Processing math: 100%
Research article

Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma

  • Received: 19 August 2023 Revised: 27 October 2023 Accepted: 31 October 2023 Published: 20 November 2023
  • MSC : 30C80, 31A30

  • In this paper, we first obtain a Schwarz-Pick type lemma for the holomorphic self-mapping of the unit disk with respect to the q-distance. Second, we establish the general Schwarz-Pick lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality. As an application, it is proven that this mapping is Lipschitz continuous with respect to the q-distance under certain conditions. Moreover, the corresponding explicit Lipschitz constant is given. Third, it is proved that there exists a self-mapping of the unit disk satisfying the Poisson differential inequality, which does not meet conditions of the boundary Schwarz lemma. Finally, with some additional conditions, a boundary Schwarz lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality is established.

    Citation: Fangming Cai, Jie Rui, Deguang Zhong. Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma[J]. AIMS Mathematics, 2023, 8(12): 30992-31007. doi: 10.3934/math.20231586

    Related Papers:

    [1] Abigail Wiafe, Pasi Fränti . Affective algorithmic composition of music: A systematic review. Applied Computing and Intelligence, 2023, 3(1): 27-43. doi: 10.3934/aci.2023003
    [2] Abrhalei Tela, Abraham Woubie, Ville Hautamäki . Transferring monolingual model to low-resource language: the case of Tigrinya. Applied Computing and Intelligence, 2024, 4(2): 184-194. doi: 10.3934/aci.2024011
    [3] Pasi Fränti, Sami Sieranoja . Clustering accuracy. Applied Computing and Intelligence, 2024, 4(1): 24-44. doi: 10.3934/aci.2024003
    [4] Tinja Pitkämäki, Tapio Pahikkala, Ileana Montoya Perez, Parisa Movahedi, Valtteri Nieminen, Tom Southerington, Juho Vaiste, Mojtaba Jafaritadi, Muhammad Irfan Khan, Elina Kontio, Pertti Ranttila, Juha Pajula, Harri Pölönen, Aysen Degerli, Johan Plomp, Antti Airola . Finnish perspective on using synthetic health data to protect privacy: the PRIVASA project. Applied Computing and Intelligence, 2024, 4(2): 138-163. doi: 10.3934/aci.2024009
    [5] Francis Nweke, Abm Adnan Azmee, Md Abdullah Al Hafiz Khan, Yong Pei, Dominic Thomas, Monica Nandan . A transformer-driven framework for multi-label behavioral health classification in police narratives. Applied Computing and Intelligence, 2024, 4(2): 234-252. doi: 10.3934/aci.2024014
    [6] Hong Cao, Rong Ma, Yanlong Zhai, Jun Shen . LLM-Collab: a framework for enhancing task planning via chain-of-thought and multi-agent collaboration. Applied Computing and Intelligence, 2024, 4(2): 328-348. doi: 10.3934/aci.2024019
    [7] Elizaveta Zimina, Kalervo Järvelin, Jaakko Peltonen, Aarne Ranta, Kostas Stefanidis, Jyrki Nummenmaa . Linguistic summarisation of multiple entities in RDF graphs. Applied Computing and Intelligence, 2024, 4(1): 1-18. doi: 10.3934/aci.2024001
    [8] Yang Wang, Hassan A. Karimi . Exploring large language models for climate forecasting. Applied Computing and Intelligence, 2025, 5(1): 1-13. doi: 10.3934/aci.2025001
    [9] Marko Niemelä, Mikaela von Bonsdorff, Sami Äyrämö, Tommi Kärkkäinen . Classification of dementia from spoken speech using feature selection and the bag of acoustic words model. Applied Computing and Intelligence, 2024, 4(1): 45-65. doi: 10.3934/aci.2024004
    [10] Libero Nigro, Franco Cicirelli . Property assessment of Peterson's mutual exclusion algorithms. Applied Computing and Intelligence, 2024, 4(1): 66-92. doi: 10.3934/aci.2024005
  • In this paper, we first obtain a Schwarz-Pick type lemma for the holomorphic self-mapping of the unit disk with respect to the q-distance. Second, we establish the general Schwarz-Pick lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality. As an application, it is proven that this mapping is Lipschitz continuous with respect to the q-distance under certain conditions. Moreover, the corresponding explicit Lipschitz constant is given. Third, it is proved that there exists a self-mapping of the unit disk satisfying the Poisson differential inequality, which does not meet conditions of the boundary Schwarz lemma. Finally, with some additional conditions, a boundary Schwarz lemma for the self-mapping of the unit disk satisfying the Poisson differential inequality is established.



    The study of integral inequality is an interesting area for research in mathematical analysis [1,2]. The fundamental integral inequalities can be instrumental in cultivating the subjective properties of convexity. The existence of massive literature surrounding integral inequalities for convex functions [3-7] depicts the importance of this topic. The most beautiful fact about convex function is that, it has a very elegant representation based on an inequality presented when the functional value of a linear combination of two points in its domain does not exceed the linear combination of the functional values at those two points. Fractional calculus owes its starting point to whether or not the importance of a derivative to an integer order could be generalized to a fractional order which is not an integer. Following this unique conversation between L'Hopital and Leibniz, the concept of fractional calculus grabbed the eye of some extraordinary researchers like Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. Over time, fractional operators have been differentiated with their singularity, locality and having general forms with the improvements made in their kernel structures. In this sense, based on the basic concepts of fractional analysis, Riemann-Liouville(R-L) and Caputo operators, various new trends have been successful. Fractional integral inequalities are marvelous tools for building up the qualitative and quantitative properties of preinvex functions. There has been a ceaseless development of intrigue in such a region of research so as to address the issues of different utilizations of these variants. In 1938, Ostrowski inequality established the following useful and interesting integral inequality, (see [12] and [13]). This review assumed a vital part in growing and getting varieties of well-known integral inequalities with the assistance of fractional integral operators. Then again, by characterizing various forms of Riemann-Liouville(R-L) fractional operator somewhat recently, new forms and refinements of integral inequalities involving differentiable functions have been presented. Studies in the field of fractional calculus have carried another point of view and direction in different fields of applied sciences. It has revealed insight into numerous real-life issues with the utilizations of recently characterized fractional operators.

    For recent result and their related some generalizations, variants and extensions concerning Ostrowski inequality (see [9,10,14-17]).

    The aim of this paper is to establish some integral inequalities for functions whose derivatives in absolute value are preinvex. Now we recall some notions in invexity analysis which will be used through the paper (see [20,21,24,26,28]) and references therein.

    Let g:K and η:K×K, where K is a nonempty set in n, be continuous functions.

    Definition [19] A function g:K=(,) is said to be convex, if we have

    g(vc+(1v)e)vg(c)+(1v)g(e).

    for all c,eK and v[0,1].

    Definition [25] The set Kn is said to be invex with respect to η(.,.), if for every c,eK and v[0,1]

    c+vη(e,c)K.

    The above set K is also called η-connected set.

    It is obvious that every convex set is invex with respect to η(e,c)=ec but there exist invex sets which are not convex [20].

    Definition The function g on the invex set K is said to be preinvex with respect to η if

    g(c+vη(e,c))  (1v) g(c) + v g(e) ,       c , eK ,  v[0,1].

    The function g is said to be preconcave if and only if g is preinvex .

    The important note that every convex function is a preinvex function but the converse is not true [21]. For example g(v)=|v|,   v, is not convex function but it is preinvex function with respect to

    η(e,c)={ec        if  ce0,ce        if  ce<0.

    We also want the following hypothesis regarding the function η which is due to Mohan et al. [22]. Condition-C: Let Kn be an open invex subset with respect to η:K×K. For any c,eK and v[0,1]

    η(e,e+v η(c,e))=  vη(c,e),η(c,e+v η(c,e))=  (1v)η(c,e). (1.1)

    For any c,eK and v1,v2[0,1] from condition C, we have

    η(e+v2 η(c,e) , e+v1 η(c,e))=  (v2v1)η(c,e).

    If g is a preinvex function on [c,c+η(e,c)] and the mapping η satisfies condition C, then for every v[0,1], from Eq (1.1), it yields that

    |g(c+vη(e,c))|= |g(c+η(e,c))+(1v)η(c,c+η(e,c))|             v |g(c+η(e,c))|+(1v)|g(c)|,                      

    and

    |g(c+(1v)η(e,c))|= |g(c+η(e,c))+vη(c,c+η(e,c))|      (1v) |g(c+η(e,c))|+v|g(c)|.

    There are many vector functions that satisfy the condition C in [25], which trivial case η(c,e)=ce. For example suppose K={0} and

    η(e,c)={ec        if  c>0,e>0ec        if  c<0,e<0e,                  otherwise

    The set K is invex set and η satisfies the condition C.

    Noor et al. [23], proved the following Hermite-Hadamard type inequalities.

    Theorem 1.1. Let g:K=[c,c+η(e,c)](0,) be a preinvex function on the interval of real numbers K0 with η(e,c)>0, then the following inequalities hold:

    g(2c+η(e,c)2)1η(e,c)c+η(e,c)cg(x) dxg(c) + g(e)2.

    Then Riemann-Liouville(R-L) fractional integrals of order ε>0 with c0 are defined as follows:

    Jεc+g(z)= 1Γ(ε)zc(zv)ε1 g(v) dv ,    z>c, 

    and

    Jεeg(z)= 1Γ(ε)ez(vz)ε1 g(v) dv ,    z<e.

    In [30], Sarikaya et al. also described the inequality in fractional integral version. In this study, considering the above mentioned theoretical framework, firstly, an integral identity which is candidate to produce Ostrowski type inequalities has been proved. With the help of such identity like Hölder, Power mean, Young's inequalities, Hölder-İşcan, Improved power means inequality and convexity, a new type of inequality, Ostrowski type inequalities, has been obtained.

    In this section, we give Ostrowski inequalities for Riemann-Liouville(R-L) fractional integrals operator are obtained for a differentiable functions on (c,c+η(e,c)). For this purpose, we give a new identity that involve Riemann-Liouville(R-L) fractional integrals operator whose second derivatives are preinvex functions.

    Lemma 2.1. Suppose that a mapping g:[c,c+η(e,c)] istwice differentiable with c<c+η(e,c). If gL1[c,c+η(e,c)], then for all z[c,c+η(e,c)] and ε>0, the following equality

    ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}=ηε+2(z,c)(ε+1)η(e,c) 10vε+1g(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1g(e+vη(z,e))dv, (2.1)

    satisfies for v[0,1] .

    Proof. Let us assume that

    ηε+2(z,c)(ε+1)η(e,c) 10vε+1g(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1g(e+vη(z,e))dv,I=ηε+2(z,c)(ε+1)η(e,c) I1+ηε+2(e,z)(ε+1)η(e,c) I2, (2.2)

    where

    I1=10vε+1g(c+vη(z,c))dv =vε+1g(c+vη(z,c))η(z,c)g|1010(ε+1)vε g(c+vη(z,c))η(z,c)dv=g(z)η(z,c)ε+1η(z,c)10vε g(c+vη(z,c))dv=g(z)η(z,c)ε+1η2(z,c)g(z)+ε(ε+1)η2(z,c)10vε1 g(c+vη(z,c))dv=g(z)η(z,c)ε+1η2(z,c)g(z) +Γ(ε+2)ηε+2(z,c) Jε[c+η(z,c)]g(c),

    and similarly

    I2= 10vε+1g(e+vη(z,e))dv=vε+1g(e+vη(z,e))η(z,e)g|1010(ε+1)vε g(e+vη(z,e))η(z,e)dv=g(z)η(z,e)ε+1η(z,c)10vε g(c+vη(z,c))dv=g(z)η(e,z)ε+1η2(z,e)g(z)+ε(ε+1)η2(z,e)10vε1 g(e+vη(z,e))dv=g(z)η(e,z)ε+1η2(e,z)g(z) +Γ(ε+2)ηε+2(e,z) Jε[e+η(z,e)]+g(e),

    Combining I1 and I2 with (2.2), we get (2.3).

    Remark 2.1. If we set ε=1 and η(c,e)=ce in Lemma 2.1, we get (Lemma 1 in [11]).

    Theorem 2.1. Assume that all the assumptions as defined in Lemma 2.1 and |g| is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|ηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(e)|1ε+2g}. (2.3)

    satisfies for v[0,1].

    Proof. From Lemma 2.1 and since |g| is preinvex function on [c,c+η(e,c)], we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv ηε+2(z,c)(ε+1)η(e,c)  10vε+1g{v|g(z)|+(1v)|g(c)|g}dv+ηε+2(e,z)(ε+1)η(e,c)10vε+1g{v|g(z)|+(1v)|g(e)|g}dvηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g(z)|+|g(e)|1ε+2g}.

    This completes the proof.

    Remark 2.2. If we set ε=1 and η(c,e)=ce, then from Theorem 2.1, we get (Theorem 4 in [11]) with s=1.

    Corollary 2.1. By using Theorem 2.1 with |g|M, we get the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M(1(ε+1)(ε+2)η(e,c)) g[ηε+2(z,c)+ ηε+2(e,z)g].

    Remark 2.3. If we set ε=1 and η(c,e)=ce, then from Corollary 2.1, we recapture (Theorem 2.1, [32]).

    Corollary 2.2. If we set η(c,e)=ce and z=c+e2, in Corollary 2.1, we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|M(ec)ε+12ε+1g(1(ε+1)(ε+2)g).

    Theorem 2.2. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|q+|g(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|q+|g(e)|q2)1qg], (2.4)

    satisfies for v[0,1], where q1+p1=1.

    Proof. Suppose that p>1. From Lemma 2.1, by using the well-known Hölder integral inequality and the preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (2.5)
     ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv (2.6)
     ηε+2(z,c)(ε+1)η(e,c)  (10v(ε+1)pdv)1p(10|g(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(10v(ε+1)pdv)1p(10|g(e+vη(z,e))|qdv)1q. (2.7)

    Since |g|q is preinvexity on [c,c+η(e,c)], we obtain

    10|g(c+vη(z,c))|qdv10g{v|g(z)|q+(1v)|g(c)|qg}dv= |g(z)|q+|g(c)|q2, (2.8)

    and

    10|g(e+vη(z,e))|qdv10g{v|g(z)|q+(1v)|g(e)|qg}dv= |g(z)|q+|g(e)|q2. (2.9)

    By using (2.8) and (2.9) with (2.7), we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|q+|g(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|q+|g(e)|q2)1qg].

    This completes the proof.

    Remark 2.4. If we set ε=1 and η(c,e)=ce, then from Theorem 2.2, we get ( Theorem 5, [11]) with s=1.

    Corollary 2.3. Using Theorem 2.2 with |g|M, we get

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M(1(ε+1)p+1)1p g[ ηε+2(z,c)(ε+1)η(e,c)+ ηε+2(e,z)(ε+1)η(e,c)g].

    Corollary 2.4. If in Corollary 2.3, we set η(c,e)=ce and z=c+e2, then we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|M(ec)ε+1(ε+1)2ε+1 (1(ε+1)p+1)1p.

    Theorem 2.3. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1ε+2)11qg[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|qε+3+|g(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|qε+3+|g(e)|q(ε+2)(ε+3))1qg], (2.10)

    satisfies for v[0,1].

    Proof. Suppose that q1. From Lemma 2.1, by using the power-mean integral inequality and preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv
     ηε+2(z,c)(ε+1)η(e,c)  (10vε+1dv)11q(10|g(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(10vε+1dv)11q(10|g(e+vη(z,e))|qdv)1q. (2.11)

    Since |g|q is preinvexity on [c,c+η(e,c)], we obtain

    10vε+1|g(c+vη(z,c))|qdv10vε+1g{v|g(z)|q+(1v)|g(c)|qg}dv= |g(z)|qε+3+|g(c)|q(ε+2)(ε+3) (2.12)

    and

    10vε+1|g(e+vη(z,e))|qdv10vε+1g{v|g(z)|q+(1v)|g(e)|qg}dv= |g(z)|qε+3+|g(e)|q(ε+2)(ε+3). (2.13)

    By using (2.12) and (2.13) with (2.11), we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (1ε+2)11qg[ηε+2(z,c)(ε+1)η(e,c)(|g(z)|qε+3+|g(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g(z)|qε+3+|g(e)|q(ε+2)(ε+3))1qg].

    This completes the proof.

    Remark 2.5. If we set ε=1 and η(c,e)=ce, then from Theorem 2.3, we get (Theorem 6, [11])with s=1.

    Corollary 2.5. Under the same assumptions in Theorem 2.3 with |g|M, we get the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M(1(ε+1)(ε+2)η(e,c)) g[ ηε+2(z,c)+ ηε+2(e,z)g].

    Corollary 2.6. If in Corollary 2.5, we set η(c,e)=ce and z=c+e2, then we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|M(ec)ε+1(ε+1)(ε+2)2ε+1.

    Theorem 2.4. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(e)|q2qg}, (2.14)

    satisfies for v[0,1].

    Proof. From Lemma 2.1, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv.

    By using the Young's inequality as

    xy < 1pxp+1qyq.
    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c)g{1p10v(ε+1)pdv+1q10|g(c+vη(z,c))|qdvg}+ ηε+2(e,z)(ε+1)η(e,c)g{1p10v(ε+1)pdv+1q10|g(e+vη(z,e))|qdvg} ηε+2(z,c)(ε+1)η(e,c)g{1p10v(ε+1)pdv+1q10g{v|g(z)|q+(1v)|g(c)|qg}g}+ ηε+2(e,z)(ε+1)η(e,c) g{1p10v(ε+1)pdv+1q10g{v|g(z)|q+(1v)|g(e)|qg}g} ηε+2(z,c)(α+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g(z)|q+|g(e)|q2qg}.

    This completes the proof.

    Corollary 2.7. If we set η(c,e)=ce and ε=1 in Theorem 2.4, we get

    |1 ececg(u)dug(z)+(zc+e2)g(z)|(zc)32(ec)g[1(2p+1)p+|g(z)|q+|g(c)|q2qg]+(ez)32(ec)g[1(2p+1)p+|g(z)|q+|g(e)|q2qg].

    Corollary 2.8. If in Theorem 2.4, we set η(c,e)=ce and z=c+e2, then we get the mid-point inequality

    |Γ(ε+1)(ec)g{Jε(c+e2)g(c)+Jε(c+e2)+g(e)g}(ec2)ε1g(z)|(ec)ε+12ε+2(ε+1)g{2((ε+1)p+1)p+|g(c+e2)|q+|g(c)|q2q+|g(c+e2)|q+|g(e)|q2qg}.

    Theorem 2.5. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| (2.15)
     ηε+2(z,c)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g(z)|q+13|g(c)|q)1q+(1(ε+1)p+2)1p(13|g(z)|q+16|g(c)|q)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g(z)|q+13|g(e)|q)1q+(1(ε+1)p+2)1p(13|g(z)|q+16|g(e)|q)1qg],

    satisfies for v[0,1], where q1+p1=1.

    Proof. From Lemma 2.1, by using the Hölder-İşcan integral inequality (see in [33]) and the preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv
     ηε+2(z,c)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v)|g(c+vη(z,c))|qdv)1q+(10v(ε+1)p+1dv)1p(10v|g(c+vη(z,c))|qdv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v)|g(e+vη(z,e))|qdv)1q
    +(10v(ε+1)p+1dv)1p(10v|g(e+vη(z,e))|qdv)1qg] ηα+2(z,c)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v){v|g(z)|q+(1v)|g(c)|q}dv)1q
    +(10v(ε+1)p+1dv)1p(10v{v|g(z)|q+(1v)|g(c)|q}dv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)v(ε+1)pdv)1p(10(1v){v|g(z)|q+(1v)|g(e)|q}dv)1q+(10v(ε+1)p+1dv)1p(10v{v|g(z)|q+(1v)|g(e)|q}dv)1qg].

    After simplification, we get (2.15). This completes the proof.

    Corollary 2.9. Using the same assumptions in Theorem 2.5 with |g|M, we get

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M 21q(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p+(1(ε+1)p+2)1pg]×g[ηε+2(z,c)+ηε+2(e,z)g].

    Theorem 2.6. Assume that all the assumptions as defined in Lemma 2.1 and |g|q, q1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(c)|q(ε+2)(ε+3)(ε+4))1q (2.16)
    +(1ε+3)11q(|g(z)|qε+4+|g(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)11q(|g(z)|qε+4+|g(e)|q(ε+3)(ε+4))1qg],

    satisfies for v[0,1], where q1+p1=1.

    Proof. From Lemma 2.1, improved power-mean integral inequality(see in [33]) and the preinvexity of |g|q, we obtain

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g| ηε+2(z,c)(ε+1)η(e,c) 10vε+1|g(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) 10vε+1|g(e+vη(z,e))|dv ηε+2(z,c)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q(10(1v)vε+1|g(c+vη(z,c))|qdv)1q+ (10vε+2dv)11q(10vε+2|g(c+vη(z,c))|qdv)1qg]
    +ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q(10(1v)vε+1|g(e+vη(z,e))|qdv)1q+ (10vε+2dv)11q(10vε+2|g(e+vη(z,e))|qdv)1qg] ηε+2(z,c)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q×(10(1v)vε+1{v|g(z)|q+(1v)|g(c)|q}dv)1q+ (10vε+2dv)11q(10vε+2{v|g(z)|q+(1v)|g(c)|q}dv)1qg]+ηε+2(e,z)(ε+1)η(e,c)g[(10(1v)vε+1dv)11q(10(1v)vε+1{v|g(z)|q+(1v)|g(e)|q}dv)1q+ (10vε+2dv)11q(10vε+2{v|g(z)|q+(1v)|g(e)|q}dv)1qg]
     ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(a)|q(ε+2)(ε+3)(ε+4))1q
    +(1ε+3)11q(|g(z)|qε+4+|g(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))11q(|g(z)|q(ε+3)(ε+4)+2|g(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)11q(|g(z)|qε+4+|g(e)|q(ε+3)(ε+4))1qg].

    This completes the proof.

    Corollary 2.10. Using the same assumption of Theorem 2.6 with |g|M, we get

    g|ηε+1(z,c)ηε+1(e,z)(ε+1)η(e,c)g(z) ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]g(c)+Jε[e+η(z,e)]+g(e)g}g|M (ε+1)(ε+2)η(e,c)g[ηε+2(z,c)+ηε+2(e,z)g].

    We recall the first kind modified Bessel function m, which has the series representation (see [42], p.77)

    m(ζ)=Σn0(ζ2)m+2nn!Γ(m+n+1).

    where ζ and m>1, while the second kind modified Bessel function gm (see [42], p.78) is usually defined as

    gm(ζ)=π2 m(ζ)m(ζ)sinmπ.

    Consider the function Ωm(ζ):[1,) defined by

    Ωm(ζ)=2mΓ(m+1)ζmm(ζ),

    where Γ is the gamma function.

    The first order derivative formula of Ωm(ζ) is given by [42]:

    Ωm(ζ)=ζ2(m+1)Ωm+1(ζ) (3.1)

    and the second derivative can be easily calculated from (3.1) as

    Ωm(ζ)=ζ24(m+1)(m+2) Ωm+2(ζ) +  12(m+1)Ωm+1(ζ). (3.2)

    and the third derivative can be easily calculated from (3.2) as

    Ωm(ζ)=ζ34(m+1)(m+2)(m+3)Ωm+3(ζ)+3ζ4(m+1)(m+2)Ωm+2(ζ). (3.3)

    Proposition 3.1. Suppose that m>1 and 0<c<e. Then we get the inequality

    g|Ωm(e)Ωm(c)ecz2(m+1)Ωm+1(z)+(zc+e2)×g{z24(m+1)(m+2)Ωm+2(z)+12(m+1)Ωm+1(z)g}g|(zc)32(ec)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(c38(m+1)(m+2)(m+3)Ωm+3(z)+3c4(m+1)(m+2)Ωm+2(c))qg}g]+(ez)32(ec)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(e38(m+1)(m+2)(m+3)Ωm+3(z)+3e4(m+1)(m+2)Ωm+2(e))qg}g].

    Proof. The assertion follows immediately from Corollary 2.7 using g(ζ)=Ωm(ζ), ζ>0 and the identities (3.2) and (3.3).

    In this paper, we have defined an idea of fractional integral inequalities whose second derivatives are preinvex functions. We also investigated and proved a new lemma for the second derivatives of Riemann-Liouville fractional integral operator. Some new special cases are discovered in the form of corollaries. We hope that the strategies of this paper will motivate the researchers working in functional analysis, information theory and statistical theory. It is quite open to think about Ostrowski variants for generalized integral operators having Atangana-Baleanu operator etc. by applying generalized preinvexity. The results, which we have presented in this article, will potentially motivate researchers to study analogous and more general integral inequalities for various other kinds of fractional integral operators.

    All authors have no conflict of interest.



    [1] L. V. Ahlfors, An extension of Schwarz's lemma, T. Am. Math. Soc., 43 (1938), 359–364. https://doi.org/10.2307/1990065 doi: 10.2307/1990065
    [2] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Monotonicity rules in calculus, Am. Math. Mon., 113 (2006), 805–816. https://doi.org/10.2307/27642062 doi: 10.2307/27642062
    [3] K. Astala, V. Manojlović, On Pavlović theorem in space, Potential Anal., 43 (2015), 361–370. https://doi.org/10.1007/s11118-015-9475-4 doi: 10.1007/s11118-015-9475-4
    [4] S. Bernstein, Sur la généralisation du problé de Dirichlet, Math. Ann., 62 (1906), 253–271. https://doi.org/10.1007/BF01449980 doi: 10.1007/BF01449980
    [5] M. Bonk, On Bloch's constant, P. Am. Math. Soc., 110 (1990), 889–894. https://doi.org/10.2307/2047734 doi: 10.2307/2047734
    [6] K. Broder, The Schwarz lemma: an odyssey, Rocky Mountain J. Math., 52 (2022), 1141–1155. https://doi.org/10.1216/rmj.2022.52.1141 doi: 10.1216/rmj.2022.52.1141
    [7] D. M. Burns, S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Am. Math. Soc., 7 (1994), 661–676. https://doi.org/10.1090/S0894-0347-1994-1242454-2 doi: 10.1090/S0894-0347-1994-1242454-2
    [8] S. L. Chen, D. Kalaj, The Schwarz type lemmas and the Landau type theorem of mappings satisfying Poisson's equations, Complex Anal. Oper. Theory, 13 (2019), 2049–2068. https://doi.org/10.1007/s11785-019-00911-4 doi: 10.1007/s11785-019-00911-4
    [9] Z. H. Chen, Y. Liu, Y. F. Pan, A Schwarz lemma at the boundary of Hilbert balls, Chin. Ann. Math. Ser. B, 39 (2018), 695–704. https://doi.org/10.1007/s11401-018-0090-8 doi: 10.1007/s11401-018-0090-8
    [10] J. L. Chen, P. J. Li, S. K. Sahoo, X. T. Wang, On the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domains, Isr. J. Math., 220 (2017), 453–478. https://doi.org/10.1007/s11856-017-1522-y doi: 10.1007/s11856-017-1522-y
    [11] X. Chen, J. Wang, X. Tang, Boundary Schwarz lemma of the unit ball in Rn satisfying Poisson's equation, Acta Mathematica Sinica, Chinese Series, 66 (2023), 717–726. https://doi.org/10.12386/b20210679 doi: 10.12386/b20210679
    [12] P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004.
    [13] M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, The Schwarz lemma: rigidity and dynamics, In: Harmonic and complex analysis and its applications, Cham: Birkhäuser, 2014,135–230. https://doi.org/10.1007/978-3-319-01806-5_3
    [14] J. B. Garnett, Bounded analytic functions, New York: Academic Press, 1981.
    [15] I. Graham, H. Hamada, G. Kohr, A Schwarz lemma at the boundary on complex Hilbert balls and applications to starlike mappings, J. Anal. Math., 140 (2020), 31–53. https://doi.org/10.1007/s11854-020-0080-0 doi: 10.1007/s11854-020-0080-0
    [16] H. Hamada, A Schwarz lemma at the boundary using the Julia-Wolff-Carathéodory type condition on finite dimensional irreducible bounded symmetric domains, J. Math. Anal. Appl., 465 (2018), 196–210. https://doi.org/10.1016/j.jmaa.2018.04.076 doi: 10.1016/j.jmaa.2018.04.076
    [17] H. Hamada, G. Kohr, A boundary Schwarz lemma for mappings from the unit polydisc to irreducible bounded symmetric domains, Math. Nachr., 293 (2020), 1345–1351. https://doi.org/10.1002/mana.201900493 doi: 10.1002/mana.201900493
    [18] E. Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. Anal. Math., 5 (1956), 197–272. https://doi.org/10.1007/BF02937346 doi: 10.1007/BF02937346
    [19] H. W. Hethcote, Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci., 8 (1977), 65–67. https://doi.org/10.1080/0020739770080109 doi: 10.1080/0020739770080109
    [20] E. Hopf, Ueber den funktionalen, insbesondere den analytischen Charakter der Loesungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z., 34 (1932), 194–233. https://doi.org/10.1007/BF01180586 doi: 10.1007/BF01180586
    [21] D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings, J. Anal. Math., 119 (2013), 63–88. https://doi.org/10.1007/s11854-013-0002-5 doi: 10.1007/s11854-013-0002-5
    [22] D. Kalaj, M. Mateljević, On certain nonlinear elliptic PDE and quasiconfomal mapps between euclidean surfaces, Potential Anal., 34 (2011), 13–22. https://doi.org/10.1007/s11118-010-9177-x doi: 10.1007/s11118-010-9177-x
    [23] D. Kalaj, On quasi-conformal harmonic maps between surfaces, Int. Math. Res. Notices, 2015 (2015), 355–380. https://doi.org/10.1093/imrn/rnt203 doi: 10.1093/imrn/rnt203
    [24] H. Li, M. Mateljević, Boundary Schwarz lemma for harmonic and pluriharmonic mappings in the unit ball, J. Math. Inequal., 16 (2022), 477–498. https://doi.org/10.7153/jmi-2022-16-35 doi: 10.7153/jmi-2022-16-35
    [25] T. Liu, X. Tang, A new boundary rigidity theorem for holomorphic self-mappings of the unit ball in Cn, Pure Appl. Math. Q., 11 (2015), 115–130. https://doi.org/10.4310/PAMQ.2015.v11.n1.a5 doi: 10.4310/PAMQ.2015.v11.n1.a5
    [26] T. Liu, J. Wang, X. Tang, Schwarz lemma at the boundary of the unit ball in Cn and its applications, J. Geom. Anal., 25 (2015), 1890–1914. https://doi.org/10.1007/s12220-014-9497-y doi: 10.1007/s12220-014-9497-y
    [27] T. Liu, X. Tang, A boundary Schwarz lemma on the classical domain of type Ⅰ, Sci. China Math., 60 (2017), 1239–1258. https://doi.org/10.1007/s11425-015-0225-7 doi: 10.1007/s11425-015-0225-7
    [28] T. Liu, X. Tang, Schwarz lemma at the boundary of strongly pseudoconvex domain in Cn, Math. Ann., 366 (2016), 655–666. https://doi.org/10.1007/s00208-015-1341-6 doi: 10.1007/s00208-015-1341-6
    [29] T. Liu, X. Tang, W. Zhang, Schwarz lemma at the boundary on the classical domain of type Ⅲ, Chin. Ann. Math. Ser. B, 41 (2020), 335–360. https://doi.org/10.1007/s11401-020-0202-0 doi: 10.1007/s11401-020-0202-0
    [30] M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Rev. Roumaine Math. Pures Appl., 51 (2006), 711–722.
    [31] M. Mateljević, M. Vuorinen, On harmonic quasiconformal quasi-isometries, J. Inequal. Appl., 2010 (2010), 178732. https://doi.org/10.1155/2010/178732 doi: 10.1155/2010/178732
    [32] M. Mateljević, Schwarz lemma and distortion for harmonic functions via length and area, Potential Anal., 53 (2020), 1165–1190. https://doi.org/10.1007/s11118-019-09802-x doi: 10.1007/s11118-019-09802-x
    [33] M. Mateljević, Boundary behaviour of partial derivatives for solutions to certain Laplacian-gradient inequalities and spatial QC maps, In: Operator theory and harmonic analysis, Cham: Springer, 2021,393–418. https://doi.org/10.1007/978-3-030-77493-6_23
    [34] M. Mateljević, A. Khalfallah, On some Schwarz type inequalities, J. Inequal. Appl., 2020 (2020), 164. https://doi.org/10.1186/s13660-020-02433-6 doi: 10.1186/s13660-020-02433-6
    [35] M. Mateljević, M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discr. Math., 14 (2020), 150–168. https://doi.org/10.2298/AADM200104001M doi: 10.2298/AADM200104001M
    [36] M. Mateljević, N. Mutavdžić, The boundary Schwarz lemma for harmonic and pluriharmonic mappings and some generalizations, Bull. Malays. Math. Sci. Soc., 45 (2022), 3177–3195. https://doi.org/10.1007/s40840-022-01371-4 doi: 10.1007/s40840-022-01371-4
    [37] M. R. Mohapatra, X. T. Wang, J. F. Zhu, Boundary Schwarz lemma for solutions to nonhomogeneous biharmonic equations, B. Aust. Math. Soc., 100 (2019), 470–478. https://doi.org/10.1017/S0004972719000947 doi: 10.1017/S0004972719000947
    [38] M. R. Mohapatra, Schwarz-type lemma at the boundary for mappings satisfying non-homogeneous polyharmonic equations, Monatsh. Math., 192 (2020), 409–418. https://doi.org/10.1007/s00605-020-01402-x doi: 10.1007/s00605-020-01402-x
    [39] R. Osserman, A new variant of the Schwarz-Pick-Ahlfors lemma, Manuscripta Math., 100 (1999), 123–129. https://doi.org/10.1007/s002290050231 doi: 10.1007/s002290050231
    [40] G. Ren, Z. Xu, Schwarz's lemma for slice Clifford analysis, Adv. Appl. Clifford Algebras, 25 (2015), 965–976. https://doi.org/10.1007/s00006-015-0534-00 doi: 10.1007/s00006-015-0534-0
    [41] S. Ruscheweyh, Two remarks on bounded analytic functions, Serdica, 11 (1985), 200–202.
    [42] J. Schauder, Ueber lineate elliptische Differentialgleichungen zweiter Ordnung, Math. Z., 38 (1934), 257–282. https://doi.org/10.1007/BF01170635 doi: 10.1007/BF01170635
    [43] X. Tang, T. Liu, J. Zhang, Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball of Cn, P. Am. Math. Soc., 145 (2017), 1709–1716. https://doi.org/10.1090/proc/13378 doi: 10.1090/proc/13378
    [44] X. Tang, T. Liu, W. Zhang, Schwarz lemma at the boundary on the classical domain of type Ⅱ, J. Geom. Anal., 28 (2018), 1610–1634. https://doi.org/10.1007/s12220-017-9880-6 doi: 10.1007/s12220-017-9880-6
    [45] H. Werner, Das problem von Douglas fuer flaechen konstanter mittlerer Kruemmung, Math. Ann., 133 (1957), 303–319. https://doi.org/10.1007/BF01342884 doi: 10.1007/BF01342884
    [46] S. T. Yau, A general Schwarz lemma for Kähler manifolds, Am. J. Math., 100 (1978), 197–203. https://doi.org/10.2307/2373880 doi: 10.2307/2373880
    [47] D. G. Zhong, F. N. Meng, W. J. Yuan, On Schwarz-Pick inequality mappings satisfying Poisson differential inequality, Acta Math. Sci., 41 (2021), 959–967. https://doi.org/10.1007/s10473-021-0320-0 doi: 10.1007/s10473-021-0320-0
    [48] D. G. Zhong, M. L. Huang, D. P. Wei, Some inequalities for self-mappings of unit ball satisfying the invariant Laplacians, in press.
    [49] J. F. Zhu, Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings, Filomat, 32 (2018), 5385–5402. https://doi.org/10.2298/FIL1815385Z doi: 10.2298/FIL1815385Z
    [50] J. F. Zhu, X. T. Wang, Boundary Schwarz lemma for solutions to Poisson's equation, J. Math. Anal. Appl., 463 (2018), 623–633. https://doi.org/10.1016/j.jmaa.2018.03.043 doi: 10.1016/j.jmaa.2018.03.043
  • This article has been cited by:

    1. Mahyar Abbasian, Elahe Khatibi, Iman Azimi, David Oniani, Zahra Shakeri Hossein Abad, Alexander Thieme, Ram Sriram, Zhongqi Yang, Yanshan Wang, Bryant Lin, Olivier Gevaert, Li-Jia Li, Ramesh Jain, Amir M. Rahmani, Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative AI, 2024, 7, 2398-6352, 10.1038/s41746-024-01074-z
    2. Muhammad Asif, Monica Palmirani, 2024, Chapter 4, 978-3-031-68210-0, 34, 10.1007/978-3-031-68211-7_4
    3. Andrea Zielinski, Simon Hirzel, Sonja Arnold-Keifer, 2024, Enhancing Digital Libraries with Automated Definition Generation, 9798400710933, 1, 10.1145/3677389.3702536
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1332) PDF downloads(91) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog