2=(p) denotes the Legendre's symbol modulo p.

    Proof. See Lemma 2 in [12].

    Lemma 3. Let p be a prime with p1mod4, then for any integer n with (n,p)=1 and fourth-order character χ4modp, we have the identity

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    Proof. For any integer a with (a,p)=1, we have the identity

    1+χ4(a)+χ2(a)+¯χ4(a)=4,

    if a satisfies ab4modp for some integer b with (b,p)=1 and

    1+χ4(a)+χ2(a)+¯χ4(a)=0,

    otherwise. So from these and the properties of Gauss sums we have

    p1a=1(a2+nˉa2p)=p1a=1(a2p)(a4+np)=p1a=1χ2(a4)χ2(a4+n)=p1a=1(1+χ4(a)+χ2(a)+¯χ4(a))χ2(a)χ2(a+n)=p1a=1(1+χ4(na)+χ2(na)+¯χ4(na))χ2(na)χ2(na+n)=p1a=1χ2(a)χ2(a+1)+p1a=1χ4(na)χ2(a)χ2(a+1) (2)
    +p1a=1χ2(na)χ2(a)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1)=p1a=1χ2(1+ˉa)+p1a=1χ4(na)χ2(a)χ2(a+1)+p1a=1χ2(n)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1).

    Noting that for any non-principal character χ,

    p1a=1χ(a)=0

    and

    p1a=1χ(a)χ(a+1)=1τ(ˉχ)p1b=1p1a=1ˉχ(b)χ(a)e(b(a+1)p).

    Then we have

    p1a=1χ2(1+ˉa)=1,p1a=1χ2(a+1)=1,
    p1a=1χ4(a)χ2(a)χ2(a+1)=1τ(χ2)p1b=1p1a=1χ2(b)χ4(a)χ2(a)e(b(a+1)p)=1τ(χ2)p1b=1¯χ4(b)e(bp)p1a=1χ4(ab)χ2(ab)e(abp) (3)
    =1τ(χ2)τ(¯χ4)τ(χ4χ2).

    For any non-principal character ψ, from Lemma 2 we have

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2). (4)

    Taking ψ=χ4, note that

    τ(χ2)=p,  τ(χ4)τ(¯χ4)=χ4(1)p,

    from (3) and (4), we have

    p1a=1χ4(a)χ2(a)χ2(a+1)=¯χ42(2)τ(χ24)τ(χ2)τ(¯χ4)τ(χ2)τ(χ4)=χ2(2)τ(χ2)τ2(¯χ4)τ(χ4)τ(¯χ4)=χ2(2)pτ2(¯χ4)χ4(1)p (5)
    =χ2(2)τ2(¯χ4)χ4(1)p.

    Similarly, we also have

    p1a=1¯χ4(a)χ2(a)χ2(a+1)=χ2(2)τ2(χ4)χ4(1)p. (6)

    Consider the quadratic character modulo p, we have

    (2p)=χ2(2)={1,if p±1mod8;1,if p±3mod8. (7)

    And when p1mod8, we have χ4(1)=1; when p5mod8, we have χ4(1)=1. Combining (2) and (5)–(7) we can deduce that

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    This prove Lemma 3.

    Lemma 4. Let p be an odd prime with p1mod4. Then for any integer k4 and n with (n,p)=1, we have the fourth-order linear recurrence formula

    Gk(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n),

    where

    α=α(p)=12p1a=1(a3+ap)=p12a=1(a+ˉap),

    (p)=χ2 denotes the Legendre's symbol.

    Proof. For p1mod4, any integer n with (n,p)=1, and fourth-order character χ4 modulo p, we have the identity

    χ44(n)=¯χ44(n)=χ0(n),  χ24(n)=χ2(n),

    where χ0 denotes the principal character modulo p.

    According to Lemma 3,

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)),
    G(n)=1+p1a=1(a2+nˉa2p).  

    We have

    G(n)=χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)), (8)
    G2(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]2=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)τ4(¯χ4)+χ2(n)τ4(χ4)+2p2)=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2).

    According to Lemma 1, we have

    (τ2(χ4)+τ2(¯χ4))2=τ4(¯χ4)+τ4(χ4)+2p2=4pα2.

    Therefore, we may immediately deduce

    G2(n)=12(χ2(n)(G(n)+χ2(n))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2)=12χ2(n)(G(n)+χ2(n)) (9)
    +1p[χ2(n)((τ2(¯χ4)+τ2(χ4))22p2)+2p2]=2p12χ2(n)G(n)+(4α22p)χ2(n),
    G3(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]3=(2p12χ2(n)G(n)+(4α22p)χ2(n))G(n) (10)
    =(4α22p)χ2(n)G(n)+(2p+3)G(n)(4p2)χ2(n)2(4α22p)

    and

    [G2(n)(2p1)]2=[χ2(n)(4α22p)2χ2(n)G(n)]2,

    which implies that

    G4(n)=(4p+2)G2(n)+8(p2α2)G(n)+[(4α22p)2(2p1)2]. (11)

    So for any integer k4, from (8)–(11), we have the fourth-order linear recurrence formula

    Gk(n)=Gk4(n)G4(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n).

    This proves Lemma 4.

    In this section, we will complete the proof of our theorem.

    Let p be any prime with p1mod4, then we have

    K0(p)=1p1p1n=1G0(n)=p1p1=1. (12)
    K1(p)=1p1p1n=1G1(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))=0, (13)
    K2(p)=1p1p1n=1G2(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))2=2p+1, (14)
    K3(p)=1p1p1n=1G3(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))3=3(4α22p). (15)

    It is clear that from Lemma 4, if k4, we have

    Kk(p)=1p1p1n=1Gk(n)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p). (16)

    Now Theorem 1 follows (12)–(16). Obviously, using Theorem 1 to all negative integers, and that lead to Corollary 1.

    This completes the proofs of our all results.

    Some notes:

    Note 1: In our theorem, know n is an integer, and (n,p)=1. According to the properties of quadratic residual, χ2(n)=±1, χ4(n)=±1.

    Note 2: In our theorem, we only discussed the case p1mod8. If p3mod4, then the result is trivial. In fact, in this case, for any integer n with (n,p)=1, we have the identity

    G(n)=1+p1a=1(a2+nˉa2p)=1+p1a=1(a4p)(a4+np)=1+p1a=1(ap)(a+np)=1+p1a=1(a2+nap)=1+p1a=1(1+nˉap)=p1a=0(1+nap)=0.

    Thus, for all prime p with p3mod4 and k1, we have Kk(p)=0.

    The main result of this paper is Theorem 1. It gives an interesting computational formula for Kk(p) with p1mod4. That is, for any integer k, we have the identity

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p).

    Thus, the problems of calculating a linear recurrence formula of one kind special character sums modulo a prime are given.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the anonymous referee for very helpful and detailed comments.

    This work is supported by the N.S.F. (11971381, 12371007) of China and Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY007).

    The authors declare no conflicts of interest.



    [1] T. W. Nolan, L. P. Provost, Understanding variation, Qual. Prog., 23 (1990), 70–78.
    [2] D. C. Montgomery, Introduction to statistical quality control, 6 Eds., New York: John Wiley & Sons, Inc, 2020.
    [3] M. Aslam, Neutrosophic statistical test for counts in climatology, Sci. Rep., 11 (2021), 1–5. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
    [4] W. P. Huang, L. J. Shu, Y. Su, An accurate evaluation of adaptive exponentially weighted moving average schemes, ⅡE Trans., 46 (2014), 457–469. https://doi.org/10.1080/0740817X.2013.803642 doi: 10.1080/0740817X.2013.803642
    [5] H. Wong, F. F. Gan, T. Chang, Designs of moving average control chart, J. Stat. Comput. Simul., 74 (2004), 47–62. https://doi.org/10.1080/0094965031000105890 doi: 10.1080/0094965031000105890
    [6] Y. S. Chen, Y. M. Yang, An extension of Banerjee and Rahim's model for economic design of moving average control chart for a continuous flow process, Eur. J. Oper. Res., 143 (2002), 600–610. https://doi.org/10.1016/S0377-2217(01)00341-1 doi: 10.1016/S0377-2217(01)00341-1
    [7] M. B. Khoo, A moving average control chart for monitoring the fraction non‐conforming, Qual. Reliab. Eng. Int., 20 (2004), 617–635. https://doi.org/10.1002/qre.576 doi: 10.1002/qre.576
    [8] M. B. Khoo, V. Wong, A double moving average control chart, Commun. Stat.-Simul. C., 37 (2008), 1696–1708. https://doi.org/10.1080/03610910701832459 doi: 10.1080/03610910701832459
    [9] S. N. Lin, C. Y. Chou, S. L. Wang, H. R. Liu, Economic design of autoregressive moving average control chart using genetic algorithms, Expert Syst. Appl., 39 (2012), 1793–1798. https://doi.org/10.1016/j.eswa.2011.08.073 doi: 10.1016/j.eswa.2011.08.073
    [10] S. Maghsoodloo, D. Barnes, On moving average control charts and their conditional average run lengths, Wiley Online Library, 37 (2021), 3145–3156. https://doi.org/10.1002/qre.2992 doi: 10.1002/qre.2992
    [11] S. Rachidi, E. Leclercq, Y. Pigne, D. Lefebvre, Moving average control chart for the detection and isolation of temporal faults in stochastic Petri nets, in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2018. https://doi.org/10.1109/ETFA.2018.8502633
    [12] V. Alevizakos, K. Chatterjee, C. Koukouvinos, The triple moving average control chart, J. Comput. Appl. Math., 384 (2021), 113171. https://doi.org/10.1016/j.cam.2020.113171 doi: 10.1016/j.cam.2020.113171
    [13] K. Talordphop, S. Sukparungsee, Y. Areepong, Performance of new nonparametric Tukey modified exponentially weighted moving average—Moving average control chart, PloS One, 17 (2022), e0275260. https://doi.org/10.1371/journal.pone.0275260 doi: 10.1371/journal.pone.0275260
    [14] K. Raweesawat, S. Sukparungsee, Explicit formulas of arl on double moving average control chart for monitoring process mean of zipinar (1) model with an excessive number of zeros, Appl. Sci. Eng. Prog., 15 (2022), 4588–4588. https://doi.org/10.14416/j.asep.2021.03.002 doi: 10.14416/j.asep.2021.03.002
    [15] S. Knoth, N. A. Saleh, M. A. Mahmoud, H. Woodall, V. G. Tercero-Gómez, A critique of a variety of "memory-based" process monitoring methods, J. Qual. Technol., 2022, 1–27. https://doi.org/10.1080/00224065.2022.2034487 doi: 10.1080/00224065.2022.2034487
    [16] N. Abbas, S. Ahmad, M. Riaz, Reintegration of auxiliary information based control charts, Comput. Ind. Eng., 171 (2022), 108479. https://doi.org/10.1016/j.cie.2022.108479 doi: 10.1016/j.cie.2022.108479
    [17] U. Afzal, H Alrweili, N Ahamd, M Aslam, Neutrosophic statistical analysis of resistance depending on the temperature variance of conducting material, Sci. Rep., 11 (2021), 1–6. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
    [18] M. Aslam, M. Albassam, Presenting post hoc multiple comparison tests under neutrosophic statistics, J. King Saud Univ.-Sci., 32 (2020), 2728–2732. https://doi.org/10.1016/j.jksus.2020.06.008 doi: 10.1016/j.jksus.2020.06.008
    [19] F. Smarandache, Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability, Infinite Study, 2013.
    [20] F. Smarandache, Neutrosophic logic-a generalization of the intuitionistic fuzzy logic, Multispace & multistructure, Neutrosophic transdisciplinarity (100 collected papers of science), 2010,396.
    [21] F. Smarandache, Neutrosophic set is a generalization of intuitionistic fuzzy set, Inconsistent intuitionistic fuzzy set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean fuzzy set, spherical fuzzy set, and q-rung orthopair fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited), J. New Theory, 29 (2019), 1–31.
    [22] M. Albassam, N. Khan, M. Aslam, Neutrosophic D'Agostino test of normality: An application to water data, J. Math., 2021 (2021). https://doi.org/10.1155/2021/5582102 doi: 10.1155/2021/5582102
    [23] C. Jana, M. Pal, A robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [24] A. A. A. Jarrín, D. S. P. Tamayo, S. A. M. Giler, J. C. A. Zambrano, D. M. Macazan, Neutrosophic statistics applied in social science, Neutrosophic Sets Sy., 44 (2021).
    [25] M. Aslam, N. Khan, A new variable control chart using neutrosophic interval method-an application to automobile industry, J. Intell. Fuzzy Syst., 36 (2019), 2615–2623. https://doi.org/10.3233/JIFS-181767 doi: 10.3233/JIFS-181767
    [26] M. Aslam, N. Khan, M. Z. Khan, Monitoring the variability in the process using neutrosophic statistical interval method, Symmetry, 10 (2018), 562. https://doi.org/10.3390/sym10110562 doi: 10.3390/sym10110562
    [27] T. Bera, N. K. Mahapatra, Introduction to neutrosophic soft groups, Neutrosophic Sets Sy., 13 (2016), 118–127.
    [28] J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208
    [29] R. Alhabib, M. M. Ranna, H. Farah, Some neutrosophic probability distributions, Neutrosophic Sets Sy., 22 (2018), 30–38.
    [30] M. Aslam, A. Al Shareef, K. Khan, RETRACTED ARTICLE: Monitoring the temperature through moving average control under uncertainty environment, Sci. Rep., 10 (2020), 1–8. https://doi.org/10.1038/s41598-019-56847-4 doi: 10.1038/s41598-019-56847-4
    [31] W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 10 (2022), 100456–100462. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188
    [32] Z. Li, Z. Wang, Z. Wu, Necessary and sufficient conditions for non-interaction of a pair of one-sided EWMA schemes with reflecting boundaries, Stat. Probabil. Lett., 79 (2009), 368–374. https://doi.org/10.1016/j.spl.2008.09.004 doi: 10.1016/j.spl.2008.09.004
    [33] Z. Li, C. Zou, Z. Gong, Z. Wang, The computation of average run length and average time to signal: An overview, J. Stat. Comput. Sim., 84 (2014), 1779–1802. https://doi.org/10.1080/00949655.2013.766737 doi: 10.1080/00949655.2013.766737
    [34] D. B. Lobell, C. Bonfils, P. B. Duffy, Climate change uncertainty for daily minimum and maximum temperatures: A model inter‐comparison, Geophys. Res. Lett., 34 (2007). https://doi.org/10.1029/2006GL028726 doi: 10.1029/2006GL028726
    [35] M. Rischard, N. Pillai, K. A. McKinnon, Bias correction in daily maximum and minimum temperature measurements through Gaussian process modeling, arXiv: 1805.10214, 2018. https://doi.org/10.48550/arXiv.1805.10214
    [36] R. G. Harrison, S. D. Burt, Quantifying uncertainties in climate data: Measurement limitations of naturally ventilated thermometer screens, Environ. Res. Commun., 3 (2021), 061005. https://doi.org/10.1088/2515-7620/ac0d0b doi: 10.1088/2515-7620/ac0d0b
  • This article has been cited by:

    1. Mounia Mouy, Hamid Boulares, Saleh Alshammari, Mohammad Alshammari, Yamina Laskri, Wael W. Mohammed, On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation, 2022, 7, 2504-3110, 31, 10.3390/fractalfract7010031
    2. Sabbavarapu Nageswara Rao, Manoj Singh, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini, Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP, 2023, 7, 2504-3110, 499, 10.3390/fractalfract7070499
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1944) PDF downloads(117) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog