Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function Ψ (shortly Ψ-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.
Citation: Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad. On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives[J]. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
[1] | Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010 |
[2] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
[3] | Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151 |
[4] | Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour . On the boundedness of the solution set for the ψ-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis. AIMS Mathematics, 2023, 8(9): 20125-20142. doi: 10.3934/math.20231025 |
[5] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[6] | Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067 |
[7] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[8] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[9] | Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110 |
[10] | Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit . Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074 |
Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function Ψ (shortly Ψ-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.
The choice of certain fractional operator in modeling real world problems is always of interest to many authors working the filed of fractional calculus and its applications. The authors in [1], have shown how suitable fractional formulations are really extensions of the integer order definitions currently used in signal processing. The recent works [2,3,4,5,6,7,8,9] reflect several theoretical aspects and applications about types of fractional operators and their possible applying. For example, the reference [5] deals with the Ψ-Hilfer case and the articles [7,8] deal with the Ψ-Caputo and Caputo operators, respectively.
The investigation of positive solutions of differential equations is vital due to their presence naturally when we model some real applications appearing in economics, physics, engineering and biology. As a generalization to the ordinary derivative calculus, the theory of fractional calculus appeared and started to develop since 1695 (see [10,11,12]). Since that date, many authors have authored several works to investigate qualitatively the positive attributes of FDE solutions [13,14]. Part of the studies have been conducted exclusively on investigating the existence of solutions of problems using Caputo and generalized Caputo fractional derivatives (CFD). Indeed, Ψ-Caputo derivatives (Ψ-CFD) have been considered. Of special interest is the logarithmic case kernel which is called Hadamard (see [15,16,20,25,33]).
A pantograph is a mechanical linkage system consisting of four bars of equal length hinged at their ends. The equations that describe the motion of a pantograph are based on the principle of similar triangles. These equations determine the scaling factor or the relationship between the lengths of the bars and the size of the image produced. The equations are usually derived using trigonometry and vector algebra and they take into account the angles formed between the bars and the lengths of the individual bars. The goal of the equations is to determine the path of the stylus (or the end of the fourth bar) given the movement of the original object being traced, see for instance [17,18,19,21,22,23] and the references therein.
Exclusively, the authors in [24], for 1<α≤2, and CDα is the usual CFD, examine the uniqueness and existence of the PS of the following FDE
{CDαz(t)=f(t,z(t)), 0<t≤1,z(0)=0, z′(0)=θ>0, |
where f∈C([0,1]×[0,∞),[0,∞)). By utilizing ULS technique and FPTs, the authors in [25] got positive results. The novelty in this work is to generalize the results in [25] by utilizing the so-called Ψ-CFD. The Caputo Hadamard fractional derivatives fall within this class of operators by taking Ψ(t)=lnt. Therefore, the idea of the pantograph is to be considered more generally. In fact, our real concern in this paper is to deal with the problems of PS to pantograph FDEs. It is worth to mentioning that the above works have been motivated and inspired by the papers [26,27,28,29,30,31,32,33,34,35,36,37].
Our main concern in this work is to deal with the PS of the below pantograph FDE:
{Dα;Ψℓϕ(η)=F(η,ϕ(η),ϕ(ℓ+ϑη))+Dα−1;ΨℓG(η,ϕ(ℓ+ϑη)), η∈[ℓ,T],ϕ(ℓ)=μ1>0 ϕ′(ℓ)=μ2>0, | (1.1) |
where ϑ∈(0,T−ℓT), ϕ(ℓ(1+ϑ))=ϕ0>0, Dα;Ψℓ is Ψ-CFD of order 1<α≤2, G,F:[ℓ,T]×[0,∞)×[0,∞)→[0,∞) are continuous functions (CFs), G is non-decreasing on ϕ and μ2>G(1,ϕ0). By applying the Riemann-Liouville fractional integral with respect to the function Ψ to (1.1), we transform it to an equivalent integral equation on which we utilize ULS and SFPT, BFPT to prove the existence and uniqueness of the PS.
Our manuscript is to be divided as follows. Section 2 includes some key concepts, definitions, lemmas and theories that will be used in proving the main results. Section 3 will be devoted to our theoretical main results. Our main results generale those obtained in [24,25]. In Section 4, we shall give an illustrative example. Section 5 includes our conclusions.
The basic tools to be presented in this section can be recalled from [10,12,13,14,30,31,32,33,38,39], where more details can be found.
Let Ψ:[ℓ1,ℓ2]→R be an increasing with Ψ′(η)>0, ∀η. The symbol Y=C([ℓ,T],R) represents the Banach space of CFs ϕ:[ℓ,T]→R by norm ‖ϕ‖=sup{|ϕ(η)|:η∈[ℓ,T]}.
We define A={ϕ∈Y:ϕ(η)≥0, η∈[ℓ,T]} subset of Y consisting of all positive functions in Y. Suppose ℏ1,ℏ2∈R+ with ℏ2>ℏ1. For any ϕ,χ∈[ℏ1,ℏ2], we associate the lower-control function
L(η,ϕ,χ)=inf{F(η,υ,μ):ϕ≤υ≤ℏ2,χ≤μ≤ℏ2}, |
and the upper-control function
U(η,ϕ,χ)=sup{F(η,υ,μ):ℏ1≤υ≤ϕ,ℏ1≤μ≤χ}. |
The function F was defined above in Section 1. On the arguments ϕ,χ, L and U are monotonous non-decreasing and
L(η,ϕ,χ)≤F(η,ϕ,χ)≤U(η,ϕ,χ). |
Definition 2.1. [10,12,39] For a function ϕ:[0,+∞)→R, the Riemann-Liouville fractional integral (RLFI) of order α>0 is defined as
Iαϕ(η)=1Γ(α)∫η0(η−s)α−1ϕ(s)ds |
where the Euler gamma function Γ is given by
Γ(α)=∫∞0e−ηηα−1dη. |
Definition 2.2. [10,12,39] The Ψ-RLFI of order α>0 for a CF ϕ:[ℓ,T]→R is defined as
Iα;Ψℓϕ(η)=∫ηℓ(Ψ(η)−Ψ(s))α−1Γ(α)Ψ′(s)ϕ(s)ds. |
Definition 2.3. [10,12,39] The CFD of order α>0 for a ϕ:[0,+∞)→R is intended by
Dαϕ(η)=1Γ(n−α)∫η0(η−s)n−α−1ϕ(n)(s)ds, n−1<α<n, n∈N. |
Definition 2.4. [10,12,39] The Ψ-CFD of order α>0 for a ϕ:[ℓ,T]→R is defined by
Dα;Ψℓϕ(η)=∫ηℓ(Ψ(η)−Ψ(s))n−α−1Γ(n−α)Ψ′(s)∂nΨϕ(s)ds, η>ℓ, n−1<α<n |
where ∂nΨ=(1Ψ′(η)ddη)n,n∈N.
Lemma 2.1. [10] Suppose q,ℓ>0 and ϕ∈C([ℓ,ℏ],R). Then, ∀η∈[ℓ,ℏ] and by assuming Fℓ(η)=Ψ(η)−Ψ(ℓ), we have
● Dq;ΨℓIq;Ψℓϕ(t)=ϕ(t),
● Iq;Ψℓ(Fℓ(η))ℓ−1=Γ(ℓ)Γ(ℓ+q)(Fℓ(η))ℓ+q−1,
● Dq;Ψℓ(Fℓ(η))ℓ−1=Γ(ℓ)Γ(ℓ−q)(Fℓ(η))ℓ−q−1,
● Dq;Ψℓ(Fℓ(η))k=0, k∈{0,…,n−1}, n∈N, q∈(n−1,n].
Lemma 2.2. [10,32] Let n−1<α1≤n,α2>0, ℓ>0, ϕ∈L(ℓ,T), Dα1;Ψℓ1ϕ∈L(ℓ,T). Then, the differential equation
Dα1;Ψℓϕ=0 |
has the unique solution
ϕ(η)=w0+w1(Ψ(η)−Ψ(ℓ))+w2(Ψ(η)−Ψ(ℓ))2+⋯+wn−1(Ψ(η)−Ψ(ℓ))n−1 |
and
Iα1;ΨℓDα1;Ψℓϕ(η)=ϕ(η)+w0+w1(Ψ(η)−Ψ(ℓ))+w2(Ψ(η)−Ψ(ℓ))2+⋯+wn−1(Ψ(η)−Ψ(ℓ))n−1 |
with wℓ∈R, ℓ=0,1,…,n−1. Furthermore,
Dα2;ΨℓIα1;Ψℓϕ(η)=ϕ(η) |
and
Iα1;ΨℓIα2;Ψℓϕ(η)=Iα2;ΨℓIα1;Ψℓϕ(η)=Iα1+α2;Ψℓϕ(η). |
Lemma 2.3. Let ϕ∈C1([ℓ,T]), ϕ(2) and ∂G∂η exist. Then, ϕ is a solution of (1.1) if and only if
ϕ(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds. | (2.1) |
Proof. Let ϕ be a solution of (1.1). Then, we have
Iα;ΨℓDα;Ψℓϕ(η)=Iα;Ψℓ(F(η,ϕ(η),ϕ(ℓ+ϑη))+Dα−1;ΨℓG(η,ϕ(ℓ+ϑη))), ℓ<η≤T. | (2.2) |
From Lemma 2.2, we got
ϕ(η)−ϕ(ℓ)−ϕ′(ℓ)(Ψ(η)−Ψ(ℓ))=Iα;ΨℓDα−1;ΨℓG(η,ϕ(ℓ+ϑη))+Iα;ΨℓF(η,ϕ(η),ϕ(ℓ+ϑη))=IℓIα−1;ΨℓDα−1;ΨℓG(η,ϕ(ℓ+ϑη))+Iα;ΨℓF(η,ϕ(η),ϕ(ℓ+ϑη))=Iℓ(G(η,ϕ(ℓ+ϑη))−G(ℓ,ϕ0))+Iα;ΨℓF(η,ϕ(η),ϕ(ℓ+ϑη))=∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds−G(ℓ,ϕ0)(Ψ(η)−Ψ(ℓ))+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds, | (2.3) |
The converse can be proven straightforward as well.
In what follows, we recall the FPTs that will be used to prove the uniqueness and existence of PS for Eq (1.1).
Definition 2.5. Let (Y,‖.‖) be a Banach space. Then, a mapping Θ:Y→Y is called contraction. If there is a l∈(0,1) such that for every ϕ,χ∈Y, Θ\, we have
‖Θϕ−Θχ‖≤l‖ϕ−χ‖. |
Theorem 2.1. (BFPT [38]) Let\ Ω≠∅ be a closed convex subset of a Banach space Y and Θ:Ω→Ω be a contraction mapping. Then, there is a unique ϕ∈Ω with Θϕ=ϕ.
Theorem 2.2. (BFPT [38]) Let\ Ω≠∅\ be a closed convex subset of a Banach space Y\ and Θ:Ω→Ω be a continuous compact operator. So, Θ has a fixed point in Ω.
In this section, we present the results of the existence of FDE (1.1). We also provide the necessary hypotheses for the uniqueness of (1.1).
We set the operator Θ:A⟶Y by inversion Eq (2.1) and then apply SFPT
(Θϕ)(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds, η∈[ℓ,T] | (3.1) |
where the fixed point is needed to fulfill the identity operator equation Θϕ=ϕ.
For the next step of our main results, the following forms are adopted.
(Σ1) Let ϕ∗,ϕ∗∈A, as well as ℏ1≤ϕ∗(η)≤ϕ∗(η)≤ℏ2,
{Dα;Ψℓϕ∗(η)−Dα−1;ΨℓG(η,ϕ∗(ℓ+ϑη))≥U(η,ϕ∗(η),ϕ∗(ℓ+ϑη)),Dα;Ψℓϕ∗(η)−Dα−1;ΨℓG(η,ϕ∗(ℓ+ϑη))≤L(η,ϕ∗(η),ϕ∗(ℓ+ϑη)), | (3.2) |
for any η∈[ℓ,T].
(Σ2) For η∈[ℓ,T] and ϕ1,ϕ2,χ1,χ2∈Y, there exist β1,β2,β3>0 such that
|G(η,χ1)−G(η,ϕ1)|≤β1‖χ1−ϕ1‖,|F(η,χ1,χ2)−F(η,ϕ1,ϕ2)|≤β2‖χ1−ϕ1‖+β3‖χ2−ϕ2‖. | (3.3) |
For (1.1), the functions ϕ∗ and ϕ∗ are known as the ULS.
Theorem 3.1. If (Σ1) is satisfied, FDE (1.1) posses at least one solution ϕ∈Y and fulfills ϕ∗(η)≤ϕ(η)≤ϕ∗(η),η∈[ℓ,T].
Proof. Set Ω={ϕ∈A:ϕ∗(η)≤ϕ(η)≤ϕ∗(η), η∈[ℓ,T]}. If we use the norm ‖ϕ‖=maxη∈[ℓ,T]|ϕ(η)|, we see that ‖ϕ‖≤ℏ2. So, we deduce that Ω is a convex and closed, bounded subset of Y. Moreover, the functions G and F being CF implies that Θ, marked by (3.1), is a CF on Ω. If ϕ∈Ω, there exist cF,cG>0 constants as well as
max{F(η,ϕ(η),ϕ(ℓ+ϑη)):η∈[ℓ,T], ϕ(η),ϕ(ℓ+ϑη)≤ℏ2}<cF | (3.4) |
and
max{G(η,ϕ(ℓ+ϑη)):η∈[ℓ,T], ϕ(ℓ+ϑη)≤ℏ2}<cG. | (3.5) |
Then,
|(Θϕ)(η)|≤|μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))|+∫ηℓ|G(s,ϕ(ℓ+ϑs))|Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1|F(s,ϕ(s),ϕ(ℓ+ϑs))|Ψ′(s)ds≤μ1+(μ2+c0+cG)(Ψ(T)−Ψ(ℓ))+cF(Ψ(T)−Ψ(ℓ))αΓ(α+1) | (3.6) |
where |G(ℓ,ϕ0)|=c0. Thus,
‖Θϕ‖≤μ1+(μ2+c0+cG)(Ψ(T)−Ψ(ℓ))+cF(Ψ(T)−Ψ(ℓ))αΓ(α+1). | (3.7) |
From which it follows that Θ(Ω) is uniformly bounded. The equicontinuity of Θ(Ω) is then can be handled. Let ϕ∈Ω and ℓ≤η1<η2≤T. Then,
|(Θϕ)(η1)−(Θϕ)(η2)|≤(μ2−G(ℓ,ϕ0))(Ψ(η2)−Ψ(η1))+|∫η1ℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds−∫η2ℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds|+|1Γ(α)∫η1ℓ(Ψ(η1)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds−1Γ(α)∫η2ℓ(Ψ(η2)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds|≤(μ2+c0)(Ψ(η2)−Ψ(η1))+|∫η2η1G(s,ϕ(ℓ+ϑs))Ψ′(s)ds|+|1Γ(α)∫η1ℓ((Ψ(η1)−Ψ(s))α−1−(Ψ(η2)−Ψ(s))α−1)×F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds|+|1Γ(α)∫η2η1(Ψ(η2)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds|≤(μ2+c0+cG)(Ψ(η2)−Ψ(η1))+cFΓ(α+1)[(Ψ(η2)−Ψ(ℓ))α−(Ψ(η1)−Ψ(ℓ))α]. | (3.8) |
The right-hand side of above inequality approaches to zero as η1→η2. As a consequence, Θ(Ω) is equicontinuous. Therefore, the compactness of Θ:Ω⟶Y follows by Arzelè-Ascoli theorem. Finally, in order to employ SFPT, we need to prove that Θ(Ω)⊆Ω. Let ϕ∈Ω. Then,
(Θϕ)(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds≤μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ∗(ℓ+ϑs))Ψ′(s)ds1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1U(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds≤μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ∗(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1U(s,ϕ∗(s),ϕ∗(ℓ+ϑs))Ψ′(s)ds≤ϕ∗(η), | (3.9) |
and
(Θϕ)(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1F(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds≥μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,x∗(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1L(η,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds≥μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,x∗(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1L(η,ϕ∗(s),ϕ∗(ℓ+ϑs))Ψ′(s)ds≥ϕ∗(η). | (3.10) |
Consequently, ϕ∗(η)≤(Θϕ)(η)≤ϕ∗(η), η∈[ℓ,T], that is, Θ(Ω)⊆Ω. Hence, SFPT asserts that the mapping Θ has at least one fixed point ϕ∈Ω. This means that FDE (1.1) admits at least one PS ϕ∈Y and ϕ∗(η)≤ϕ(η)≤ϕ∗(η), η∈[ℓ,T].
Next, we adopt and offer a different set of uses for the above theorem.
Corollary 3.1. Suppose that CFs φ1, φ2, φ3 and φ4 exist. So,
0<φ1(η)≤G(η,ϕ(ℓ+ϑη))≤φ2(η)<∞, (η,ϕ(ℓ+ϑη))∈[ℓ,T]×[0,+∞),μ2≥φ1(ℓ), μ2≥φ2(ℓ), | (3.11) |
and
0<φ3(η)≤F(η,ϕ(η),ϕ(ℓ+ϑη))≤φ4(η)<∞, (η,ϕ(η),ϕ(ℓ+ϑη))∈[ℓ,T]×([0,+∞))2. | (3.12) |
Then, the FDE (1.1) must have at least one PS ϕ∈Y. Also,
μ1+(μ2−φ1(ℓ))(Ψ(η)−Ψ(ℓ))+∫ηℓφ1(s)Ψ′(s)ds+Iα;Ψℓφ3(η)≤ϕ(η)≤μ1+(μ2−φ2(ℓ))(Ψ(η)−Ψ(ℓ))+∫ηℓφ2(s)Ψ′(s)ds+Iα;Ψℓφ4(η). | (3.13) |
Proof. Starting from formula (3.12) and control function, we reach φ3(η)≤L(η,ϕ,χ)≤U(η,ϕ,χ)≤φ4(η), (η,ϕ(η),χ(η))∈[ℓ,T]×[ℏ1,ℏ2]×[ℏ1,ℏ2]. We consider the equations
{Dα;Ψℓϕ(η)=φ3(η)+Dα−1;Ψℓφ1(η), ϕ(ℓ)=μ1, ϕ′(ℓ)=μ2,Dα;Ψℓϕ(η)=φ4(η)+Dα−1;Ψℓφ2(η), ϕ(ℓ)=μ1, ϕ′(ℓ)=μ2. | (3.14) |
Equation (3.14) is evidently equivalent to
ϕ(η)=μ1+(μ2−φ1(ℓ))(Ψ(η)−Ψ(ℓ))+∫ηℓφ1(s)Ψ′(s)ds+Iα;Ψℓφ3(η),ϕ(η)=μ1+(μ2−φ2(ℓ))(Ψ(η)−Ψ(ℓ))+∫ηℓφ2(s)Ψ′(s)ds+Iα;Ψℓφ4(η). |
So, the first part of (3.14) involves
ϕ(η)−μ1−(μ2−φ1(ℓ))(Ψ(η)−Ψ(ℓ))−∫ηℓφ1(s)Ψ′(s)ds=Iα;Ψℓφ3(η)≤Iα;Ψℓ(L(η,ϕ(η),ϕ(ℓ+ϑη))) | (3.15) |
and the second part of (3.14) suggests
ϕ(η)−μ1−(μ2−φ2(ℓ))(Ψ(η)−Ψ(ℓ))−∫ηℓφ2(s)Ψ′(s)ds=Iα;Ψℓφ4(η)≥Iα;Ψℓ(U(η,ϕ(η),ϕ(ℓ+ϑη))). | (3.16) |
Hence, both equations in (3.14) have ULS. Therefore, the FDE (1.1) has at least one solution ϕ∈Y fulfilling (3.13) when Theorem 3.1 is conducted.
Corollary 3.2. Assume (3.11) is satisfied and 0<σ<φ(η)=limϕ,χ→∞F(η,ϕ,χ)<∞ for η∈[ℓ,T]. The FDE (1.1) must posses at least one PS ϕ,χ∈Y.
Proof. If ϕ,χ>ρ>0 then 0≤|F(η,ϕ,χ)−φ(η)|<σ for any η∈[ℓ,T]. Hence, 0<φ(η)−σ≤F(η,ϕ,χ)≤φ(η)+σ for η∈[ℓ,T] and ρ<ϕ,χ<+∞. If max{F(η,ϕ,χ):η∈[ℓ,T], ϕ,χ≤ρ}≤ν then φ(η)−σ≤F(η,ϕ,χ)≤φ(η)+σ+ν for η∈[ℓ,T] and 0<ϕ,χ<+∞. By Corollary 3.1, the FDE (1.1) has at least one PS ϕ∈Y with
μ1+(μ2−φ1(ℓ))(Ψ(η)−Ψ(ℓ))+∫ηℓφ1(s)Ψ′(s)ds+Iα;Ψℓφ(η)−σ(Ψ(η)−Ψ(ℓ))αΓ(α+1)≤ϕ(η)≤μ1+(μ2−φ2(ℓ))(Ψ(η)−Ψ(ℓ))+∫ηℓφ2(s)Ψ′(s)ds+Iα;Ψℓφ(η)+(σ+ν)(Ψ(η)−Ψ(ℓ))αΓ(α+1). | (3.17) |
Corollary 3.3. If we assume that 0<σ<F(η,ϕ(η),ϕ(ℓ+ϑη))≤γ1ϕ(η)+γ2ϕ(ℓ+ϑη)+η<∞ for η∈[ℓ,T] and σ, η, γ1 and γ2>0 constants. Then, FDE (1.1) admits at least one PS ϕ∈C([ℓ,δ]) where δ>ℓ.
Proof. Consider the equation
{Dα;Ψℓϕ(η)−Dα−1;ΨℓG(η,ϕ(ℓ+ϑη))=γ1ϕ(η)+γ2ϕ(ℓ+ϑη)+η, ℓ<η≤T,ϕ(ℓ)=μ1>0, ϕ′(ℓ)=μ2>0, | (3.18) |
where ϕ(ℓ(1+ϑ))=ϕ0>0. Equation (3.18) has a solution of the form:
ϕ(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1(γ1ϕ(η)+γ2ϕ(ℓ+ϑη))Ψ′(s)ds=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(s),ϕ(ℓ+ϑs))Ψ′(s)ds+η(Ψ(η)−Ψ(ℓ))αΓ(α+1)+γ1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1ϕ(s)Ψ′(s)ds+γ2Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1ϕ(ℓ+ϑs)Ψ′(s)ds. | (3.19) |
For ω a positive constant, and ϖ∈(0,1), there exists δ>ℓ such that 0<(γ1+γ2)(Ψ(δ)−Ψ(ℓ))αΓ(α+1)<ϖ<1 and
ω>(1−ϖ)−1(μ1+(μ2+c0+cG)(Ψ(δ)−Ψ(ℓ))+η(Ψ(δ)−Ψ(ℓ))αΓ(α+1)). | (3.20) |
Then, if ℓ≤η≤δ, the set Bω={ϕ∈Y:|ϕ(η)|≤ω, ℓ≤η≤δ} is a closed, convex and bounded subset of C([ℓ,δ]). The mapping Θ:Bω⟶Bω reported as
(Θϕ)(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ(ℓ+ϑs))Ψ′(s)ds+η(Ψ(η)−Ψ(ℓ))αΓ(α+1)+γ1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1ϕ(s)Ψ′(s)ds+γ2Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1ϕ(ℓ+ϑs)Ψ′(s)ds, | (3.21) |
is compact with the same approach as in the proof of Theorem 3.1. With same way,
|(Θϕ)(η)|≤μ1+(μ2+c0+cG)(Ψ(T)−Ψ(ℓ))+η(Ψ(T)−Ψ(ℓ))αΓ(α+1)+(γ1+γ2)(Ψ(T)−Ψ(ℓ))αΓ(α+1)‖ϕ‖. | (3.22) |
Now, for ϕ∈Bω we have
|(Θϕ)(η)|≤(1−ϖ)ω+ϖω=ω |
and hence ‖Θϕ‖≤ω. We conclude, the SFPT emphasize that Θ posses at least one fixed point in Bω, and so Eq (3.18) has at least one PS ϕ∗(η) where ℓ<η<δ. Hence, if η∈[ℓ,T] one can claim that
ϕ∗(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ∗(ℓ+ϑs))Ψ′(s)ds+η(Ψ(η)−Ψ(ℓ))αΓ(α+1)+γ1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1ϕ∗(s)Ψ′(s)ds+γ2Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1ϕ∗(ℓ+ϑs)Ψ′(s)ds. | (3.23) |
The term control function denotes
U(η,ϕ∗(η),ϕ∗(ℓ+ϑη))≤γ1ϕ∗(η)+γ2ϕ∗(ℓ+ϑη)+η=Dα;Ψℓϕ∗(η)−Dα−1;ΨℓG(η,ϕ∗(ℓ+ϑη)) | (3.24) |
hence ϕ∗ is an upper PS of FDE (1.1). Secondly, one can take
ϕ∗(η)=μ1+(μ2−G(ℓ,ϕ0))(Ψ(η)−Ψ(ℓ))+∫ηℓG(s,ϕ∗(ℓ+ϑs))Ψ′(s)ds+σ(Ψ(η)−Ψ(ℓ))αΓ(α+1), | (3.25) |
as a lower PS of (1.1). By Theorem 3.1, the FDE (1.1) has at least one PS ϕ∈C([ℓ,δ]) where δ>ℓ and ϕ∗(η)≤ϕ(η)≤ϕ∗(η).
The final result is the uniqueness of PS to (1.1) by adopting the Theorem 2.1.
Theorem 3.2. Under the satisfaction of the investigators (Σ1) and (Σ2) and that
β1(Ψ(T)−Ψ(ℓ))+(β2+β3)(Ψ(T)−Ψ(ℓ))αΓ(α+1)<1, | (3.26) |
the FDE (1.1) has a unique PS ϕ∈Ω.
Proof. The FDE (1.1) posses at least one PS in Ω by Theorem 3.1. The mapping specified in (3.1) is a contraction on Y. Indeed, for any ϕ,χ∈Y we get
|(Θϕ)(η)−(Θχ)(η)|≤∫ηℓ|G(s,ϕ(ℓ+ϑs))−G(s,χ(ℓ+ϑs))|Ψ′(s)ds+1Γ(α)∫ηℓ(Ψ(η)−Ψ(s))α−1|F(s,ϕ(s),ϕ(ℓ+ϑs))−F(s,χ(s),χ(ℓ+ϑs))|Ψ′(s)ds≤(β1(Ψ(T)−Ψ(ℓ))+(β2+β3)(Ψ(T)−Ψ(ℓ))αΓ(α+1))‖ϕ−χ‖. | (3.27) |
On the light of (3.26), the mapping Θ is contraction and hence the FDE (1.1) has a unique PS ϕ∈Ω.
Let Ψ(η)=lnη. We explore the pantograph FDE in this case (Caputo Hadamard fractional derivative).
{D65;Ψ1ϕ(η)−D15;Ψ1π+arctan(ϕ(η))5=11+e+η(1+e+ηsin(ϕ(η)+χ(η))), 1<η≤e,ϕ(ℓ)=1, ϕ′(ℓ)=μ2≥1, | (4.1) |
where μ1=1, ℓ=1, ϕ(1+ϑ)=ϕ0>0, T=e, G(η,ϕ)=π+arctan(ϕ) and F(η,ϕ,χ)=11+e+η(1+e+ηsin(ϕ+χ)). As G is non-decreasing on ϕ,
limϕ⟶∞π+arctan(ϕ)5=3π10 |
and
π10≤G(η,ϕ)≤3π10,11+2e≤F(η,ϕ,χ)≤1. |
Therefore, we conclude that Eq (4.1) has PS proportional to all the natural results mentioned above. We have
β1(Ψ(T)−Ψ(ℓ))+(β2+β3)(Ψ(T)−Ψ(ℓ))αΓ(α+1)≃0.96660<1. |
Therefore, by making use of Theorem 3.2, we infer that Eq (4.1) posses a unique PS.
We have investigated and verified the existence and uniqueness of positive solutions of the fractional differential pantograph Eq (1.1) in Ψ-Caputo sense. We have followed the method of upper and lower solutions by imposing some of the necessary conditions to show the existence and uniqueness of our positive solution. Further, we have used and applied SFPT and BFPT to gain a positive solution for (1.1).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Manar A. Alqudah: Princess Nourah bint Abdul- rahman University Researchers Supporting Project number (PNURSP2023R14), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors B. Abdalla, and T. Abdeljawad would like to thank Prince Sultan University for the support through the TAS research lab.
The authors declare that they have no conflict of interest.
[1] |
M. Ortigueira, J. Machado, Which derivative? Fractal Fract., 1 (2017), 3. https://doi.org/10.3390/fractalfract1010003 doi: 10.3390/fractalfract1010003
![]() |
[2] |
S. Hussain, M. Sarwar, N. Mlaiki, F. Azmi, Existence and controllability of fractional semilinear mixed Volterra-Fredholm integro differential equation, Alex. Eng. J., 73 (2023), 259–267. https://doi.org/10.1016/j.aej.2023.04.029 doi: 10.1016/j.aej.2023.04.029
![]() |
[3] |
Kamran, S. U. Khan, S. Haque, N. Mlaiki, On the approximation of fractional-order differential equations using Laplace transform and weeks method, Symmetry, 15 (2023), 1214. https://doi.org/10.3390/sym15061214 doi: 10.3390/sym15061214
![]() |
[4] |
A. Ali, K. J. Ansari, H. Alrabaiah, A. Aloqaily, N. Mlaiki, Coupled system of fractional impulsive problem involving power-law kernel with piecewise order, Fractal Fract., 7 (2023), 436. https://doi.org/10.3390/fractalfract7060436 doi: 10.3390/fractalfract7060436
![]() |
[5] |
Asma, J. F. G. Aguilar, G. U. Rahman, M. Javed, Stability analysis for fractional order implicit Ψ-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2021), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
![]() |
[6] |
S. A. David, C. A. Valentim, Fractional Euler-lagrange equations applied to oscillatory system, Mathematics, 3 (2015), 258–272. https://doi.org/10.3390/math3020258 doi: 10.3390/math3020258
![]() |
[7] |
M. S. Abdo, W. Shammakh, H. Z. Alzumi, N. Alghamd, M. D. Albalwi, Nonlinear piecewise Caputo fractional pantograph system with respect to another function, Fractal Fract., 7 (2023), 162. https://doi.org/10.3390/fractalfract7020162 doi: 10.3390/fractalfract7020162
![]() |
[8] |
F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654
![]() |
[9] |
S. A. David, C. A. Valentim, A. Debbouche, Fractional modeling applied to the dynamics of the action potential in cardiac tissue, Fractal Fract., 6 (2022), 149. https://doi.org/10.3390/fractalfract6030149 doi: 10.3390/fractalfract6030149
![]() |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[11] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[12] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[13] |
Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
![]() |
[14] | E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theo., 3 (2008), 1–11. |
[15] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[16] |
S. Zhang, L. Hu, The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable, Azerbaijan J. Math., 9 (2019), 22–45. https://doi.org/10.1007/s13398-018-0572-2 doi: 10.1007/s13398-018-0572-2
![]() |
[17] |
L. Fox, D. F. Mayers, J. R. Ockendon, A. B. Tayler, On a function differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
![]() |
[18] |
A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1992), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
![]() |
[19] | J. Hale, Theory of functional differential equations, New York: Springer-Verlag, 1977. https://doi.org/10.1007/978-1-4612-9892-2 |
[20] |
F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
![]() |
[21] | T. Kato, Asymptotic behavior of solutions of the functional differential equation y′(x)=ℓy(ϑx)+ℏy(x), Academic Press, 1972. |
[22] |
K. Mahler, On a special functional equation, J. Lond. Math. Soc., 15 (1940), 115–123. https://doi.org/10.1112/jlms/s1-15.2.115 doi: 10.1112/jlms/s1-15.2.115
![]() |
[23] |
J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London Ser. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
![]() |
[24] |
M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1<α≤2, Acta Math. Univ. Comen., 84 (2015), 51–57. https://doi.org/10.14232/ejqtde.2015.1.84 doi: 10.14232/ejqtde.2015.1.84
![]() |
[25] |
H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, B. Panyanak, Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory, Fractal Fract., 6 (2022), 593. https://doi.org/10.3390/fractalfract6100593 doi: 10.3390/fractalfract6100593
![]() |
[26] |
A. Ardjouni, H. Boulares, Y. Laskri, Stability in higher-order nonlinear fractional differential equations, Acta Comment. Univ. Ta., 22 (2018), 37–47. https://doi.org/10.12697/ACUTM.2018.22.04118 doi: 10.12697/ACUTM.2018.22.04118
![]() |
[27] |
A. Hallaci, H. Boulares, A. Ardjouni, A. Chaoui, On the study of fractional differential equations in a weighted Sobolev space, Bull. Int. Math. Virtual Inst., 9 (2019), 333–343. https://doi.org/10.7251/BIMVI1902333H120 doi: 10.7251/BIMVI1902333H120
![]() |
[28] |
A. Ardjouni, H. Boulares, A. Djoudi, Stability of nonlinear neutral nabla fractional difference equations, Commun. Optim. Theory, 121 (2018), 1–10. https://doi.org/10.23952/cot.2018.8. doi: 10.23952/cot.2018.8
![]() |
[29] |
A. Hallaci, H. Boulares, M. Kurulay, On the study of nonlinear fractional differential equations on unbounded interval, Gen. Lett. Math., 5 (2018), 111–117. https://doi.org/10.31559/glm2018.5.3.1 doi: 10.31559/glm2018.5.3.1
![]() |
[30] |
C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 74 (2011), 5975–5986. https://doi.org/10.1016/j.na.2011.05.074 doi: 10.1016/j.na.2011.05.074
![]() |
[31] |
R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
![]() |
[32] |
R. Almeida, A. B. Malinowska, M.Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
![]() |
[33] |
Z. B. Bai, T. T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767. https://doi.org/10.1016/j.amc.2009.09.017 doi: 10.1016/j.amc.2009.09.017
![]() |
[34] | T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Florida: Academic Press, 1985. |
[35] | D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. |
[36] |
C. Wang, R. Wang, S. Wang, C. Yang, Positive solution of singular boundary value problem for a nonlinear fractional differential equation, Bound. Value Probl. 2011 (2011), 297026. https://doi.org/10.1155/2011/297026 doi: 10.1155/2011/297026
![]() |
[37] |
S. Zhang, The existence of a positive solution for a fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1016/j.aml.2010.04.035 doi: 10.1016/j.aml.2010.04.035
![]() |
[38] | D. R. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1980. |
[39] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
1. | Devaraj Vivek, Sabu Sunmitha, Elsayed Mohamed Elsayed, P-type iterative learning control for impulsive pantograph equations with Hilfer fractional derivative, 2025, 0, 2577-8838, 0, 10.3934/mfc.2025020 |