
The present paper studies pneumonia transmission dynamics by using fractal-fractional operators in the Atangana-Baleanu sense. Our model predicts pneumonia transmission dynamically. Our goal is to generalize five ODEs of the first order under the assumption of five unknowns (susceptible, vaccinated, carriers, infected, and recovered). The Atangana-Baleanu operator is used in addition to analysing existence, uniqueness, and non-negativity of solutions, local and global stability, Hyers-Ulam stability, and sensitivity analysis. As long as the basic reproduction number R0 is less than one, the free equilibrium point is local, asymptotic, or otherwise global. Our sensitivity statistical analysis shows that R0 is most sensitive to pneumonia disease density. Further, we compute a numerical solution for the model by using fractal-fractional. Graphs of the results are presented for demonstration of our proposed method. The results of the Atangana-Baleanu fractal-fractional scheme is in excellent agreement with the actual data.
Citation: Najat Almutairi, Sayed Saber, Hijaz Ahmad. The fractal-fractional Atangana-Baleanu operator for pneumonia disease: stability, statistical and numerical analyses[J]. AIMS Mathematics, 2023, 8(12): 29382-29410. doi: 10.3934/math.20231504
[1] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[2] | Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489 |
[3] | Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319 |
[4] | Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824 |
[5] | Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058 |
[6] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[7] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[8] | Maysaa Al-Qurashi, Sobia Sultana, Shazia Karim, Saima Rashid, Fahd Jarad, Mohammed Shaaf Alharthi . Identification of numerical solutions of a fractal-fractional divorce epidemic model of nonlinear systems via anti-divorce counseling. AIMS Mathematics, 2023, 8(3): 5233-5265. doi: 10.3934/math.2023263 |
[9] | Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Weerapan Sae-dan . A mathematical model for fractal-fractional monkeypox disease and its application to real data. AIMS Mathematics, 2024, 9(4): 8516-8563. doi: 10.3934/math.2024414 |
[10] | Yumei Chen, Jiajie Zhang, Chao Pan . Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855 |
The present paper studies pneumonia transmission dynamics by using fractal-fractional operators in the Atangana-Baleanu sense. Our model predicts pneumonia transmission dynamically. Our goal is to generalize five ODEs of the first order under the assumption of five unknowns (susceptible, vaccinated, carriers, infected, and recovered). The Atangana-Baleanu operator is used in addition to analysing existence, uniqueness, and non-negativity of solutions, local and global stability, Hyers-Ulam stability, and sensitivity analysis. As long as the basic reproduction number R0 is less than one, the free equilibrium point is local, asymptotic, or otherwise global. Our sensitivity statistical analysis shows that R0 is most sensitive to pneumonia disease density. Further, we compute a numerical solution for the model by using fractal-fractional. Graphs of the results are presented for demonstration of our proposed method. The results of the Atangana-Baleanu fractal-fractional scheme is in excellent agreement with the actual data.
Infections of the lungs, such as pneumonia, have a variety of causes. The prevalence of this disease is increasing in all age groups and is a major medical concern. Several researchers are working on mathematical models that describe disease spread and optimal control problems in epidemics because they are highly interesting. As a result, these models play a critical role in predicting the effects of epidemics and diseases on areas and populations, as well as the environment. Researchers have presented models for modeling pneumonia dynamics based on a review of the literature; see, e.g., [1,2,3,4,5,6,7,8]. Based on a mathematical analysis of pneumonia and typhoid characteristics, Tilahun et al. [6] proposed a coinfection model. Tilahun et al. [7] used ordinary differential equations and a few theorems to model pneumonia and meningitis coinfections in 2018.
Since 1970, infectious disease dynamics has emerged as an interdisciplinary field. Epidemiology studies disease spread. Modeling diseases and their effects on humans is described in [5]. Fractional and fractal calculus are combined here. In engineering, physics, biology, and biomedicine, fractal-fractional operators are widely used to model real-world processes. Comparable to classical models, fractional order integrals and fractional derivatives are more precise than classical models. In fractional derivatives, there are three different types of operators: Riemann-Liouville and Caputo, Caputo-Fabrizio and Atangana-Baleanu, which are connected to power laws, exponential decay laws, and extended Mittag-Leffler functions [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52].
The concept of fractal-fractional order integration and differentiation was developed by Atangana with two orders, i.e., one fractional and the other fractal [46,54]. Besides, fractal differentiation is equivalent to classical differentiation if the fractal order tends to 1. Fractal behaviors are investigated through the use of these combined operators. Several researchers have shown that fractal-fractional operators better capture real-world mathematics [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79]. These include but are not limited to, for instance, the HIV/AIDS model [57], Leishmania model [58], tuberculosis model [59], Q fever model [60], hepatitis C virus model [61], AH1N1/09 virus model [62] and tobacco smoking model [63].
This study investigates the formulation of the Tilahun et al. mathematical model of pneumonia transmission dynamics by using fractal-fractional derivatives in the Atangana-Baleanu sense. The model is improved by assuming five unknowns and using this Caputo, and Atangana-Baleanu-type fractional derivatives. The study aims to investigate and compare the solutions to this system, which unique as compared to other studies. The authors construct schemes for this system, using the fractal-fractional Atangana-Baleanu operator to prove the existence, uniqueness, non-negativity and boundedness of solutions. Three levels of stability are established: local, global and Hyers-Ulam. Sensitivity analysis is conducted to assess the impact of parameters on initial disease transmission. The study finds that R0 is most sensitive to pneumonia disease density. The results show that the scheme's method is effective and suitable for the system defined by Caputo and Atangana-Baleanu fractional derivatives. Simulations using Matlab show that the schemes method is suitable for both types of problems and has approximate solutions that are close to the exact solution. The study also discusses other fractional operators and numerically verifies their mathematical findings for the proposed model's dynamical behavior.
Definition 1 ([76,77]). Consider the fractal to be differentiable on (a,b) of order 0<τ2≤1 for ϕ∈C((a,b),R). The following is a fractal-fractional derivative operator for t in the Atangana-Baleanu setting:
FF−ABDτ1,τ20,tϕ(t)=ℏ(τ1)1−τ1ddtτ2∫t0ϕ(s)Eτ1[−τ11−τ1(t−s)τ1]ds, |
where, ℏ(τ1)=1−τ1+τ1Γ(τ1), and dh(s)dsτ2=limt→st(t)−t(s)tτ2−ςτ2.
Definition 2 ([76,77]). The fractal-fractional integration operator is given by
FF−ABIτ1,τ20,tϕ(t)=τ1τ2ℏ(τ1)Γ(τ1)∫t0sτ2−1ϕ(s)(t−s)τ1−1ds+τ2(1−τ1)ϑτ2−1ℏ(τ1)ϕ(t). |
There are five populations in the pneumonia model: susceptible (x), vaccinated (y), carrier (z), infected (u) and recovered (v). The total human population, denoted by \(N\), can be expressed as \(N = \operatorname{x} + \operatorname{y} + \operatorname{z} + \operatorname{u} + \operatorname{v}\). Therefore, our suggested fractal-fractional pneumonia model in the sense of the Atangana-Baleanu derivative looks like this:
FF−ABDτ1,τ20,tx(t)=(1−p)π+ϕy(t)+δv(t)−(ϑ+μ+λ)x(t),FF−ABDτ1,τ20,ty(t)=pπ+ϑx(t)−(ϕ+μ+ελ)y(t),FF−ABDτ1,τ20,tz(t)=ϱλx(t)+ϱελy(t)+η(1−q)u(t)−(β+χ+μ)z(t),FF−ABDτ1,τ20,tu(t)=λ(1−ϱ)x(t)+ελ(1−ϱ)y(t)+χz(t)−(α+η+μ)u(t),FF−ABDτ1,τ20,tv(t)=βz(t)+qηu(t)−(δ+μ)v(t), | (2.1) |
subject to x(0)≥0,y(0)≥0,z(0)≥0,u(0)≥0,v(0)≥0.
All of the positive parameters are listed in Table 1. When people get infected, they either join the carrier class z or the infectious class u based on a probability of 1−ϱ. Let Υ be the transmission coefficient for the carrier. Infection force is defined as λ=az+bu, where a=kτΥN represents the carrier compartment transmission and b=kτN represents the infective compartment transmission. The population is N=x(t)+y(t)+z(t)+u(t)+v(t). If Υ>1, carriers are more likely to infect susceptibles than infectious individuals. Both carriers and infectives have the same chance of spreading when Υ=1. Nevertheless, if Υ<1, the infective has a higher chance of contacting the susceptible.
Parameters symbols | Description | Source | Values |
k | The contact rate | Estimated | 0.5 |
ϵ | The transmission coefficient for the carrier | [2] | 0.002 |
τ | The probability that a contact causes infection | [2] | 0.89−0.99 |
ϕ | The rate of the susceptible class increased | ||
from the vaccinated class | [6] | 0.0025 | |
ψ | The proportion of the serotype | ||
not covered by the vaccine | Assumed | 0.2 | |
δ | The rate at which individuals in the recovery | ||
class lose their temporary immunity | [2] | 0.1 | |
χ | The rate of infection | [2] | 0.001−0.01096 |
p | The rate at which a fraction of the population | ||
was vaccinated before the disease outbreak | [2] | 0.2 | |
ϑ | The rate of population movement | ||
from the susceptible class to the vaccinated class | Assumed | 0.008 | |
μ | The natural death rate of the | ||
population in all compartments | Estimated | 0.01 | |
α | The rate of dying from the disease | Estimated | 0.0057 |
Θ | Θ=kτ | [6] | 0.05 |
β | Recovery rate after gaining immunity | [6] | 0.0115 |
η | Treatment rate per capita in the infected | ||
class moving to the recovered compartment | [6] | 0.2 | |
q | Treatment efficacy | [6] | 0.5−1 |
Υ | The infection force | Assumed | 1.2 |
The matrix form of (1.2) is given by:
FF−ABDτ1,τ20,tΨ(t)=Λ(t,Ψ(t))=(Υ1(t,Ψ(t)),Υ2(t,Ψ(t)),Υ3(t,Ψ(t)),Υ4(t,Ψ(t)),Υ5(t,Ψ(t))),Ψ(t)=(x(t),y(t),z(t),u(t),v(t)),Ψ(0)=(x(0),y(0),z(0),u(0),v(0)). | (2.2) |
Define the Banach space U=X5, where X=C(I,R) is subject to the norm
‖H‖=maxt∈[0,1]|x(t)+y(t)+z(t)+u(t)+v(t)|. |
H(Ψ)(t)=Ψ(0)+τ2tτ2−1(1−τ1)AB(τ1)Λ(t,Ψ(t))+τ1τ2AB(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ2−1Λ(ξ,Ψ(ξ))dξ. | (2.3) |
Let ‖x‖≤η1, ‖y‖≤η2, ‖z‖≤η3, ‖u‖≤η4 and ‖v‖≤η5 for some constants η1,η2,η3,η4,η5>0.
Rewrite (2.1) as follows
FF−ABDτ1,τ20,tx(t)=τ2tτ2−1Υ1(t,Ψ(t)),FF−ABDτ1,τ20,ty(t)=τ2tτ2−1Υ2(t,Ψ(t)),FF−ABDτ1,τ20,tz(t)=τ2tτ2−1Υ3(t,Ψ(t)),FF−ABDτ1,τ20,tu(t)=τ2tτ2−1Υ4(t,Ψ(t)),FF−ABDτ1,τ20,tv(t)=τ2tτ2−1Υ5(t,Ψ(t)), |
where
Υ1(t,Ψ(t))=(1−p)π+ϕy(t)+δv(t)−(ϑ+μ+λ)x(t),Υ2(t,Ψ(t))=pπ+ϑx(t)−(μ+λϵ+ϕ)y(t),Υ3(t,Ψ(t))=ϱλx(t)+ϱϵλy(t)+η(1−q)u(t)−(β+χ+μ)z(t),Υ4(t,Ψ(t))=λ(1−ϱ)x(t)+ελ(1−ϱ)y(t)+χz(t)−(α+η+μ)u(t),Υ5(t,Ψ(t))=βz(t)+qηu(t)−(δ+μ)v(t). |
Applying fractional integrals, we get
Ψ(t)=Ψ(0)+τ2tτ2−1(1−τ1)ℏ(τ1)Λ(t,Ψ(t))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ2−1Λ(ξ,Ψ(ξ))dξ. |
Λ(t,Ψ(t)) must satisfy these Lipschitz and growth conditions.
Theorem 1. For each Ψ1,Ψ2∈B, ∃ a constant A>0 that satisfies
|Λ(t,Ψ1(t)−Λ(t,Ψ2(t))|⩽A|Ψ1(t)−Ψ2(t)|, | (2.4) |
where A=max{ω1,ω2,ω3,ω4,ω5}, with ω1=μ+2λ+2λϱ+2ϑ, ω2=μ+2ϕ+2ελ+2λεϱ, ω3=2χ+μ+2β,ω4=2qη+μ+α+2η,ω5=2δ+μ.
Proof. For each Ψ1,Ψ2∈B, one obtains
‖Λ(t,Ψ1(t)−Λ(t,Ψ2(t))‖≤ω1|x1−x2|+ω2|y1−y2|+ω3|z1−z2|+ω4|u1−u2|+ω5|v1−v2|≤A|Ψ1(t)−Ψ2(t)|. |
Therefore, Λ(t,Ψ(t) satisfies the Lipschitz condition.
Theorem 2. There are constants zΨ>0 and MΨ satisfies the following, for each Ψ in B,
|Λ(t,Ψ(t))|⩽zΨ|Ψ(t)|+MΨ. |
So, there is at least one solution to the suggested model.
Proof. To begin with, we demonstrate that the operator Λ stated in (2.2) is totally continuous. Due to the continuous nature of Ψ, N is also continuous.
Theorem 3. Assume that (2.4) is true; then,
Ξ=(τ2Tτ2−1(1−τ1)ℏ(τ1)+τ1τ2ℏ(τ1)Γ(τ1)Tμ+τ2−1H(ξ,τ2))A. |
So, it has a unique solution.
Proof. For Ψ1,Ψ2 in B, we obtain
|H(Ψ1)−H(Ψ2)|=maxt∈[0,T]|τ2tτ2−1(1−τ1)ℏ(τ1)(Λ(t,Ψ1(t))−Λ(t,Ψ2(t)))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ2−1(Λ(ξ,Ψ1(ξ))−Λ(ξ,Ψ2(ξ)))dξ|⩽A[τ2tτ2−1(1−τ1)ℏ(τ1)+τ1τ2ℏ(τ1)Γ(τ1)Tμ+τ2−1H(ξ,τ2)]‖Ψ1−Ψ2‖⩽Ξ‖Ψ1−Ψ2‖. |
Due to this, H is a contraction and there is only one solution to the model.
The non-negativity and boundedness of the solutions of the system (2.1) in the fractional case have been proved in [8].
An infection-free equilibrium is E0=(x0,y0,0,0,0)=(πℵ1μ,πℵ2μ,0,0,0), with ℵ1=μ+ϕ−pμμ+ϕ+ϑ and ℵ2=ϑ+pμμ+ϕ+ϑ for z=u=v=0. The endemic equilibrium, given as E∗=(x∗,y∗,z∗,u∗,v∗) for u>0,z>0 was acquired by applying the following:
{FF−ABDτ1,τ20,tx(t)=0,FF−ABDτ1,τ20,ty(t)=0,FF−ABDτ1,τ20,tz(t)=0,FF−ABDτ1,τ20,tu(t)=0,FF−ABDτ1,τ20,tv(t)=0. |
Thus, E∗=(x∗,y∗,z∗,u∗,v∗)=(E5+E6u∗,E3+E4E5+E4E6u∗,E1u∗,u∗,E2u∗), with
E1=(1−ϱ)η(1−q)+ϱΦ(1−ϱ)(β+χ+μ)+ϱχ,E2=βE1+qηδ+μ,E3=pπϕ+μ+ελ,E4=θϕ+μ+ελ,E5=(1−p)π+ϕE3μ+λ+θ−ϕE4,E6=δE2μ+λ+θ−ϕE4,u∗=pπ+θE5−(ϕ+μ+ελ)(E3+E4E5)−ΨE6+(μ+ελ+(α+η+μ))E4E6. |
The basic reproduction number is given by [7,8],
R0=[ϱbχ+aϱ(α+η+μ)+aη(1−ϱ)(1−q)+b(β+χ+μ)(1−ϱ)](β+χ+μ)(α+η+μ)−η(1−q)χ(x0+ϵy0). |
Lemma 1. If R0=1, E0 is locally asymptotically stable for model (2.1), and unstable if R0>1. Moreover, model (2.1) has a globally asymptotically stable E0.
Proof. The first part follows as in [8]. We present a positive definite Lyapunov function:
L1=(x−x0−x0lnxx0)+(y−y0−y0lnyy0). |
One obtains
FF−ABDτ1,τ20,tL1≤(x−x0x)FF−ABDτ1,τ20,tx+(y−y0y)FF−ABDτ1,τ20,ty=(x−x0x)((1−p)π+ϕy(t)+δv(t)−(ϑ+μ+λ)x(t))+(y−y0y)(pπ+ϑx(t)−(ϕ+μ+ελ)y(t)). |
At E0, one obtains
FF−ABDτ1,τ20,tL1≤(x−x0x)FF−ABDτ1,τ20,tx+(y−y0y)FF−ABDτ1,τ20,ty=(x−x0)((1−p)πx+ϕyx+δvx−(ϑ+μ+λ))+(y−y0)(pπy+ϑxy−(ϕ+μ+ελ))=−(1−p)πxx0(x−x0)2−(α+η+μ)Vxx0(x−x0)2−δvxx0(x−x0)2−pπyy0(y−y0)2−ϑxyy0(y−y0)2. |
Thus, FF−ABDτ1,τ20,tL1<0 for all (x,y,z,u,v)∈Λ. Moreover, FF−ABDτ1,τ20,tL1=0 implies that x=x0, y=y0, z=z0, u=u0 and v=v0. So, {E0} is the only set satisfying that FF−ABDτ1,τ20,tL1=0.
Lemma 2. E∗ exists when R0>1; otherwise, there is no endemic equilibrium.
Proof. The following characteristics are required for a disease to be endemic: FF−ABDτ1,τ20,tz(t)>0 and FF−ABDτ1,τ20,tu(t)>0, that is,
FF−ABDτ1,τ20,tz(t)=ϱλx(t)+ϱελy(t)+η(1−q)u(t)−(β+χ+μ)z(t)>0,FF−ABDτ1,τ20,tu(t)=λ(1−ϱ)x(t)+ελ(1−ϱ)y(t)+χz(t)−(α+η+μ)u(t)>0. | (3.1) |
Given (3.1), based on the first inequality,
(β+χ+μ)z(t)<ϱλx(t)+ϱελy(t)+η(1−q)u(t). |
Then,
z(t)<ϱα(u(t)+Υy(t)N)(x(t)+εy(t))+η(1−q)u(t)(β+χ+μ). |
Because (x(t)+εy(t))N⩽1, one obtains
z(t)<ϱαu(t)+η(1−q)u(t)(β+χ+μ)−ϱαΥ. | (3.2) |
As a result of the second inequality of (3.1),
(α+η+μ)u(t)<λ(1−ϱ)x(t)+ελ(1−ϱ)y(t)+χy(t). |
Then,
u(t)<(1−ϱ)α(u(t)+Υy(t)N)(x(t)+εy(t))+χy(t)(α+η+μ). |
Using the fact that (x(t)+εy(t))N⩽1, one obtains
u(t)<(1−ϱ)αu(t)+(1−ϱ)αΥy(t)+χy(t)(α+η+μ). | (3.3) |
Substituting (3.2) into (3.3), one obtains
u(t)<(1−ϱ)αu((β+χ+μ)−ϱαΥ)+(1−ϱ)αΥ(ϱαu+η(1−q)u)+χ(ϱαu+η(1−q)u)(β+χ+μ−ϱαΥ)(α+η+μ). |
After rearranging and canceling u(t), one gets
1<α[(1−ϱ)(Υη(1−q)+(β+χ+μ))(α+η+μ)(β+χ+μ)−χη(1−q)+ϱ(Υ(α+η+μ)+χ)(α+η+μ)(β+χ+μ)−χη(1−q)]⩽α[(1−ϱ)(Υη(1−q)+(β+χ+μ))(β+χ+μ)(α+η+μ)−η(1−q)χ+ϱ(Υ(α+η+μ)+χ)(β+χ+μ)(α+η+μ)−η(1−q)χ](πℵ1μ+πℵ2μ)=R0. |
Thus, R0>1 creates a unique endemic equilibrium.
Lemma 3 ([8]). E∗ is locally asymptotically stable for R0>1. Moreover, E∗ is globally asymptotically stable.
Proof. Define
L2=(x−x∗−x∗lnxx∗)+(y−y∗−y∗lnyy∗)+(z−z∗−z∗lnzz∗)+(u−u∗−u∗lnuu∗)+(v−v∗−v∗lnvv∗). |
Thus, one obtains
FF−ABDτ1,τ20,tL2≤(x−x∗x)FF−ABDτ1,τ20,tx+(y−y∗y)FF−ABDτ1,τ20,ty+(z−z∗z)FF−ABDτ1,τ20,tz+(u−u∗u)FF−ABDτ1,τ20,tu+(v−v∗v)FF−ABDτ1,τ20,tv=−(x−x∗)2(1−p)πxx∗−(x−x∗)2(α+η+μ)yxx∗−(x−x∗)2δvxx∗−(y−y∗)2pπyy∗−(y−y∗)2ϑxyy∗−(z−z∗)2ϱλxzz∗−(z−z∗)2ϱελyzz∗−(z−z∗)2η(1−q)uzz∗−(u−u∗)2×λ(1−ϱ)xuu∗−(u−u∗)2ελ(1−ϱ)yuu∗−(u−u∗)2χzuu∗−(v−v∗)2βzvv∗−(v−v∗)2qηuvv∗. |
Thus, FF−ABDτ1,τ20,tL2<0 for all (x,y,z,u,v)∈Λ. Furthermore, FF−ABDτ1,τ20,tL2=0 implies that x=x∗, y=y∗, z=z∗, u=u∗, and v=v∗. Therefore, according to Theorem 5, E∗ is globally asymptotically stable.
The Hyers-Ulam stability has been motivated by the work done in [80,81].
Definition 3. The constants ζi>0, for i∈N51 must meet the following conditions for every ζi>0, i∈N51, for model (2.1) to have Hyers-Ulam stability:
|x(t)−τ2(1−τ1)tτ2−1ℏ(τ1)Υ1(t,Ψ(t))−τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ1(ξ,Ψ(ξ))dξ|≤ζ1, |
|y(t)−τ2(1−τ1)tτ2−1ℏ(τ1)Υ2(t,Ψ(t))−τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ2(ξ,Ψ(ξ))dξ|≤ζ2, |
|z(t)−τ2(1−τ1)tτ2−1ℏ(τ1)Υ3(t,Ψ(t))−τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ3(ξ,Ψ(ξ))dξ|≤ζ3, |
|u(t)−τ2(1−τ1)tτ2−1ℏ(τ1)Υ4(t,Ψ(t))−τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ4(ξ,Ψ(ξ))dξ|≤ζ4, |
|v(t)−τ2(1−τ1)tτ2−1ℏ(τ1)Υ5(t,Ψ(t))−τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ5(ξ,Ψ(ξ))dξ|≤ζ5. |
In the model (2.1), an approximation is (x1(t),y1(t),z1(t),u1(t),v1(t)), which satisfies the following:
x1(t)=τ2(1−τ1)tτ2−1ℏ(τ1)Υ1(t,x1(t))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ1(ξ,x1(ξ))dξ, |
y1(t)=τ2(1−τ1)tτ2−1ℏ(τ1)Υ2(t,y1(t))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ2(ξ,y1(ξ))dξ, |
z1(t)=τ2(1−τ1)tτ2−1ℏ(τ1)Υ3(t,z1(t))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ3(ξ,z1(ξ))dξ, |
u1(t)=τ2(1−τ1)tτ2−1ℏ(τ1)Υ4(t,u1(t))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ4(ξ,u1(ξ))dξ, |
v1(t)=τ2(1−τ1)tτ2−1ℏ(τ1)Υ5(t,v1(t))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1Υ5(ξ,v1(ξ))dξ, |
so that
|x−x1|≤v1ω1,|y−y1|≤v2ω2,|z−z1|≤v3ω3,|u−u1|≤v4ω4,|v−v1|≤v5ω5. | (3.4) |
Theorem 4. If (3.1) is true, then model (2.1) has Hyers-Ulam stability.
Proof.
|x−x1|=|τ2(1−τ1)tτ2−1ℏ(τ1)(Υ1(t,x(t))−Υ1(t,x1(t)))+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1(Υ1(ξ,x(ξ))−Υ1(ξ,x1(ξ)))dξ|≤τ2(1−τ1)tτ2−1ℏ(τ1)ω1‖x−x1‖+τ1τ2ℏ(τ1)Γ(τ1)∫t0ξτ2−1(t−ξ)τ1−1ω1‖x−x1‖dξ≤(τ2(1−τ1)ℏ(τ1)+τ1τ2Γ(τ2)ℏ(τ1)Γ(τ1+τ2))ω1‖x−x1‖. |
Then,
|x−x1|≤v1ω1, with v1=(τ2(1−τ1)ℏ(τ1)+τ1τ2Γ(τ2)ℏ(τ1)Γ(τ1+τ2))‖x−x1‖. |
Similarly, one obtains
|y−y1|≤v2ω2, with v2=(τ2(1−τ1)ℏ(τ1)+τ1τ2Γ(τ2)ℏ(τ1)Γ(τ1+τ2))‖y−y1‖,|z−z1|≤v3ω3, with v3=(τ2(1−τ1)ℏ(τ1)+τ1τ2Γ(τ2)ℏ(τ1)Γ(τ1+τ2))‖z−z1‖,|u−u1|≤v4ω4, with v4=(τ2(1−τ1)ℏ(τ1)+τ1τ2Γ(τ2)ℏ(τ1)Γ(τ1+τ2))‖u−u1‖,|v−v1|≤v5ω5, with v5=(τ2(1−τ1)ℏ(τ1)+τ1τ2Γ(τ2)ℏ(τ1)Γ(τ1+τ2))‖v−v1‖. |
Hence, the results follows.
According to the parameters of our model, the following equation yields the sensitivity index of R0:
ΓR0ω=∂R0∂ω×ωR0, |
where ω is a value from Table 1. Table 1 lists the sensitivity indices of R0. It is easy to verify that
∂R0∂ϱ=[bχ+a(α+η+μ)−(aη(1−q)+b(β+χ+μ))](β+χ+μ)(α+η+μ)−η(1−q)χ(x0+εy0)=−0.0025<0, |
∂R0∂μ=(aϱ+b(1−ϱ))((β+χ+μ)(α+η+μ)−η(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)−[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](2α+η+μ+β+χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)=1.1058>0, |
∂R0∂α=(aϱ(β+χ+μ)(α+η+μ)−aϱη(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)−[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](β+χ+μ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)=−0.1418<0, |
∂R0∂η=a(ϱ+(1−ϱ)(1−q))((β+χ+μ)(α+η+μ)−η(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)−[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](β+χ+μ−(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)=−0.0662<0, |
∂R0∂β=b(1−ϱ)((β+χ+μ)(α+η+μ)−η(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)−[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](α+η+μ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)=−0.1938<0, |
∂R0∂χ=b((β+χ+μ)(α+η+μ)−η(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)−[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](α+η+μ−η(1−q))((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)=0.0835>0, |
∂R0∂q=−(a(1−ϱ)η)((β+χ+μ)(α+η+μ)−η(1−q)χ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)−[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](ηχ)((β+χ+μ)(α+η+μ)−η(1−q)χ)2(x0+εy0)=−0.0052<0, |
∂R0∂a=(ϱ(α+η+μ)+(1−ϱ)η(1−q))((β+χ+μ)(α+η+μ)−η(1−q)χ)(x0+εy0)=2.2216>0,∂R0∂b=(ϱχ+(1−ϱ)(β+χ+μ))((β+χ+μ)(α+η+μ)−η(1−q)χ)(x0+εy0)=3.9229>0, |
∂R0∂ε=y0[ϱ(bχ+a(α+η+μ))+(1−ϱ)(aη(1−q)+b(β+χ+μ))](β+χ+μ)(α+η+μ)−η(1−q)χ=0.0025>0. |
The sensitivity index of each parameter in the model obtained as in Table 1 by applying (3.5). The sensitivity indexes of Table 1 indicate that \mathscr{R}_0 increases as the parameters \chi , \mu , a , b and \epsilon are increased. In contrast, the values of other parameters are fixed. Based on these indices, it appears that disease endemicity has increased. In contrast, when the parameters \beta , \eta , q , \alpha and \varrho are decreased while the rest of the parameters are maintained, \mathscr{R}_0 decreases.
Atangana-Baleanu fractal-fractional operators are implemented via Lagrangian piecewise interpolation for the proposed model.
As in [82,83], consider system (2.2) in the following case:
\begin{equation*} { }^{\operatorname{z}}\mathscr{D}_{0, \mathtt{t}}^{\tau_{1}} \Psi(\mathtt{t}) = \varLambda(\mathtt{t}, \Psi(\mathtt{t})), \end{equation*} |
subject to ceil function n = [\tau_{1}] and for t\in [0, T] , 0 < \tau_{1}\leq1 with { }^{\operatorname{z}}\mathscr{D}_{0, \mathtt{t}}^{\tau_{1}} \Psi(0) = \Psi^{(\kappa)}_0 , \kappa = 0, 1, 2, ..., n-1 . Volterra's integral equation of system (2.3) is given by
\begin{equation} \begin{aligned} \Psi = \sum\limits_{\kappa = 0}^{n-1}\frac{t^\kappa}{\kappa!}\, \, \Psi^{(\kappa)}_0+\frac{1}{\Gamma(\tau_{1})}\int_{0}^\mathtt{t}(t-\xi)^{\tau_{1}-1}\varLambda(\xi, \Psi(\xi))\, d\xi. \end{aligned} \end{equation} | (4.1) |
It is easy to reconstruct Eq (4.1) by using the product rule for rectangles,
\int_{0}^{t_{n+1}}(t_{n+1}-\xi)^{\tau_{1}-1}\varLambda(\xi, \Psi(\xi))\, d\xi\simeq\sum\limits_{\kappa = 0}^n\, \varPsi_{\kappa, n+1}\varLambda(t_\kappa, \, g_h(t_\kappa)), |
where \mathbb{A}_{\kappa, n+1} is given by
\mathbb{A}_{\kappa, n+1} = \begin{cases} n^{\tau_{1}+1}-(n-\tau_{1})(n+1)^{\tau_{1}}\quad\quad\quad\quad \quad \quad\quad \quad \quad\quad \quad\quad \quad \quad \quad \quad \quad \text{ if }\quad \kappa = 0, \\ (n-\kappa+2)^{\tau_{1}+1}+(n-\kappa)^{\tau_{1}+1} -2(n-\kappa+1)^{\tau_{1}+1}\quad\quad \text{if}\quad 1\leq \kappa\leq n, \\ \quad\quad \quad \quad \quad1\quad\quad \quad \, \, \, \quad \quad \quad \quad \quad \quad\quad\quad\quad\quad \quad \quad\quad \quad \quad \quad \quad \quad \text{if} \quad \kappa = n+1. \end{cases} |
Let \{t_n = nh: n = -k, -k +1, ..., -1, 0, 1, ..., N\} , with h = T/N . Then, (4.1) can be discretized as follows:
\begin{equation} \begin{aligned} \Psi_h(t_{n+1})& = \sum\limits_{\kappa = 0}^{n-1}\frac{t_{n+1}^\kappa}{\kappa!}\Psi^{(\kappa)}_0+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\varLambda(t_{n+1}, \Psi(t_{n+1})) +\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{A}_{\kappa, n+1}\varLambda(t_{n}, \Psi(t_{n})). \end{aligned} \end{equation} | (4.2) |
The predicted value \Psi^p_h(t_{n+1}) is determined as follows:
\begin{equation*} \begin{aligned} \Psi^p_h(t_{n+1})& = \sum\limits_{\kappa = 0}^{\ell-1}\frac{t_{n+1}^\kappa}{\kappa!}\, \, \Psi^{(\kappa)}_0+\frac{1}{\Gamma(\tau_{1})}\sum\limits_{\kappa = 0}^n\, \mathbb{B}_{\kappa, n+1}\varLambda(t_{\kappa}, \Psi(t_{\kappa})), \end{aligned} \end{equation*} |
where
\mathbb{B}_{\kappa, n+1} = \frac{h^{\tau_{1}}}{\tau_{1}}\left((n-\kappa+1)^{\tau_{1}}-(n-\kappa)^{\tau_{1}}\right), \quad\text{if}\quad 1\leq \kappa\leq n. |
According to (4.2), (2.1) is as follows:
\begin{equation*} \begin{aligned} \operatorname{x}_{n+1}& = \operatorname{x}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\left[(1-\mathtt{p})\pi+\phi \operatorname{y}^{p}_{n+1}+\delta \operatorname{v}^{p}_{n+1}-(\vartheta+\mu+\lambda) \operatorname{x}^{p}_{n+1}\right] \\& +\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{A}_{\kappa, n+1}[(1-\mathtt{p})\pi+\phi \operatorname{y}_{\kappa}+\delta w_{\kappa}-(\vartheta+\mu+\lambda) \operatorname{x}_{\kappa}], \\ \operatorname{y}_{n+1}& = \operatorname{y}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\left[\mathtt{p}\pi+\vartheta \operatorname{x}^{p}_{n+1}-(\phi+\mu+\varepsilon\lambda) \operatorname{y}^{p}_{n+1}\right] \\&+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{A}_{\kappa, n+1}[\mathtt{p}\pi+\vartheta \operatorname{x}_{\kappa}-(\phi+\mu+\varepsilon\lambda) \operatorname{y}_{\kappa}], \\ \operatorname{z}_{n+1}& = \operatorname{z}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\left[\varrho\lambda \operatorname{x}^{p}_{n+1}+\varrho\varepsilon\lambda \operatorname{y}^{p}_{n+1}+\eta(1-\operatorname{q}) \operatorname{u}^{p}_{n+1}-(\beta+\chi+\mu) \operatorname{z}^{p}_{n+1}\right] \\& +\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{A}_{\kappa, n+1}[\varrho\lambda \operatorname{x}_{\kappa}+\varrho\varepsilon\lambda \operatorname{y}_{\kappa}+\eta(1-\operatorname{q}) u_{\kappa}-(\beta+\chi+\mu) \operatorname{z}_{\kappa}], \\ \operatorname{u}_{n+1}& = \operatorname{u}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\left[\lambda(1-\varrho) \operatorname{x}^{p}_{n+1}+\varepsilon\lambda(1-\varrho) \operatorname{y}^{p}_{n+1}+\chi \operatorname{z}^{p}_{n+1}-(\alpha+\eta+\mu)\operatorname{u}^{p}_{n+1}\right] \\& +\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{A}_{\kappa, n+1}[\lambda(1-\varrho) \operatorname{x}_{\kappa}+\varepsilon\lambda(1-\varrho) \operatorname{y}_{\kappa}+\chi \operatorname{z}_{\kappa}-(\alpha+\eta+\mu) u_{\kappa}], \\ \operatorname{v}_{n+1}& = \operatorname{v}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\left[\beta \operatorname{z}^{p}_{n+1}+\mathtt{q}\eta \operatorname{u}^{p}_{n+1}-(\delta+\mu) \operatorname{v}^{p}_{n+1}\right] \\&+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{A}_{\kappa, n+1}[\beta \operatorname{z}_{\kappa}+\mathtt{q}\eta u_{\kappa}-(\delta+\mu) w_{\kappa}], \end{aligned} \end{equation*} |
where
\begin{equation*} \begin{aligned} \operatorname{x}^{p}_{n+1}& = \operatorname{x}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{B}_{\kappa, n+1}[(1-\mathtt{p})\pi+\phi \operatorname{y}_{\kappa}+\delta w_{\kappa}-(\vartheta+\mu+\lambda) \operatorname{x}_{\kappa}], \\ \operatorname{y}^{p}_{n+1}& = \operatorname{y}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{B}_{\kappa, n+1}\left[\mathtt{p}\pi+\vartheta \operatorname{x}_{\kappa}-(\phi+\mu+\varepsilon\lambda) \operatorname{y}_{\kappa}\right], \end{aligned} \end{equation*} |
\begin{equation*} \begin{aligned} \operatorname{z}^{p}_{n+1}& = \operatorname{z}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{B}_{\kappa, n+1}\left[\varrho\lambda \operatorname{x}_{\kappa}+\varrho\varepsilon\lambda \operatorname{y}_{\kappa}+\eta(1-\operatorname{q}) u_{\kappa}-(\beta+\chi+\mu) \operatorname{z}_{\kappa}\right], \\ \operatorname{u}^{p}_{n+1}& = \operatorname{u}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{B}_{\kappa, n+1}\left[\lambda(1-\varrho) \operatorname{x}_{\kappa}+\varepsilon\lambda(1-\varrho) \operatorname{y}_{\kappa}+\chi \operatorname{z}_{\kappa}-(\alpha+\eta+\mu) \operatorname{u}_{\kappa}\right], \\ \operatorname{v}^{p}_{n+1}& = \operatorname{v}_{0}+\frac{h^{\tau_{1}}}{\Gamma(\tau_{1}+2)}\sum\limits_{\kappa = 0}^n\, \mathbb{B}_{\kappa, n+1}\left[\beta \operatorname{z}_{\kappa}+\mathtt{q}\eta \operatorname{u}_{\kappa}-(\delta+\mu) \operatorname{v}_{\kappa}\right]. \end{aligned} \end{equation*} |
\begin{equation*} { }^\mathtt{FF-AB} \mathscr{D}_{0, \mathtt{t}}^{\tau_{1}, \tau_{2}} \Psi(\mathtt{t}) = \varLambda(\mathtt{t}, \Psi(\mathtt{t})). \end{equation*} |
The Antangana-Baleanu integral gives us
\begin{aligned} \vartheta(\mathtt{t})& = \Psi(0)+\frac{1-\tau_{1}}{\hbar(\tau_{1})} \varLambda(\mathtt{t}, \Psi(\mathtt{t}))+\frac{\tau_{1}}{\hbar(\tau_{1}) \Gamma( \tau_{1})} \int_{0}^{\mathtt{t}}(\mathtt{t}-\xi)^{\tau_{1}-1} \xi^{\tau_{2}-1} \varLambda(\xi, \Psi(\xi)) d \xi. \end{aligned} |
Replacing \mathtt{t} with \mathtt{t}_{n+1} we have
\begin{aligned} \Psi^{n+1}& = \Psi(0)+\frac{1-\tau_{1}}{\hbar(\tau_{1})} \varLambda\left(\mathtt{t}_{n+1}, \Psi(\mathtt{t})\right) +\frac{\tau_{1}}{\hbar(\tau_{1}) \Gamma( \tau_{1})} \int_{0}^{\mathtt{t}_{n+1}}\left(\mathtt{t}_{n+1}-\xi\right)^{\tau_{1}-1} \xi^{\tau_{2}-1} \varLambda(\xi, \Psi(\xi)) d \xi. \end{aligned} |
Application of the two-step Lagrange polynomial yields
\begin{aligned} \varLambda(\mathtt{t}, (y, \Psi(\mathtt{t}))& = \frac{\left(y-\mathtt{t}_{\xi-1}\right) \varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)}{\mathtt{t}_{\xi}-\mathtt{t}_{\xi-1}}-\frac{\left(y-\mathtt{t}_{\xi}\right) \varLambda\left(\mathtt{t}_{\xi-1}, \Psi\left(\mathtt{t}_{\xi-1}\right)\right.}{\mathtt{t}_{\xi}-\mathtt{t}_{\xi-1}}\\& = \frac{\varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)\left(x-\mathtt{t}_{\xi-1}\right)}{\mathtt{t}_{\xi}-\mathtt{t}_{\xi-1}}-\frac{\varLambda\left(\mathtt{t}_{\xi-1}, \Psi\left(\mathtt{t}_{\xi-1}\right)\left(y-\mathtt{t}_{\xi}\right)\right.}{\mathtt{t}_{\xi}-\mathtt{t}_{\xi-1}}\\& = \frac{\varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)\left(y-\mathtt{t}_{\xi-1}\right)}{h}-\frac{\varLambda\left(\mathtt{t}_{\xi-1}, \Psi\left(\mathtt{t}_{\xi-1}\right)\left(y-\mathtt{t}_{\xi}\right)\right.}{h}. \end{aligned} |
By using the Lagrange polynomial to solve the given problem, we obtain
\begin{aligned} \Psi^{n+1}& = \Psi(0)+\frac{1-\tau_{1}}{\hbar(\tau_{1})} \varLambda(\mathtt{t}, \left(\mathtt{t}_{n}, \Psi\left(\mathtt{t}_{n}\right)\right)\\& +\frac{\tau_{1}}{\hbar(\tau_{1}) \Gamma(\tau_{1})} \sum\limits_{\xi = 1}^{n}\left(\frac{\varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)}{h}\right. \int_{\mathtt{t}_{\xi}}^{\mathtt{t}_{\xi}+1}\left(\xi-\mathtt{t}_{\xi}-1\right)\left(\mathtt{t}_{n+1}-\xi\right)^{\tau_{1}-1} d \xi\\& \left.-\frac{\varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi-1}, \Psi\left(\mathtt{t}_{\xi-1}\right)\right)}{h} \int_{\mathtt{t}_{\xi}}^{\mathtt{t}_{n+1}}\left(\xi-\mathtt{t}_{\xi}\right)\left(\mathtt{t}_{n+1}-\xi\right)^{\tau_{1}-1} d \xi\right). \end{aligned} |
Now, solving the integral we get
\begin{aligned} \Psi^{n+1}& = \Psi(0)+\frac{1-\tau_{1}}{\hbar(\tau_{1})}\varLambda(\mathtt{t}, \left(\mathtt{t}_{n}, \Psi\left(\mathtt{t}_{n}\right)\right)+\frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)\left((n-\xi+1)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\varLambda(\mathtt{t}, \left(\mathtt{t}_{\xi-1}, \Psi_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right]. \end{aligned} |
Now, replacing the value of \varLambda(y, \Psi(\mathtt{t})) , we get
\begin{aligned} \Psi^{n+1}& = \Psi(0)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{1-\tau_{1}}{\hbar(\tau_{1})} \varLambda\left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\varLambda\left(\mathtt{t}_{\xi}, \Psi\left(\mathtt{t}_{\xi}\right)\right)\left((n+1-\xi)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\varLambda\left(\mathtt{t}_{\xi-1}, \Psi_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right]. \end{aligned} |
As a result, the numerical scheme above rewritten as follows:
\begin{aligned} \operatorname{x}^{n+1}& = \operatorname{x}(0)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{1-\tau_{1}}{\hbar(\tau_{1})} \Upsilon_1\left(\mathtt{t}_{\xi}, \operatorname{x}\left(\mathtt{t}_{\xi}\right)\right)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\Upsilon_1\left(\mathtt{t}_{\xi}, \operatorname{x}\left(\mathtt{t}_{\xi}\right)\right)\left((n-\xi+1)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\Upsilon_1\left(\mathtt{t}_{\xi-1}, \operatorname{x}_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right], \end{aligned} |
\begin{aligned} \operatorname{y}^{n+1}& = \operatorname{y}(0)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{1-\tau_{1}}{\hbar(\tau_{1})} \Upsilon_2\left(\mathtt{t}_{\xi}, \operatorname{y}\left(\mathtt{t}_{\xi}\right)\right)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\Upsilon_2\left(\mathtt{t}_{\xi}, \operatorname{y}\left(\mathtt{t}_{\xi}\right)\right)\left((n-\xi+1)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\Upsilon_2\left(\mathtt{t}_{\xi-1}, \operatorname{y}_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right], \end{aligned} |
\begin{aligned} \operatorname{z}^{n+1}& = \operatorname{z}(0)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{1-\tau_{1}}{\hbar(\tau_{1})} \Upsilon_3\left(\mathtt{t}_{\xi}, \operatorname{z}\left(\mathtt{t}_{\xi}\right)\right)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\Upsilon_3\left(\mathtt{t}_{\xi}, \operatorname{z}\left(\mathtt{t}_{\xi}\right)\right)\left((n-\xi+1)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\Upsilon_3\left(\mathtt{t}_{\xi-1}, \operatorname{z}_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right], \end{aligned} |
\begin{aligned} \operatorname{u}^{n+1}& = \operatorname{u}(0)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{1-\tau_{1}}{\hbar(\tau_{1})} \Upsilon_4\left(\mathtt{t}_{\xi}, \operatorname{u}\left(\mathtt{t}_{\xi}\right)\right)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\Upsilon_4\left(\mathtt{t}_{\xi}, \operatorname{u}\left(\mathtt{t}_{\xi}\right)\right)\left((n-\xi+1)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\Upsilon_4\left(\mathtt{t}_{\xi-1}, \operatorname{u}_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right], \end{aligned} |
\begin{aligned} \operatorname{v}^{n+1}& = \operatorname{v}(0)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{1-\tau_{1}}{\hbar(\tau_{1})} \Upsilon_5\left(\mathtt{t}_{\xi}, \operatorname{v}\left(\mathtt{t}_{\xi}\right)\right)+\tau_{2} \mathtt{t}^{\tau_{2}-1} \frac{\tau_{1} h^{\tau_{1}}}{\Gamma\left(\tau_{1}+2\right)}\\& \times \sum\limits_{\xi = 1}^{n}\left[\Upsilon_5\left(\mathtt{t}_{\xi}, \operatorname{v}\left(\mathtt{t}_{\xi}\right)\right)\left((n-\xi+1)^{\tau_{1}}\left(n-\xi+2+\tau_{1}\right)\right.\right. \left.-(n-\xi)^{\tau_{1}}\left(n-\xi+2+2 \tau_{1}\right)\right)\\& \left.-\Upsilon_5\left(\mathtt{t}_{\xi-1}, \operatorname{v}_{\xi-1}\right)\left((n-\xi+1)^{\tau_{1}+1}-\left(n-\xi+1+\tau_{1}\right)(n-\xi)^{\tau_{1}}\right)\right]. \end{aligned} |
Parameters | Sensitivity index |
\beta | -0.4669 |
\eta | -0.3987 |
q | -0.1264 |
\alpha | -0.0973 |
\varrho | -0.0035 |
\chi | 0.0101 |
\mu | 0.1332 |
a | 0.2676 |
b | 0.9450 |
\epsilon | 5.9220\times e^{-04} |
The above analyses are displayed in Figures 2–16, which display the time series of the model (2.1) under the following initial conditions: \operatorname{x}(0) = 8200, \operatorname{y}(0) = 2800, \operatorname{z}(0) = 200, \operatorname{u}(0) = 210, \operatorname{v}(0) = 200 . Figures 2–6 show that the time series of the model (2.1) with different trajectories of infected states tends to zero whenever \operatorname{R}_0 = 0.0083 < 1 . The proposed model was simulated for approximately 100 days for different fractal fractional-order values \tau_1 and \tau_2 . According to these parameters, E_0 = (0.1192, 0.2961, 0, 0, 0) is asymptomatically stable. As predicted, the solutions of (2.1) converge to the unique disease-free equilibrium E_0 . The biological implication is that we need to bring \operatorname{R}_0 to below 1 to ensure a reduction of the disease in the country.
Figures 2–6 show the results of the fractal-fractional Atangana-Baleanu and the Adams-Bashforth-Moulton methods for pneumonia transmission, with (a) \tau_1 = 0.7 , \tau_2 = 0.95 , (b) \tau_1 = 0.75 , \tau_2 = 0.95 , (c) \tau_1 = 0.85 , \tau_2 = 0.95 (d) \tau_1 = 0.95 , \tau_2 = 0.95 and (e) \tau_1 = 1 , \tau_2 = 0.95 . Comparisons between the ordinary differential system, ABC fractal, and fractional derivative, can also be seen in Figures 2–6.
Figures 2–6 show the influence of varying \tau_{1} between 0.7 and 1 with a fixed \tau_{2} = 0.95 on model dynamics. The black curve in each of these figures represents the numerical results of model (2.1) when the fractional order is equal to 1. From the results of Figures 2–6, it follows that the variation of the fractional parameter has a great impact on the quantitative dynamics of the model. Indeed, in Figure 5, the classes of infected humans peak after 10 years and decrease according to the decrease of the fractional parameter \tau_{1} .
Lemmas 2 and 3 are validated numerically in Figures 2–6. It is clear that varying the fractional order parameter \tau_{1} does not influence the model dynamics whenever \mathscr{R}_{0} = 0.0083 < 1 . Indeed, whatever the value of \tau_{1} , the infected compartments tend to zero asymptotically whenever \mathscr{R}_{0} = 0.0083 < 1 . This validates the fact that the pneumonia-free equilibrium of the fractional model is globally asymptotically stable whenever \mathscr{R}_{0} = 0.0083 < 1 .
Figures 7–11 show the phase plots ( \operatorname{x}-\operatorname{y}-\operatorname{z}-\operatorname{u}-\operatorname{v} ) for different values, i.e., (a) \tau_1 = 0.7 , \tau_2 = 0.95 , (b) \tau_1 = 0.75 , \tau_2 = 0.95 , (c) \tau_1 = 0.85 , \tau_2 = 0.95 (d) \tau_1 = 0.95 , \tau_2 = 0.95 and (e) \tau_1 = 1 , \tau_2 = 0.95 .
Comparison between ordinary differential system, ABC, ABC fractal fractional derivative schemes can be seen in Figures 12–16.
A fractal fractional-order mathematical model based on the Atangana-Baleanu operator was constructed to describe pneumonia transmission in a population. The Caputo operator was used to analyze the dynamics of the virus, and a fractal fractional derivative was used to maximize the number of recovered populations. For models of infectious diseases, the vaccination rate coefficient is considered as a control to reduce the disease burden. It is important to prove the existence of optimal control, characterize the optimal control, prove the uniqueness of optimal control and compute the optimal control numerically. The model was subjected to dynamic analysis, and the results show that the rate at which susceptible individuals contract an infectious disease is the most significant parameter. In this simulation, the value of \mathscr{R}_{0} = 0.0083 < 1 , which is smaller than 1. As you can see, disease spread is controlled, and the number of infected people is reduced to zero. We also see that each function tends to its equilibrium point, and that the equilibrium point becomes stable as the system approaches its equilibrium point. We also note that the total number of susceptible humans decreases rapidly according to the increase of the fractional parameter (Figure 2).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, for the financial support for this research under grant number (37622-BSRC-FFT-2023) during the academic year 1445 AH/2023 AD.
The authors declare that they have no conflict of interest.
[1] |
A. Melegaro, N. J. Gay, G. F. Medley, Estimating the transmission parameters of pneumococcal carriage in households, Epidemiol Infect., 132 (2004), 433–441. https://doi.org/10.1017/s0950268804001980 doi: 10.1017/s0950268804001980
![]() |
[2] | E. Joseph, Mathematical analysis of prevention and control strategies of pneumonia in adults and children, University of Dar es Salaam, 2012. |
[3] | D. Ssebuliba, Mathematical modelling of the effectiveness of two training interventions on infectious diseases in Uganda, PhD Thesis, Stellenbosch University, 2013. |
[4] |
J. Ong'ala, J. Y. T. Mugisha, P. Oleche, Mathematical model for Pneumonia dynamics with carriers, Int. J. Math. Anal., 7 (2013), 2457–2473. https://doi.org/10.12988/ijma.2013.35109 doi: 10.12988/ijma.2013.35109
![]() |
[5] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
![]() |
[6] |
G. T. Tilahun, O. D. Makinde, D. Malonza, Modelling and optimal control of pneumonia disease with cost-effective strategies, J. Biol. Dynam., 11 (2017), 400–426. https://doi.org/10.1080/17513758.2017.1337245. doi: 10.1080/17513758.2017.1337245
![]() |
[7] |
G. T. Tilahun, O. D. Makinde, D. Malonza, Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis, Appl. Math. Comput., 316 (2018), 438–459. https://doi.org/10.1016/j.amc.2017.07.063 doi: 10.1016/j.amc.2017.07.063
![]() |
[8] |
S. Saber, A. M. Alghamdi, G. A. Ahmed, K. M. Alshehri, Mathematical modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies, AIMS Mathematics, 7 (2022), 12011–12049. https://doi.org/10.3934/math.2022669 doi: 10.3934/math.2022669
![]() |
[9] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[10] |
P. A. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus, 135 (2020), 795. https://doi.org/10.1140/epjp/s13360-020-00819-5 doi: 10.1140/epjp/s13360-020-00819-5
![]() |
[11] |
M. H. Alshehri, S. Saber, F. Z. Duraihem, Dynamical analysis of fractional-order of IVGTT glucose-insulin interaction, Int. J. Nonlin. Sci. Num., 24 (2023), 1123–1140. https://doi.org/10.1515/ijnsns-2020-0201 doi: 10.1515/ijnsns-2020-0201
![]() |
[12] |
M. H. Alshehri, F. Z. Duraihem, A. Alalyani, S. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: Numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197
![]() |
[13] |
S. Saber, A. Alalyani, Stability analysis and numerical simulations of IVGTT glucose-insulin interaction models with two time delays, Math. Model. Anal., 27 (2022), 383–407. https://doi.org/10.3846/mma.2022.14007 doi: 10.3846/mma.2022.14007
![]() |
[14] |
A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlin. Sci. Num., 24 (2023), 989–1002. https://doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042
![]() |
[15] |
N. Almutairi, S. Saber, Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives, AIMS Mathematics, 8 (2023), 25863–25887. https://doi.org/10.3934/math.20231319. doi: 10.3934/math.20231319
![]() |
[16] |
K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: mdified minimal model, Alex. Eng. J., 80 (2023), 74–87. https://doi.org/10.1016/j.aej.2023.07.050 doi: 10.1016/j.aej.2023.07.050
![]() |
[17] |
K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Applications of fractal-fractional derivatives in the sense of Atangana-Baleanu, Results Phys., 2023 (2023), 106892. https://doi.org/10.1016/j.rinp.2023.106892 doi: 10.1016/j.rinp.2023.106892
![]() |
[18] | S. Saber, N. Almutairi, Chaos in a nonlinear Lorentz-Lü-Chen system via the fractal fractional operator of Atangana-Baleanu, submitted for publication. |
[19] |
D. Baleanu, B. Shiri, Generalized fractional differential equations for past dynamic, AIMS Mathematics, 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 doi: 10.3934/math.2022793
![]() |
[20] |
B. Shiri, G. C. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. https://doi.org/10.1016/j.apnum.2021.06.015 doi: 10.1016/j.apnum.2021.06.015
![]() |
[21] |
B. Shiri, D. Baleanu, All linear fractional derivatives with power functions' convolution kernel and interpolation properties, Chaos Soliton. Fract., 170 (2023), 113399. https://doi.org/10.1016/j.chaos.2023.113399. doi: 10.1016/j.chaos.2023.113399
![]() |
[22] |
C. Xu, D. Mu, Y. Pan, C. Aouiti, L. Yao, Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Anal. Comput., 13 (2023), 1119–1136. https://doi.org/10.11948/20210313 doi: 10.11948/20210313
![]() |
[23] |
C. Xu, D. Mu, Z. Liu, Y. Pang, C. Aouitid, O. Tun, et al., Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model, Match Commun. Math. Co., 89 (2023), 73–106. https://doi.org/10.46793/match.89-1.073X doi: 10.46793/match.89-1.073X
![]() |
[24] |
P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cogn. Comput., 2023 (2023), 02. https://doi.org/10.1007/s12559-023-10155-2 doi: 10.1007/s12559-023-10155-2
![]() |
[25] |
P. Li, R. Gao, C. Xu, S. Ahmad, Y. Li, A. Akgul, Bifurcation behavior and PD^\gamma control mechanism of a fractional delayed genetic regulatory model. Chaos Soliton. Fract., 168 (2023), 113219. https://doi.org/10.1016/j.chaos.2023.113219 doi: 10.1016/j.chaos.2023.113219
![]() |
[26] |
P. A. Naik, Global dynamics of a fractional-order SIR epidemic model with memory, Int. J. Biomath., 13 (2020), 2050071. https://doi.org/10.1142/S1793524520500710 doi: 10.1142/S1793524520500710
![]() |
[27] |
M. B. Ghori, P. A. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Method. Appl. Sci., 45 (2022), 3665–3688. https://doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
![]() |
[28] |
A. Ahmad, M. Farman, P. A. Naik, N. Zafar, A. Akgul, M. U. Saleem, Modeling and numerical investigation of fractional-order bovine babesiosis disease, Numer. Meth. Part. D. E., 37 (2021), 1946–1964. https://doi.org/10.1002/num.22632 doi: 10.1002/num.22632
![]() |
[29] |
M. Farman, A. Akgül, T. Abdeljawad, P. A. Naik, N. Bukhari, A. Ahmad, Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 2062–2073. https://doi.org/10.1016/j.aej.2021.07.040 doi: 10.1016/j.aej.2021.07.040
![]() |
[30] |
P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Soliton. Fract., 140 (2020), 110272. https://doi.org/10.1016/j.chaos.2020.110272 doi: 10.1016/j.chaos.2020.110272
![]() |
[31] |
H. Khan, J. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 3786–3806. https://doi.org/10.1002/mma.6155. doi: 10.1002/mma.6155
![]() |
[32] |
H. Khan, F. Jarad, T. Abdeljawad, A. Khan, A singular ABC-fractional differential equation with p-Laplacian operator, Chaos Soliton. Fract., 129 (2019), 56–61. https://doi.org/10.1016/j.chaos.2019.08.017 doi: 10.1016/j.chaos.2019.08.017
![]() |
[33] |
A. Atangana, E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Adv. Differ. Equ., 94 (2013), 94. https://doi.org/10.1186/1687-1847-2013-94 doi: 10.1186/1687-1847-2013-94
![]() |
[34] |
S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 631419. https://doi.org/10.1155/2014/631419 doi: 10.1155/2014/631419
![]() |
[35] |
H. Li, L. Zhang, C. Hu, Y. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2016), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
![]() |
[36] |
A. Omame, M. Abbas, A. Abdel-Aty, Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives, Chaos Soliton. Fract., 162 (2022), 112427. https://doi.org/10.1016/j.chaos.2022.112427 doi: 10.1016/j.chaos.2022.112427
![]() |
[37] |
D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2000), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
![]() |
[38] |
D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. A. Ghassabzade, M. Wali, Dynamical behaviours and stability analysis of a generalized fractional model with a real case study, J. Adv. Res., 48 (2023), 157–173. https://doi.org/10.1016/j.jare.2022.08.010 doi: 10.1016/j.jare.2022.08.010
![]() |
[39] |
H. Delvari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order non-linear systems revisited, Nonlinear Dyn., 67 (2012), 2433–2439. https://doi.org/10.1007/s11071-011-0157-5 doi: 10.1007/s11071-011-0157-5
![]() |
[40] |
D. Baleanu, M. Hasanabadi, A. M. Vaziri, A. Jajarmi, A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach, Chaos Soliton. Fract., 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078 doi: 10.1016/j.chaos.2022.113078
![]() |
[41] |
A. Akgul, A novel method for a fractional derivative with non-local and nonsingular kernel, Chaos Soliton. Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032
![]() |
[42] |
A. Akgul, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton. Fract., 127 (2019), 10–16. https://doi.org/10.1016/j.chaos.2019.06.011 doi: 10.1016/j.chaos.2019.06.011
![]() |
[43] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[44] |
M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
![]() |
[45] |
S. A. Jose, R. Ramachandran, D. Baleanu, H. S. Panigoro, J. Alzabut, V. E. Balas, Computational dynamics of a fractional order substance addictions transfer model with Atangana-Baleanu-Caputo derivative, Math. Method. Appl. Sci., 46 (2023), 5060–5085. https://doi.org/10.1002/mma.8818 doi: 10.1002/mma.8818
![]() |
[46] |
A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
![]() |
[47] |
M. Caputo, Linear model of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
![]() |
[48] |
S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 631419. https://doi.org/10.1155/2014/631419 doi: 10.1155/2014/631419
![]() |
[49] |
P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[50] |
S. Baba, O. D. Makinde, Optimal control of HIV/AIDS in the workplace in the presence of careless individuals, Comput. Math. Method. M., 2014 (2014), 831506. https://doi.org/10.1155/2014/831506 doi: 10.1155/2014/831506
![]() |
[51] |
S. Uçar, E. Uçar, N. Özdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Soliton. Fract., 118 (2019), 300–306, https://doi.org/10.1016/j.chaos.2018.12.003 doi: 10.1016/j.chaos.2018.12.003
![]() |
[52] |
M. Al-Refai, K. Pal, New aspects of Caputo-Fabrizio fractional derivative, Progr. Fract. Differ. Appl., 5 (2019), 157–166. https://doi.org/10.18576/pfda/050206 doi: 10.18576/pfda/050206
![]() |
[53] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[54] |
A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chao Soliton. Fract., 123 (2019), 320–337, https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020
![]() |
[55] |
S. Uçar, Analysis of hepatitis B disease with fractal-fractional Caputo derivative using real data from Turkey, J. Comput. Appl. Math., 419 (2023), 114692, https://doi.org/10.1016/j.cam.2022.114692 doi: 10.1016/j.cam.2022.114692
![]() |
[56] |
I. Koca, Modeling the heat flow equation with fractional-fractal differentiation, Chaos Soliton. Fract., 128 (2019), 83–91. https://doi.org/10.1016/j.chaos.2019.07.014 doi: 10.1016/j.chaos.2019.07.014
![]() |
[57] |
Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
![]() |
[58] |
L. Zhang, M. ur Rahman, H. Qu, M. Arfan, Adnan, Fractal-fractional Anthroponotic Cutaneous Leishmania model study in sense of Caputo derivative, Alex. Eng. J., 61 (2022), 4423–4433, https://doi.org/10.1016/j.aej.2021.10.001 doi: 10.1016/j.aej.2021.10.001
![]() |
[59] |
H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simulat., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009
![]() |
[60] |
J. K. K. Asamoah, Fractal-fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana Baleanu derivative, Results Phys., 34 (2022), 105189. https://doi.org/10.1016/j.rinp.2022.105189 doi: 10.1016/j.rinp.2022.105189
![]() |
[61] |
K. M. Saad, M. Alqhtani, J. F. Gomez-Aguilar, Fractal-fractional study of the hepatitis C virus infection model, Results Phys., 19 (2020), 103555. https://doi.org/10.1016/j.rinp.2020.103555 doi: 10.1016/j.rinp.2020.103555
![]() |
[62] |
S. Etemad, I. Avcı, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Soliton. Fract., 162 (2020), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
![]() |
[63] |
H. Khan, J. Alzabut, A. Shah, S. Etemad, S. Rezapour, C. Park, A study on the fractal-fractional tobacco smoking model, AIMS Mathematics, 7 (2022), 13887–13909. https://doi.org/10.3934/math.2022767 doi: 10.3934/math.2022767
![]() |
[64] |
H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
![]() |
[65] |
S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Soliton. Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
![]() |
[66] |
A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
![]() |
[67] |
H. Khan, F. Ahmad, O. Tunç, M. Idrees, On fractal-fractional Covid-19 mathematical model, Chaos Soliton. Fract., 157 (2022), 111937. https://doi.org/10.1016/j.chaos.2022.111937. doi: 10.1016/j.chaos.2022.111937
![]() |
[68] |
K. A. Abro, A. Atangana, Numerical and mathematical analysis of induction motor by means of AB-fractal-fractional differentiation actuated by drilling system, Numer. Methods Partial Differential Eq., 38 (2022), 293–307. https://doi.org/10.1002/num.22618 doi: 10.1002/num.22618
![]() |
[69] |
K. M. Owolabi, A. Atangana, A. Akgul, Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion model, Alex. Eng. J., 59 (2020), 2477–2490. https://doi.org/10.1016/j.aej.2020.03.022 doi: 10.1016/j.aej.2020.03.022
![]() |
[70] | A. Atangana, A. Akgul, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://api.semanticscholar.org/CorpusID:212831086 |
[71] | K. M. Owolabi, A. Shikongo, A. Atangana, Fractal fractional derivative operator method on MCF-7 cell line dynamics, In: Methods of mathematical modelling and computation for complex systems, Cham: Springer, 2022,319–339. https://doi.org/10.1016/j.aej.2021.10.001 |
[72] |
S. Qureshi, A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Soliton. Fract., 136 (2020), 109812. https://doi.org/10.1016/j.chaos.2020.109812 doi: 10.1016/j.chaos.2020.109812
![]() |
[73] |
K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour, M. Ferrara, Fractal-fractional mathematical model addressing the situation of Corona virus in Pakistan, Results Phys., 19 (2020), 103560. https://doi.org/10.1016/j.rinp.2020.103560 doi: 10.1016/j.rinp.2020.103560
![]() |
[74] |
K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: modified minimal model, Alex. Eng. J., 80 (2023), 74–87. https://doi.org/10.1016/j.aej.2023.07.050 doi: 10.1016/j.aej.2023.07.050
![]() |
[75] |
K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Applications of fractal-fractional derivatives in the sense of Atangana-Baleanu, Results Phys., 2023 (2023), 106892. https://doi.org/10.1016/j.rinp.2023.106892 doi: 10.1016/j.rinp.2023.106892
![]() |
[76] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
![]() |
[77] |
K. A. Abro, A. Atangana, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations, Eur. Phys. J. Plus, 135 (2020), 226. https://doi.org/10.1140/epjp/s13360-020-00136-x doi: 10.1140/epjp/s13360-020-00136-x
![]() |
[78] |
P. Li, L. Han, C. Xu, X. Peng, M. ur Rahman, S. Shi, Dynamical properties of a meminductor chaotic system with fractal-fractional power law operator, Chaos Soliton. Fract., 175 (2023), 114040. https://doi.org/10.1016/j.chaos.2023.114040 doi: 10.1016/j.chaos.2023.114040
![]() |
[79] |
A. Jamal, A. Ullah, S. Ahmad, S. Sarwar, A. Shokri, A survey of (2+1)-dimensional KdV-mKdV equation using nonlocal Caputo fractal-fractional operator, Results Phys., 46 (2023), 106294. https://doi.org/10.1016/j.rinp.2023.106294 doi: 10.1016/j.rinp.2023.106294
![]() |
[80] | S. M. Ulam, A collection of mathematical problems, New York: Interscience, 1960. |
[81] | S. M. Ulam, Problems in modern mathematics, London: Dover Publications, 2004. |
[82] |
Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007) 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
![]() |
[83] | Z. M. Odibat, S. M. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Informatics, 26 (2008), 15–27. |
1. | Muflih Alhazmi, Comparing the Numerical Solution of Fractional Glucose–Insulin Systems Using Generalized Euler Method in Sense of Caputo, Caputo–Fabrizio and Atangana–Baleanu, 2024, 16, 2073-8994, 919, 10.3390/sym16070919 | |
2. | Khalid I.A. Ahmed, Haroon D.S. Adam, Najat Almutairi, Sayed Saber, Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients, 2024, 56, 22113797, 107311, 10.1016/j.rinp.2023.107311 | |
3. | Kottakkaran Sooppy Nisar, Muhammad Farman, Khadija Jamil, Ali Akgul, Saba Jamil, Onder Tutsoy, Computational and stability analysis of Ebola virus epidemic model with piecewise hybrid fractional operator, 2024, 19, 1932-6203, e0298620, 10.1371/journal.pone.0298620 | |
4. | Najat Almutairi, Sayed Saber, Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials, 2024, 12, 22150161, 102510, 10.1016/j.mex.2023.102510 | |
5. | Najat Almutairi, Sayed Saber, On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-Fabrizio derivatives, 2023, 13, 2045-2322, 10.1038/s41598-023-49541-z | |
6. | Saba Jamil, Abdul Bariq, Muhammad Farman, Kottakkaran Sooppy Nisar, Ali Akgül, Muhammad Umer Saleem, Qualitative analysis and chaotic behavior of respiratory syncytial virus infection in human with fractional operator, 2024, 14, 2045-2322, 10.1038/s41598-023-51121-0 | |
7. | Salem Mubarak Alzahrani, Statistical methods for the computation and parameter estimation of a fractional SIRC model with Salmonella infection, 2024, 10, 24058440, e30885, 10.1016/j.heliyon.2024.e30885 | |
8. | Munkaila Dasumani, Binandam S. Lassong, Ali Akgül, Shaibu Osman, Stephen E. Moore, Analyzing the dynamics of human papillomavirus transmission via fractal and fractional dimensions under Mittag-Leffler Law, 2024, 2363-6203, 10.1007/s40808-024-02143-8 | |
9. | Najat Almutairi, Sayed Saber, Existence of chaos and the approximate solution of the Lorenz–Lü–Chen system with the Caputo fractional operator, 2024, 14, 2158-3226, 10.1063/5.0185906 | |
10. | Maryam Batool, Muhammad Farman, Aqeel Ahmad, Kottakkaran Sooppy Nisar, Mathematical study of polycystic ovarian syndrome disease including medication treatment mechanism for infertility in women, 2024, 11, 2327-8994, 19, 10.3934/publichealth.2024002 | |
11. | Syeda Alishwa Zanib, Muzamil Abbas Shah, A piecewise nonlinear fractional-order analysis of tumor dynamics: estrogen effects and sensitivity, 2024, 10, 2363-6203, 6155, 10.1007/s40808-024-02094-0 | |
12. | Zulqurnain Sabir, M.M. Babatin, Atef F. Hashem, M.A. Abdelkawy, Soheil Salahshour, Muhammad Umar, Design of stochastic neural networks for the fifth order system of singular engineering model, 2024, 133, 09521976, 108141, 10.1016/j.engappai.2024.108141 | |
13. | Amer Alsulami, Rasmiyah Alharb, Tahani Albogami, Nidal Eljaneid, Haroon Adam, Sayed Saber, Controlled chaos of a fractal-fractional Newton-Leipnik system, 2024, 28, 0354-9836, 5153, 10.2298/TSCI2406153A | |
14. | Najat Almutairi, An application of fractal fractional operators to non-linear Chen systems, 2024, 28, 0354-9836, 5169, 10.2298/TSCI2406169A | |
15. | Mohamed A. Abdoon, Rania Saadeh, Mohammed Berir, Dalal Khalid Almutairi, 2025, 9780443300127, 157, 10.1016/B978-0-44-330012-7.00019-9 | |
16. | Ghaliah Alhamzi, Arun Chaudhary, Shivani Sharma, Ravi Shanker Dubey, Badr Saad T. Alkahtani, Characterizing the behavior of solutions in a fractal-fractional model of bovine brucellosis in cattle, 2025, 33, 2769-0911, 10.1080/27690911.2025.2458619 | |
17. | Mohammed Althubyani, Sayed Saber, Hyers–Ulam Stability of Fractal–Fractional Computer Virus Models with the Atangana–Baleanu Operator, 2025, 9, 2504-3110, 158, 10.3390/fractalfract9030158 | |
18. | Muflih Alhazmi, Sayed Saber, Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana–Baleanu fractal-fractional derivatives, 2025, 122, 11100168, 77, 10.1016/j.aej.2025.02.066 | |
19. | A. E. Matouk, Chaos and hidden chaos in a 4D dynamical system using the fractal-fractional operators, 2025, 10, 2473-6988, 6233, 10.3934/math.2025284 | |
20. | Sayed Saber, Safa M. Mirgani, Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: stability and chaotic behavior, 2025, 14, 2314-8543, 10.1186/s43088-025-00608-y | |
21. | Sayed Saber, Emad Solouma, The Generalized Euler Method for Analyzing Zoonotic Disease Dynamics in Baboon–Human Populations, 2025, 17, 2073-8994, 541, 10.3390/sym17040541 | |
22. | Haroon D. S. Adam, Mohammed Althubyani, Safa M. Mirgani, Sayed Saber, An application of Newton’s interpolation polynomials to the zoonotic disease transmission between humans and baboons system based on a time-fractal fractional derivative with a power-law kernel, 2025, 15, 2158-3226, 10.1063/5.0253869 | |
23. | Mohammed Althubyani, Haroon D. S. Adam, Ahmad Alalyani, Nidal E. Taha, Khdija O. Taha, Rasmiyah A. Alharbi, Sayed Saber, Understanding zoonotic disease spread with a fractional order epidemic model, 2025, 15, 2045-2322, 10.1038/s41598-025-95943-6 | |
24. | Sayed Saber, Safa M. Mirgani, Numerical analysis and stability of a fractional glucose–insulin regulatory system using the laplace residual power series method incorporating the Atangana–Baleanu derivative, 2025, 16, 1793-9623, 10.1142/S1793962325500308 | |
25. | Asaf Khan, Gauhar Ali, Abdul Khaliq, Gul Zaman, Mathematical Modeling and Dynamical Aspects of the Co-Infection of Buruli Ulcer and Cholera, 2025, 1016-2526, 414, 10.52280/pujm.2024.56(8)02 |
Parameters symbols | Description | Source | Values |
k | The contact rate | Estimated | 0.5 |
\epsilon | The transmission coefficient for the carrier | [2] | 0.002 |
\tau | The probability that a contact causes infection | [2] | 0.89-0.99 |
\phi | The rate of the susceptible class increased | ||
from the vaccinated class | [6] | 0.0025 | |
\psi | The proportion of the serotype | ||
not covered by the vaccine | Assumed | 0.2 | |
\delta | The rate at which individuals in the recovery | ||
class lose their temporary immunity | [2] | 0.1 | |
\chi | The rate of infection | [2] | 0.001-0.01096 |
p | The rate at which a fraction of the population | ||
was vaccinated before the disease outbreak | [2] | 0.2 | |
\vartheta | The rate of population movement | ||
from the susceptible class to the vaccinated class | Assumed | 0.008 | |
\mu | The natural death rate of the | ||
population in all compartments | Estimated | 0.01 | |
\alpha | The rate of dying from the disease | Estimated | 0.0057 |
\Theta | \Theta=k\tau | [6] | 0.05 |
\beta | Recovery rate after gaining immunity | [6] | 0.0115 |
\eta | Treatment rate per capita in the infected | ||
class moving to the recovered compartment | [6] | 0.2 | |
q | Treatment efficacy | [6] | 0.5-1 |
\Upsilon | The infection force | Assumed | 1.2 |
Parameters | Sensitivity index |
\beta | -0.4669 |
\eta | -0.3987 |
q | -0.1264 |
\alpha | -0.0973 |
\varrho | -0.0035 |
\chi | 0.0101 |
\mu | 0.1332 |
a | 0.2676 |
b | 0.9450 |
\epsilon | 5.9220\times e^{-04} |
Parameters symbols | Description | Source | Values |
k | The contact rate | Estimated | 0.5 |
\epsilon | The transmission coefficient for the carrier | [2] | 0.002 |
\tau | The probability that a contact causes infection | [2] | 0.89-0.99 |
\phi | The rate of the susceptible class increased | ||
from the vaccinated class | [6] | 0.0025 | |
\psi | The proportion of the serotype | ||
not covered by the vaccine | Assumed | 0.2 | |
\delta | The rate at which individuals in the recovery | ||
class lose their temporary immunity | [2] | 0.1 | |
\chi | The rate of infection | [2] | 0.001-0.01096 |
p | The rate at which a fraction of the population | ||
was vaccinated before the disease outbreak | [2] | 0.2 | |
\vartheta | The rate of population movement | ||
from the susceptible class to the vaccinated class | Assumed | 0.008 | |
\mu | The natural death rate of the | ||
population in all compartments | Estimated | 0.01 | |
\alpha | The rate of dying from the disease | Estimated | 0.0057 |
\Theta | \Theta=k\tau | [6] | 0.05 |
\beta | Recovery rate after gaining immunity | [6] | 0.0115 |
\eta | Treatment rate per capita in the infected | ||
class moving to the recovered compartment | [6] | 0.2 | |
q | Treatment efficacy | [6] | 0.5-1 |
\Upsilon | The infection force | Assumed | 1.2 |
Parameters | Sensitivity index |
\beta | -0.4669 |
\eta | -0.3987 |
q | -0.1264 |
\alpha | -0.0973 |
\varrho | -0.0035 |
\chi | 0.0101 |
\mu | 0.1332 |
a | 0.2676 |
b | 0.9450 |
\epsilon | 5.9220\times e^{-04} |