Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems

  • Received: 03 January 2023 Revised: 14 June 2023 Accepted: 19 June 2023 Published: 06 July 2023
  • MSC : 65D17, 65D30

  • Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.

    Citation: Lina Zhang, Xiaoting Rui, Jianshu Zhang, Guoping Wang, Junjie Gu, Xizhe Zhang. A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems[J]. AIMS Mathematics, 2023, 8(9): 21501-21530. doi: 10.3934/math.20231096

    Related Papers:

    [1] Zhuonan Wu, Zengtai Gong . Algebraic structure of some complex intuitionistic fuzzy subgroups and their homomorphism. AIMS Mathematics, 2025, 10(2): 4067-4091. doi: 10.3934/math.2025189
    [2] Doaa Al-Sharoa . (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409
    [3] Muhammad Jawad, Niat Nigar, Sarka Hoskova-Mayerova, Bijan Davvaz, Muhammad Haris Mateen . Fundamental theorems of group isomorphism under the framework of complex intuitionistic fuzzy set. AIMS Mathematics, 2025, 10(1): 1900-1920. doi: 10.3934/math.2025088
    [4] Aneeza Imtiaz, Hanan Alolaiyan, Umer Shuaib, Abdul Razaq, Jia-Bao Liu . Applications of conjunctive complex fuzzy subgroups to Sylow theory. AIMS Mathematics, 2024, 9(1): 38-54. doi: 10.3934/math.2024003
    [5] Aneeza Imtiaz, Umer Shuaib . On conjunctive complex fuzzification of Lagrange's theorem of ξ−CFSG. AIMS Mathematics, 2023, 8(8): 18881-18897. doi: 10.3934/math.2023961
    [6] Adeel Farooq, Musawwar Hussain, Muhammad Yousaf, Ahmad N. Al-Kenani . A new algorithm to compute fuzzy subgroups of a finite group. AIMS Mathematics, 2023, 8(9): 20802-20814. doi: 10.3934/math.20231060
    [7] Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the fuzzification of Lagrange's theorem in (α,β)-Pythagorean fuzzy environment. AIMS Mathematics, 2021, 6(9): 9290-9308. doi: 10.3934/math.2021540
    [8] Wen Li, Deyi Li, Yuqiang Feng, Du Zou . Existence and stability of fuzzy Pareto-Nash equilibria for fuzzy constrained multi-objective games with fuzzy payoffs. AIMS Mathematics, 2023, 8(7): 15907-15931. doi: 10.3934/math.2023812
    [9] Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the characterization of Pythagorean fuzzy subgroups. AIMS Mathematics, 2021, 6(1): 962-978. doi: 10.3934/math.2021058
    [10] Tareq M. Al-shami, Salem Saleh, Alaa M. Abd El-latif, Abdelwaheb Mhemdi . Novel categories of spaces in the frame of fuzzy soft topologies. AIMS Mathematics, 2024, 9(3): 6305-6320. doi: 10.3934/math.2024307
  • Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.



    Numerous applications of algebraic theory can be found not only in theoretic and practical mathematics such as game theory, algebraic geometry, etc. but also in other scientific disciplines like physics, genetics, and engineering. Group theory is a fundamental branch of algebra that investigates the properties and structures of various groups. It plays a central role in various areas of mathematics, such as physics, chemistry, and computer science, including cryptography, algebraic geometry, algebraic number theory, harmonic analysis, etc.[1,2,3,4,5,6,7]. Life is filled with unpredictability, which is impossible to avoid. This universe is also not built on accurate measurements or suppositions. Sometimes, the classical mathematical framework of probability is unable to handle every situation. The novel idea of fuzzy sets introduced by Zadeh [8], is briefly explained by the uncertainty, vagueness, and ambiguity of data. A wide range of academics from other disciplines have used this idea because it was so inspirational. By taking fuzzy sets and logic into consideration, a number of novel theories are developed in parallel with traditional approaches. In 1970, Rosenfeld [9] proposed the fuzzy concepts into group theory, and classified the outcomes as fuzzy subgroup. The discussion of the fuzzy subgroups, fuzzy quotient groups, and fuzzy normal subgroups are also done in this research work. Ray [10] pioneered the idea of cartesian product of a the fuzzy subgroups. In 1986, Atanassov [11] published his first article on intuitionistic fuzzy (IF) sets, which is an extension of fuzzy sets, and introduced certain operations, like subtraction, addition, composition union, and intersection under the influence of the intuitionistic fuzzy set. Biswas introducced the IF subgroup with basic findings [12], and Sharma investigated some fundamental results of the IF subgroup. Also, IF homomorphism is under the influence of group theory [13,14].

    Gulzar et al.[15] established a new category of t-IF-subgroups. The explanation of the t-IF centralizer, normalizer, and t-intuitionistic Abelian subgroups are also discussed. Intuitionistic fuzzy set techniques have acquired importance over fuzzy set techniques in recent years throughout a number of technical fields. The distance measurements approach is used in a variety of applications of IF sets. Researcher have used IF sets in a variety of situations in clinical diagnosis, medical application, etc. It plays a very important role in engineering issues, professional selection, real-life issues, and education. In 2001, Supriya et al. [16,17,18] studied the Sanchez's approach for medical diagnosis and extended this theory with the notion of the IF set theory.

    Biswas [19] presented the principle of anti-fuzzy subgroups and initiated the fundamental algebraic structures. The fundamental results of anti-fuzzy subgroup are discussed and the relationships between complements of fuzzy subgroup and anti-fuzzy subgroup are also addressed [20]. In 2013, Azam et al.[21] introduced a few basic operations and structures of anti-fuzzy ideals of ring. Gang [22] introduced the factor rings and investigated some results. In 1999, Kim and Jun [23] developed the novel idea of anti fuzzy R-subgroups of near rings, and Kim et al.[24] initiated the anti-fuzzy ideals in near rings, discussed basic algebraic properties, and established the relation between the near rings and anti-fuzzy sets. Sharma [25] developed the definition of α-anti fuzzy subgroup and explored the fundamental algebraic structure of the α-anti-fuzzy subgroup. In addition, the techniques of the α-anti-fuzzy normal subgroups and quotient group of α-anti-fuzzy cosets are also explained. In 2022, Razaq [26] introduced the concept of Pythagorean fuzzy normal subgroups, Pythagorean fuzzy isomorphism, and developed the basic characteristics of Pythagorean fuzzy normal subgroups and proved the fascinating results of Pythagorean fuzzy isomorphism. Moreover, they looked at the concept of Pythagorean fuzzy ideas and investigated some results [27]. Xiao et. al [28] presented the q-ROFDM model with new score function, and the best-worst methods for manufacturer selection also discussed the fuzzy criteria weights, and several comparisons are conducted to illustrate the developed model.

    Sharma [29] applied the fundamental properties of group theory to the (α,β)-anti fuzzy set and introduced the (α,β)-anti-fuzzy subgroup, which is an extension of the (α,β)-anti fuzzy set. They also, demonstrated the basics of the result of the (α,β)-anti-fuzzy subgroup and certain features of this ideology are discussed. Moreover, they investigated the homomorphic images and pre-images of certain group. Wan et al. [30] presented the method for interactive and complementary feature selection via fuzzy multigranularity uncertainty measures and compared them with the benchmark approaches on several datasets.

    Further, changes in the process (periodicity) of the data overlap with uncertainty in our daily lives and ambiguity in the data. Due to the insufficiency of current hypotheses that provide explanations for the information, data is lost during the process. Ramot et al. [31,32] initiated a complex fuzzy set (CFS) to deal with the problem by extending the range of the membership function from real numbers to complex numbers with the unit disc. Because the CFS considers only the degree of membership than the non-membering part of data entities, which also play an equal role in the decision-making process for evaluating the system, it only gives weight to the degree of membership. However, it is frequently difficult to describe membership degree estimation by a fuzzy set's accurate value in the real world. This may reflect using two-dimensional information than one in these circumstances, when it may be simpler to reflect the vagueness and ambiguity that exist in the real world. Given that uncertainties are uneasy to be evaluated in the complex problem of decision-making, an expansion of the existing theories may therefore be very helpful for explaining uncertainties. To address this, Alkouri and Salleh [33,34] examined the fundamental features of complex intuitionistic fuzzy sets and extended the definition of CFSs to consist of complex degrees of non-membership functions.

    Furthermore, Gulzar et al. [35] introduced the idea of Q-complex fuzzy subrings and covered some of their basic algebraic features. Additionally, the examine the homomorphic image and invert image of Q-complex fuzzy subrings, and enlarge this concept to develop the concept of the direct product of two Q-complex fuzzy subrings. Hanan et al. [36] started the abstraction of (α,β)-CFSs and defined (α,β)-complex fuzzy subgroups (CFSG). After that, they established that each CFSG is a (α,β)-CFSG and defined (α,β)-complex fuzzy normal subgroups of a given group. This concept is expanded to define (α,β)-complex fuzzy cosets, and some of their algebraic properties are examined.

    The following are the motivation of this novel work.

    1) Biswas [19] presented the principle of anti-fuzzy subgroups and initiated the fundamental algebraic structures. Sharma [25] developed the definition of α-anti fuzzy subgroup and explored the fundamental algebraic structure of α-anti-fuzzy subgroup. Sharma [29] applied the fundamental properties of group theory to the (α,β)-anti fuzzy set and introduced (α,β)-anti-fuzzy subgroup, which is an extension of the (α,β)-anti fuzzy set.

    2) Ramot et al. [31,32] initiated a CFS to deal with the problem by extending the range of the membership function from real numbers to complex numbers with the unit disc. Because the CFS considers only the degree of membership than the non-membering part of data entities, which also play an equal role in the decision-making process for evaluating the system, it gives weight only to the degree of membership.

    3) The proppsed method is (ϵ,δ)-CAFSG. is a generalized form of CAFSG. The motivation for the recommended concept is expressed as follows: (1) To communicate a general concept such as the (ϵ,δ)-CAFSG; (2) For ϵ=1 and δ=2π, the idea that we propose can be convert into a classical CAFS. As a effective generalization of fuzzy subgroups, the (ϵ,δ)-CAFSGs are the subject of this article investigation.

    1) To propose the concept of (ϵ,δ)-CAFSs, examine the (ϵ,δ)-CAFSG in the context of CAFSs and prove that every complex fuzzy subgroup is a (ϵ,δ)-CAFSG.

    2) To define (ϵ,δ)-CAF cosets and (ϵ,δ)-CAFNSGss of a certain group, as well as to investigate some algebraic properties under the (ϵ,δ)-CAFSG. We elaborate the (ϵ,δ)-CAFSG of the classical quotient group.

    3) To demonstrate the index of (ϵ,δ)-CAFSG and (ϵ,δ)-complex anti-fuzzification of the Lagrange theorem corresponding to the Lagrange theorem of classical group theory.

    This paper is organized as follows: Section 1 introduces the fundamental concepts of complex anti fuzzy sets, complex anti fuzzy subgroups, and related features. In Section 2, we construct (ϵ,δ)-CAFS and (ϵ,δ)-CAFSG as generalizations of CAFSG. We show that any complex anti fuzzy subgroup is also a (ϵ,δ)-CAFSG, and examined some of the essential aspects of these newly define CAFSGs. In Section 3, the (ϵ,δ)-CAF cosets and (ϵ,δ)-CAFNSGss are describe and various algebraic properties of these particular groups are investigate. Furthermore, we discuss (ϵ,δ)-complex anti fuzzy quotient groups (CAFQG) and establish the quotient group with regard to (ϵ,δ)-CAF cosets. The indices of the (ϵ,δ)-CAFSG is define and the (ϵ,δ)-complex anti fuzzification of Lagrange's theorem is develop.

    We start by analyzing the fundamental idea of CAFSs and CAFSGs, both are essential for study.

    Definition 2.1. [8] If H is universal set and x is an arbitrary element of H then an anti-fuzzy set φ is define as φ={(x,λ),xH}, where λ is a non membership function and λ[0,1].

    Definition 2.2. [37] A CFS S of a universe set H, characterized by the degree of membership θS(l)=νS(l)eiηS(l) and is defined as θS:l{lH:|l|1},H is complex plain. Whose range is not limited to [01] but extens to unit circle in complex plane, where i=1,νS(l) and ηS(l) are both real valued including νS(l)[0,1] and ηS(l)[0,2π]. As for purpose of simplicity, we will employ νS(l)eiηS(l) membership function for complex fuzzy set S.

    Definition 2.3. [11] Assume that S={(l, ρS(l)): lH} be a anti fuzzy subset where H is a universal set. Now the set

    Sπ={(l,ϑSπ(l)):ϑSπ(l)=2πρS(l),lG}

    is called π-anti fuzzy subset.

    Definition 2.4. [11] A π-anti fuzzy set Sπ of group G is known as π-anti fuzzy subgroup of G if the following conditions are satisfied

    (ⅰ) Sπ(lm)max{Sπ(l),Sπ(m)}, l,m  G,

    (ⅱ) Sπ(l1)Sπ(l), l,m G.

    Definition 2.5 [11] Assume S={(l,νS(l)eiηS(l)):lG}  and T={(l,νT(l)eiηT(l)):lG} are both CAFSs of G. Then

    (ⅰ) A CAFS S is homogeneous CAFS, if l,mG, we have νS(l)νS(m) if and only if ηS(l)ηS(m).

    (ⅱ) A CAFS A is homogeneous complex anti fuzzy set with B, if p,qG, we have νA(p)νB(p) if and only if ηA(p)ηB(p).

    Definition 2.6. [35] Let S={(l,νS(l)eiηS(l)):lG}  and T={(l,νT(l)eiηT(l)):lG}  be a CAF subsets of set G. Then intersection and union of S and T is examined as:

    (ⅰ) (ST)(l)=νST(l)eiηST(l)=max{νS(l)eiηS(l),νS(l)eiηS(l)},  lL.

    (ⅱ) (ST)(l)=νST(l)eiηST(l)=min{νS(l)eiηS(l),νS(l)eiηS(l)},  lL.

    Definition 2.7. [11] Let S be aCAFS of group G. Then S is know as CAFSG of group G, if the following criteria are fulfilled.

    (ⅰ) νS(lm)eiηS(lm)max{ νS(l)eiηS(l), νS(m)eiηS(q)} ,

    (ⅱ) νS(l1)eiηS(l1)νS(l)eiηS(l) for all l,mG.

    Definition 2.8. [11] A complex anti fuzzy set S of group G is said to be CAFNSG of group G, if: νS(lm)eiηS(lm)=νS(ml)eiηS(ml), for all l,mG.

    Definition 2.9. [25] Let S be a anti fuzzy subset of a group G. Then anti fuzzy set Sϵ of G is known as ϵ-anti fuzzy subset of G, where ϵ[0,1] and define as Sϵ(p)=max{S(p),1ϵ} for all pG.

    Some results:

    (ⅰ) (ⅰ) Let S and T be two anti fuzzy subsets of X. Then

    (ST)ϵ=SϵTϵ.

    (ⅱ) (ⅱ) Suppose g : LM be a mapping and S and T be two anti fuzzy subsets of L and M sequentially, then

    (a) g1(Tϵ)=(g1(T))ϵ,

    (b) g(T)ϵ=(g(T))ϵ.

    Definition 2.10. [38] Suppose Sϵ and Sδ respectively indicate, the ϵ- fuzzy set and δ-anti fuzzy set of L, where L is universal set. Then the anti fuzzy set S(ϵ,δ) is define by

    S(ϵ,δ)(u) = min{u,(Sϵ)c(u),Sδ(u)}uL and is called S(ϵ,δ)-anti fuzzy set of L due respect the fuzzy set S, where ϵ,δ[0,1] such that ϵ+δ1.

    Remark 2.11.

    (ⅰ) S(0,1)(u) = min{(S1)c(u),S0(u)} = min{Sc(u),1}=1,

    (ⅱ) S(0,1)(u) = min{(S0)c(u),S1(u)} = min{1,Sc(u)}=1.

    Now this section introduces the (ϵ,δ)-CAFS and (ϵ,δ)-CAFSGs methodology. We establish that any complex fuzzy subgroup is also a (ϵ,δ)-CAFSG but the converse does not hold and we explore certain fundamentals categorization of this phenomena.

    Definition 3.1. Let S={(l,μS(l)eiηS(l)):lG} be CAFS of group G, for any ϵ[0,1] and δ[0,2π], such that μS(l)ϵ and ηS(l)δ or (νS(l)ϵ and ηS(l)δ). Then, the set S(ϵ,δ) is called (ϵ,δ)-CAFSt and defined as: νSϵ(l)eiηSδ(l)=max{νS(l)eiηSδ(l), ϵeiδ} =max{νS(l), ϵ}eimax{ηS(l), δ} , where νSϵ(l)=max{νS(l),ϵ} and ηSδ(l)=max{ηS(l),δ}.

    Throughout manuscript, we will focused on the non-membership function of (ϵ,δ)-CAFSs S(ϵ,δ) and T(ϵ,δ) such as νSϵ(l)eiηSδ(l) and νTϵ(l)eiηTδ(l), respectively.

    Definition 3.2. Let S(ϵ,δ) and T(ϵ,δ) be a two (ϵ,δ)-CAFSs of G. Then

    (ⅰ) A (ϵ,δ)-CAFS S(ϵ,δ) is homogeneous (ϵ,δ)-CAFS, for all l,mG, we have νSϵ(l)νSϵ(m) if and only if ηSδ(l)ηSδ(m).

    (ⅱ) A (ϵ,δ)-CAFS S(ϵ,δ) is homogeneous (ϵ,δ)-CAFS with T(ϵ,δ), for all l,mG, such that νSϵ(l)νTϵ(l) if and only if ηSδ(l)ηTδ(l).

    In this research article, we use (ϵ,δ)-CAFS as homogeneous (ϵ,δ)-complex anti fuzzy set.

    Remark 3.3. By taking the values of ϵ=1 and δ=2π in the given definition, we obtain the classical CAFS S.

    Remark 3.4. Let S(ϵ,δ) and T(ϵ,δ) be two (ϵ,δ)-CAFSs of group G. Then (SM)(ϵ,δ)=S(ϵ,δ)T(ϵ,δ).

    Definition 3.5. Let S(ϵ,δ) be an (ϵ,δ)-CAFS of group G for ϵ[0,1] and δ[0,2π]. Then S(ϵ,δ) is known as (ϵ,δ)-CAFSG of group G, if it satisfy the following conditions:

    (ⅰ) νSϵ(lq)eiηSδ(lq)max{ νSϵ(l)eiηSδ(l), νSϵ(q)eiηSδ(q)} ,

    (ⅱ) νSϵ(l1)eiηSδ(l1)νSϵ(l)eiηSδ(l) for all l,mG.

    Theorem 3.6. If S(ϵ,δ) is an (ϵ,δ)-CAFSG of group G, for all l,mG. Then

    (i) νSϵ(l)eiηSδ(l)νSϵ(e)eiηSδ(e),

    (ii) νSϵ(lm1)eiηSδ(lm1)=νSϵ(e)eiηSδ(e).

    It suggests that νSϵ(l)eiηSδ(l)=νSϵ(m)eiηSδ(m).

    The proof of this theorem is straightforward.

    Now, in this theorem we show that CAFNSG is a spacial case of (ϵ,δ)- CAFNSG.

    Theorem 3.7. Every CAFSG of the group G is also a (ϵ,δ)-CAFSG of G.

    Proof. Assume that S be CAFSG of group G, for every l,mG. Suppose that

    νSϵ(lm)eiϵSδ(lm)=max{νS(lm)eiϵS(lm), ϵeiδ}
    max{max{νS(l)eiϵS(l), νS(m)eiϵS(m)} , ϵeiδ} =max{max{νS(l)eiϵS(l),ϵeiδ} ,max{νS(m)eiϵS(m), ϵeiδ} }=max{νSϵ(l)eiϵSδ(l),νSϵ(m)eiϵSδ(m)} .

    Further, we assume that

    νSϵ(l1)eiϵSδ(l1)=max{ νS(l1)eiϵS(l1),ϵeiδ } max{ νS(l)eiϵS(l),ϵeiδ } =νSϵ(l)eiϵSδ(l).

    This established the proof.

    Remark 3.8. If S(ϵ,δ)-CAFSG then it is not essential S is CAFSG.

    Example 3.9. The Klein four group is referred by G={e,l,m,lm}. It can be written as S= {<e, 0.2eiπ12>,<l,0.4eiπ6>,<m,0.4eiπ6>, <lm, 0.3eiπ7>} is not CAFSG of G. Take ϵ=0.2 and δ=π6. Then, it's simple to see νS(l)eiηS(l)>ϵeiδ, for all lG. Moreover, we have νSϵ(l)eiηSδ(l)= ϵeiδ,  lG. Therefore, νSϵ(lm)eiηSδ(lm)max{νSϵ(l)eiηSδ(l), νSϵ(m)eiηSδ(m)}, l,mG. Furthermore, l1=l, m1=m, (lm)1=lm. So, νSϵ(l1)eiηSδ(l1) νSϵ(l)eiηSδ(l). Hence, S(ϵ,δ) is (ϵ,δ)-CAFSG.

    Theorem 3.10. Let S be a complex anti fuzzy set of group G such that νS(l1)eiϵS(l1)=νS(l)eiϵS(l), lG. Let ϵeiδreiθ such that ϵr and δθ, where reiθ=max{νS(l)eiϵS(l):lG} and ϵ,r[0,1] and δ,θ[0,2π]. Then S(ϵ,δ) is an (ϵ,δ)-CAFSG of G.

    Proof. Note that ϵeiδreiθ. Implies that max{νS(l)eiϵS(l) :lG} ϵeiδ. This indicates max{νS(l)eiϵS(l),ϵeiδ}= ϵeiδ, for all lG. Implies that νSϵ(l)eiϵSδ(l)=ϵeiδ.

    νSϵ(lm)eiϵSδ(lm)max{νSϵ(l)eiϵSδ(l),νSϵ(m)eiϵSδ(m)}.Moreover,νS(l1)eiϵS(l1)=νS(l)eiϵS(l), lG.Implies that,νSϵ(l1)eiϵSδ(l1)=νSϵ(l)eiϵSδ(l).

    Hence, S(ϵ,δ) is (ϵ,δ)-CAFSG of G.

    Theorem 3.11. Intersection of two (ϵ,δ)-CAFSGs of G is also (ϵ,δ)-CAFSG of G.

    Proof. Let S(ϵ,δ) and T(ϵ,δ) be two (ϵ,δ)-CAFSGs of G, for any l,mG.

    Consider,

    ν(ST)ϵ(lm)eϵ(ST)δ(lm)=ν(SϵTϵ)(lm)eiϵSδTδ(lm)

    =max{νSϵ(lm)eiϵSδ(lm), νTϵ(lm)eiϵTδ(lm)}max{max{νSϵ(l)eiϵSδ(l), νSϵ(m)eiϵSδ(m)} ,max{νTϵ(l )eiϵTδ(l) νTϵ(m)eiϵTδ(m)} .}=max{max{νSϵ(l)eiϵSδ(l),νTϵ(l)eiϵTδ(l)} ,max{νSϵ(m)eiϵTδ(m),νTϵ(m)eiϵTδ(m)}.}=max{ν(SϵTδ)(l)eiϵ(SδTδ)(l), ν(SϵTδ)(m)eiϵ(SδTδ)(m)} =max{ν(ST)ϵ(l)eiϵ(ST)δ(l),ν(ST)ϵ(m)eiϵ(ST)δ(m)} .

    Further,

    ν(ST)ϵ(l1)eϵ(ST)δ(l1)=νSϵTϵ(l1)eiϵ(SδTδ)(l1)

    =max{νSϵ(l1)eiϵSδ(l1), νTϵ(l1)eiϵTδ(l1)}max{νSϵ(l)eiϵSδ(l), νTϵ(l)eiϵTδ(l)}=ν(ST)ϵ(l)eϵ(ST)δ(l).

    Consequently, S(ϵ,δ)T(ϵ,δ) is (ϵ,δ)-CAFSG of G.

    Corollary 3.12. Intersection of a family of (ϵ,δ)-CAFSGs of G is also (ϵ,δ)-CAFSG.

    Remark 3.13. Union of two (ϵ,δ)-CAFSGs may not be a (ϵ,δ)-complex anti fuzzy subgroup.

    Example 3.14. Assume that a symmetric group S4 with permutation of four elements{(1),(2 3),(2 3 4),(2 4 3),(3 4),(2 4), (1 2),(1 2 4),(1 2 3),(1 2 3 4),(1 2)(3 4),(1 2 4), (1 3 2),(1 3 4 2),(1 3),(1 3 4),(1 3 2 4), (1 3)(2 4),(1 4 3 2),(1 4 2),(1 4 3), (1 4),(1 4 2 3),(1 4)(2 3)}. Define two (ϵ,δ)-CAFSGs S(0.9,π/2) and T(0.6,π/2) of S4 for value ϵeiδ=0.9eπ are delivered as:

    S(0.9,π/2)(l)={0.8eπ/4,  if l∈<(1 3)>0.7eπ/6,  otherwise          and

    T(0.9,π/2)(l)={0.9eπ/2,  if l∈<(1 3 2 4)>0.6eπ/7,  otherwise              

    indicates that (S(0.9,π/2)T(0.9,π/2))(l)={0.8eπ/4,  if l<(1 3 2 4)><(1 3)>                         0.7eπ/6,  if l∈<(1 3 2 4)>e                    0.6eπ/7,  if l∈<(1 3)>e                                       

    Take l=(1 2)(3 4), m=(1 3) and lm=(1 2 3 4). Moreover, (S(0.9,π/2)T(0.9,π/2))(l)=0.7eπ/6. (S(0.9,π/2)T(0.9,π/2))(l)=0.6eπ/7 and (S(0.9,π/2)T(0.9,π/2))(lm)=0.6eπ/7.

    We can clearly observe that (S(0.9,π/2)T(0.9,π/2))(lm) So, this establishes the assertion.

    The algebraic features of (\epsilon, \delta) - CAFNSG s are explore in this section. We investigate (\epsilon, \delta) - CAF cosets of (\epsilon, \delta) - CAFSG s and create a quotient framework that focuses on these CAFNSG s. The (\epsilon, \delta) - CAFSG of the classical quotient group is also discussed and several key characteristics of these CAFNSG s are illustrated.

    Definition 4.1. Suppose that S_{(\epsilon, \delta)} be an (\epsilon, \delta) - {C}{A}{F}{S} G of group {G} , as \epsilon \in [0, 1] and \eta \in [0, 2\pi ] . Then (\epsilon, \delta) - {C} {A} {F} {S} {lS}_{(\epsilon, \delta)}(w) = \{(w, {\nu }_{{lS}_{\epsilon }}(w)e^{{i\eta }_{{{lS}_{\eta }}^{(w)}}}), \ w\in {G}\} of {G} is known as a (\epsilon, \delta) - CAF left coset of {G} examine by S_{(\epsilon, \delta)} and is define as:

    \begin{eqnarray*} {\nu }_{{lS}_{\epsilon }}(w)e^{{i\eta }_{lS_{\eta }}(w)}& = &{\nu }_{S_{\epsilon }}(l^{-1}w)e^{{i\eta }_{S_{\eta }}(l^{-1}w)}\\& = &\mathrm{max} \{{\nu }_S(l^{-1}w)e^{i{\eta }_S(l^{-1}w)}, \epsilon e^{i\delta}\}, \forall w,l\in {G}. \end{eqnarray*}

    In same way we explain (\epsilon, \delta) - CAF right coset S_{(\epsilon, \delta)}w = \{(w, {\nu }_{S_{\epsilon }l}(w)e^{{i\eta }_{S_{\delta }l}(w)}), \ w\in {G}\} of of {G} determine by S_{(\epsilon, \delta)} and l also define as : \ {\nu }_{S_{\epsilon }l}(w)e^{{i\eta }_{S_{\delta }l}(w)} = {\nu }_{S_{\epsilon }}(wl^{-1})e^{{i\eta }_{S_{\delta }}(wl^{-1})} = {\mathrm{max} \{{\nu }_S(wl^{-1})e^{i{\eta }_S(wl^{-1})}, \ \epsilon e^{i\delta }\}\ } , for all w\, \ l\in {G} .

    The next given example demonstrates the concept of (\epsilon, \delta) - CAF cosets of S_{(\epsilon, \delta)} .

    Example 4.2. Take {G} = \{(1), (1\ 3), (1\ 2)(3\ 4), (2\ 4), (1\ 4)(2\ 3),

    (1\ 4\ 3\ 2), (1\ 3)(2\ 4), (1\ 2\ 3\ 4)\} a symmetric group with 8 elements represent (\epsilon, \delta) - {C} {A} {F} {S} G of {G} only when \epsilon = 0.4 and \delta = {\pi }/{6} as follows: S_{(0.4, {\pi }/{6})}(w)

    \begin{equation*} = \!{\begin{cases} 0.9e^{{\pi }} \quad \text{if}\; w\in \{(1\ 3)(2\ 4),(1)\}\\ 0.8e^{{\pi }/{3}}, \quad \text{if} \; w\in \{(1\ 2)(3\ 4),(1\ 4)(2\ 3)\},\\ 0.7e^{{\pi }/{5}}, \quad \text{if} \; w\in \{(2\ 4),(1\ 3),(1\ 2\ 3\ 4),(1\ 4\ 3\ 2)\} \\ \end{cases}} \end{equation*}

    From the definition of cosets we have

    {\nu }_{lS_{(0.4, {\pi }/{6})}}(w)e^{{\eta }_{lS_{(0.4, {\pi }/{6})}}(w)} = {\nu }_{S_{(0.4, {\pi }/{6})}}(l^{-1}w)e^{{\eta }_{S_{(0.4, {\pi }/{6})}}(l^{-1}w)}.

    Thus, (0.4, {\pi }/{6}) - CAF left coset of S_{(0.4, {\pi }/{6})}(w) in {G} for l = (2\ 4) as seen below: lS_{(0.4, {\pi }/{6})}(w)

    \begin{equation*} = \!{\begin{cases} 0.9e^{{\pi}} \quad \text{if}\; w\in \{(1\ 3)(2\ 4),(1)\}\\ 0.8e^{{\pi }/{3}}, \quad \text{if} \; w\in \{(1\ 4)(2\ 3),(1\ 2)(3\ 4)\}\\ 0.6e^{{\pi }/{5}}, \quad \text{if}\; w\in\{(2\ 4),(1\ 4\ 3\ 2),(1\ 3),(1\ 2\ 3\ 4)\}\\ \end{cases}}. \end{equation*}

    In same way, (0.4, {\pi }/{6}) - CF right coset of S_{(0.4, {\pi }/{6})}(w) is find, for every l\in {G}.

    Definition 4.3. Let S_{(\epsilon, \delta)} be an (\epsilon, \delta) - {C} {A} {F} {S} G of group {G} , where \epsilon \in [0, 1] and \delta \in [0, 2\pi ] .Therefore S_{(\epsilon, \delta)} is known as (\epsilon, \delta) -CAFNSG of {G} if S_{(\epsilon, \delta)}(lm) = S_{(\epsilon, \delta)}(ml). Equivalently, (\epsilon, \delta) - {C} {A} {F} {S} G S_{(\epsilon, \delta)} is (\epsilon, \delta) -CAFNSG of group {G} if: S_{(\epsilon, \delta)}l(m) = lS_{(\epsilon, \delta)}(m) , for all l, \ m\in {G} .

    Note that each (1, 2\pi) - CAFNSG is a classical CAFNSG of {G} .

    Remark 4.4. Let S_{(\epsilon, \delta)} be an (\epsilon, \delta) -CAFNSG of the group {G} . Then S_{(\epsilon, \delta)}(m^{-1}lm) = S_{(\epsilon, \delta)}(l), for all l, m\in {G} .

    Theorem 4.5. If S is {C}{A}{F}{N}{S}{G} of group {G} . Then S_{(\epsilon, \delta)} is (\epsilon, \delta) - {C}{A}{F}{N}{S}{G} of {G} .

    Proof. Assume that w, l arbitrary of elements of {G} . Consequently, we have {\nu }_S(l^{-1}w)e^{i{\eta }_S(l^{-1}w)} = {\nu }_S({xl}^{-1})e^{i{\eta }_S(wl^{-1})}, This implies that, \{{\nu }_S(l^{-1}w)e^{i{\eta }_S(l^{-1}w)}, \epsilon e^{i\delta }\} = \mathrm{max} \{{\nu }_S({wl}^{-1})e^{i{\eta }_S(wl^{-1})}{, \epsilon e}^{i\delta }\}

    we obtain, {\nu }_{{lS}_{\epsilon }}(w)e^{{i\eta }_{{lS}_{\delta }}(w)} = {\nu }_{S_{\epsilon }l}(w)e^{{i\eta }_{S_{\delta }l}(w)} . we get {lS}_{(\epsilon, \delta)}(w) = S_{(\epsilon, \delta)}l(w). Consequently, S_{(\epsilon, \delta)} is (\epsilon, \delta) - {C}{A}{F}{N}{S}{G} of {G} . In most circumstances, the converse of the following outcome is not valid. This fact is discuss in given bellow example.

    Example 4.6. Suppose {G} = D_{3\ } = < l, m:\ l^3 = m^2 = e, \ ml = l^2m > be the Dihedral group. Suppose that S be a complex anti fuzzy set of {G} and described as:

    \begin{equation*} S = \!{\begin{cases} 0.5e^{{\pi }/{4}} \quad \text{if}\; w\in < m > ,\\ 0.3e^{{\pi }/{8}} \quad \text{if}\; w\not\in < m > .\\ \end{cases}} \end{equation*}

    Note that S is not a complex anti fuzzy normal subgroup of group {G} . For {{\nu }_S(l^2(lm))e^{i{\eta }_S(l^2(lm))}\mathrm{ = }\ \ \ 0.5e\ }^{{\pi }/{4}}\neq \ {0.3e}^{{\pi }/{8}} = {\nu }_S((lm)l^2)e^{i{\eta }_S((lm)l^2)} . Now we take {\epsilon e}^{i\delta } = 0{.6e}^{i^{{\pi }/{3}}} , we get {\nu }_{lS_{0.6}}(w)e^{i{\eta }_{wS_{{\pi }/{3}}}} = \mathrm{max}\{{\nu }_S(l^{-1}w)e^{{i\eta }_{S^{{(l}^{-1}w)}}}, 0.6e^{{i\pi }/{3}}\} = 0.6e^{\frac{i\pi }{3}} = \ {\mathrm{max} \{{\nu }_S(wl^{-1})e^{{i\eta }_{S^{{(wl}^{-1})}}}, 0.6e^{{i\pi }/{3}}\}\ } = {\nu }_{S_{0.6} \,l}(w)e^{i{\eta }_{S}{{\pi }/{3}}}(w).

    Next, we show that each (\epsilon, \delta) - {C}{A}{F}{S} G of group {G} will be (\epsilon, \delta) - {C}{A}{F}{N}{S}{G} of group {G} , include some particular values of \epsilon and \delta . The following outcomes are illustrate in this direction.

    Theorem 4.7. Let S_{(\epsilon, \delta)} be (\epsilon, \delta) - {C}{A}{F}{S}G of group {G} as a result {\epsilon e}^{i\delta } > {re}^{i\theta \ } , \epsilon \ge r and \delta \ge \theta , where \ {re}^{i\theta } = {\mathrm{max} \{{ \rm{µ}}_S(w)e^{i{\eta }_S(w)}, \forall \ w\in {G}\ }\} and r, \epsilon \in [0, 1] and \delta, \theta \in [0, 2\pi ]. So S_{(\epsilon, \delta)} be (\epsilon, \delta)- {C} {A} {F} {N} {S} {G} of the group {G} .

    Proof. Given that {\epsilon e}^{i\delta }\ge {re}^{i\theta \ } . This implies {\mathrm{max} \{{\nu }_S(w)e^{i{\eta }_S(w)}:\ \mathrm{for\ all}\ w\in {G}\}\ }\le {\epsilon e}^{i\delta }. This shows {\nu }_S(w)e^{i{\eta }_S(w)}\le {\epsilon e}^{i\delta } , \ \mathrm{for\ all}\ w\in {G} . So, {\nu }_{{lS}_{\epsilon }}(w)e^{{i\eta }_{{lS}_{\delta }}(w)} = {\mathrm{max} \{{\nu }_S(l^{-1}w)e^{i{\eta }_S(l^{-1}w)}, \ {\epsilon e}^{i\delta }\}\ } = {\epsilon e}^{i\delta }, for any w\in {G} . Similarly, {\nu }_{S_{\epsilon }l}(w)e^{{i\eta }_{S_{\delta }l}(w)} = {\mathrm{max} \{{\nu }_S(wl^{-1})e^{i{\eta }_S(wl^{-1})}, \ {\epsilon e}^{i\delta }\}\ } = {\epsilon e}^{i\delta }. Implies that {\nu }_{{lS}_{\epsilon }}(w)e^{{i\eta }_{{lS}_{\delta }}(w)} = {\nu }_{S_{\epsilon }l}(w)e^{{i\eta }_{S_{\delta }l}(w)}. Hence, it proved the result.

    Theorem 4.8. Let S_{(\epsilon, \delta)} be (\epsilon, \delta) - {C} {A} {F} {N} {S} {G} of group {G} . Then the set S^e_{(\epsilon, \delta)} = \{ w\; \in {G}: S_{(\epsilon, \delta)}(w^{-1}) = S_{(\epsilon, \delta)}(e) \} is normal subgroup of group {G} .

    Proof. Obviously S^{e}_{(\epsilon, \delta)}\neq \eta because e\in {G} . Let w, v\in S^e_{(\epsilon, \delta)} be any elements. Consider, {\nu }_{S_{\epsilon }}(wv)e^{i{\eta }_{S_{\delta }}(wv)}\le {\mathrm{max} \{{{\nu }_{S_{\epsilon }}(w)e^{i{\eta }_{S_{\delta }}(w)}, {\nu }_{S_{\epsilon }}(v)e^{i{\eta }_{S_{\delta }}(v)}\ }\}\ } = {\mathrm{max} \{{\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}, {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}\}\ }. Implies that {\nu }_{S_{\epsilon }}(wv)e^{i{\eta }_{S_{\delta }}(wv)}\le {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)} . However, {\nu }_{S_{\epsilon }}(wv)e^{i{\eta }_{S_{\delta }}(wv)}\ge {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}. Therefore, {\nu }_{S_{\epsilon }}(wv)e^{i{\eta }_{S_{\delta }}(wv)} = \ {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}. It implies that S_{(\epsilon, \delta)}(w^{-1}) = S_{(\epsilon, \delta)}(e). It implies that wv\in S^e_{(\epsilon, \delta)} . Further, {\nu }_{S_{\epsilon }}(v^{-1})e^{i{\eta }_{S_{\delta }}(v^{-1})}\le {\nu }_{S_{\epsilon }}(v)e^{i{\eta }_{S_{\delta }}(v)} = {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}. But {\nu }_{S_{\epsilon }}(w)e^{i{\eta }_{S_{\delta }}(w)}\ge {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)} . Thus S^e_{(\epsilon, \delta)} is subgroup of group {G} . Moreover, let w\in S^e_{(\epsilon, \delta)} and \in {G} . We have {\nu }_{S_{(\epsilon, \delta)}}(v^{-1}wv)e^{i{\eta }_{S_{(\epsilon, \delta)}}(v^{-1}wv)} = {\nu }_{S_{(\epsilon, \delta)}}(w)e^{i{\eta }_{S_{(\epsilon, \delta)}}(w)} . It implies that y^{-1}wv\in S^e_{(\epsilon, \delta)} . Hence, S^e_{(\epsilon, \delta)} is a normal subgroup.

    Theorem 4.9. Assume that S_{(\epsilon, \delta)} be an (\epsilon, \delta) - {C} {A} {F} {N} {S} {G} of group {G} . Then

    (i) {lS}_{(\epsilon, \delta)} = mS_{(\epsilon, \delta)}\ \ \ \ \ \mathrm{if\ and\ only\ if\ }\ l^{-1}m\in S^e_{(\epsilon, \delta)} ,

    (ii) S_{(\epsilon, \delta)}l\ = S_{(\epsilon, \delta)}\ m\ \ \ \ \mathrm{if\ and\ only\ if\ }\ {lm}^{-1}\ \in S^e_{(\epsilon, \delta)} .

    Proof. For any l, m\in {G} , we have {lS}_{(\epsilon, \delta)} = mS_{(\epsilon, \delta)} . Assume that,

    {\nu }_{S_{\epsilon }}(l^{-1}m)e^{i{\eta }_{S_{\delta }}(l^{-1}m)} = {\mathrm{max} \{{\nu }_S(l^{-1}m)e^{i{\eta }_S(l^{-1}m)}, {\epsilon e}^{i\delta }\}\ }

    \begin{eqnarray*} & = &\mathrm{max} \{{\nu }_{lS}(m)e^{i{\eta }_{lS}(m)},{\epsilon e}^{i\delta }\}\ \\& = &{\nu }_{lS_{\epsilon }}(m)e^{i{\eta }_{{lS}_{\delta }}(m)}\\& = &{\nu }_{mS_{\epsilon }}(m)e^{i{\eta }_{{mS}_{\delta }}(m)} \\& = &\mathrm{max} \{{\nu }_S(m^{-1}m)e^{i{\eta }_{\delta }(m^{-1}m)},{\epsilon e}^{i\delta }\}\\& = &\mathrm{max}\{{\nu }_S(e)e^{i{\eta }_S(e)},{\epsilon e}^{i\delta }\}\\& = &\ {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}. \end{eqnarray*}

    Therefore, l^{-\ 1}m\in S^e_{(\epsilon, \delta)} .

    Conversely, let l^{-1}m\in S^e_{(\epsilon, \delta)} then {\nu }_{S_{\epsilon }}(l^{-1}m)e^{i{\eta }_{S_{\delta }}(l^{-1}m)} = {\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)}.

    Consider

    {\nu }_{{lS}_{\epsilon }}(a)e^{i{\eta }_{{lS}_{\delta }}(a)} = {\mathrm{max} \{{\nu }_S(l^{-1}a)e^{i{\eta }_S(l^{-1}a)},\epsilon e^{i\delta }\}\ }

    \begin{eqnarray*} & = &{\nu }_{S_{\epsilon }}(l^{-1}a)e^{i{\eta }_S(l^{-1}a)} \\& = &{\nu }_{S_{\epsilon }}(l^{-1}m)(m^{-1}a)e^{i{\eta }_{S_{\delta }}(l^{-1}m)(m^{-1}a)}\\&\le& {\mathrm{max} \{{\nu }_{S_{\epsilon }}(l^{-1}m)e^{i{\eta }_{S_{\delta }}(l^{-1}m)},{\nu }_{S_{\epsilon }}(m^{-1}a)e^{i{\eta }_{S_{\delta }}(m^{-1}a)}\}\ } \\& = &\mathrm{max}\{{\nu }_{S_{\epsilon }}(e)e^{i{\eta }_{S_{\delta }}(e)},{\nu }_{S_{\epsilon }}(m^{-1}a)e^{i{\eta }_{S_{\delta }}(m^{-1}a)}\}\\& = &{\nu }_{S_{\epsilon }}(m^{-1}a)e^{i{\eta }_{S_{\delta }}(m^{-1}a)}\\& = &{\nu }_{mS_{\epsilon }}(a)e^{i{\eta }_{mS_{\delta }}(a)}. \end{eqnarray*}

    Interchange the role of l and we get

    {\nu }_{mS_{\epsilon }}(a)e^{i{\eta }_{mS_{\delta }}(a)}\mathrm{\le }{\nu }_{lS_{\epsilon }}(a)e^{i{\eta }_{lS_{\delta }}(a)} . Thus, {\nu }_{lS_{\epsilon }}(a)e^{i{\eta }_{lS_{\delta }}(a)} = {\nu }_{mS_{\epsilon }}(a)e^{i{\eta }_{mS_{\delta }}(a)} .

    (ⅱ) In similar way, this can be present as part (ⅰ).

    Theorem 4.10. Let S_{(\epsilon, \delta)} be an (\epsilon, \delta) - {C} {A} {F} {N} {S} {G} of group {G} and l, m, a, b arbitrary elements of {G} . If {lS}_{(\epsilon, \delta)} = aS_{(\epsilon, \delta)} and {mS}_{(\epsilon, \delta)} = bS_{(\epsilon, \delta)} , then {lmS}_{(\epsilon, \delta)} = abS_{(\epsilon, \delta)}.

    Proof. Given that {lS}_{(\epsilon, \delta)} = aS_{(\epsilon, \delta)} and {mS}_{(\epsilon, \delta)} = bS_{(\epsilon, \delta)} . Implies that {\ l}^{-1}a, m^{-1}b\ \in \ S^e_{(\epsilon, \delta)}.

    Consider, {(lm)}^{-1}(ab) = m^{-1}(l^{-1}a)b = m^{-1}(l^{-1}a)(lm^{-1})b = [m^{-1}(l^{-1}a)(m)](m^{-1}b) . As S^e_{(\epsilon, \delta)} is normal subgroup of {G} . Thus, {(lm)}^{-1}(ab)\in S^e_{(\epsilon, \delta)} . Similarly, {lmS}_{(\epsilon, \delta)} = abS_{(\epsilon, \delta)} . As a result of this, we can say that (\epsilon, \delta) - {C}{A}{F}{Q}{G} along to classical quotient group.

    Theorem 4.11. Assume that { {G}}/{S_{(\epsilon, \delta)}} = \{{lS}_{(\epsilon, \delta)}:l\in {G}\} be the collection of all (\epsilon, \delta) - CF cosets of (\epsilon, \delta) - {C} {A} {F} {N} {S} {G} S_{(\epsilon, \delta)} of {G} . Consequently, the set action of the binary operator is well define { {G}}/{S_{(\epsilon, \delta)}} and is present as lS_{(\epsilon, \delta)}* mS_{(\epsilon, \delta)} = lmS_{(\epsilon, \delta)}\ \mathrm{for\ all}\ l, \ m\in {G} .

    Proof. We have lS_{(\epsilon, \delta)} = mS_{(\epsilon, \delta)}\ and\ aS_{(\epsilon, \delta)} = bS_{(\epsilon, \delta)} , for arbitrary a\, b, \ l, \ m\in {G}. Assume that g\in {G} be arbitrary element, so

    [lS_{(\epsilon, \delta )}aS_{(\epsilon, \delta )}]\ (g) = (laS_{(\epsilon, \delta )}(g)) = {\nu }_{laS_{\epsilon }}(g)e^{{i\eta }_{laS_{\delta }}(g)}.

    Consider,

    {\nu }_{laS_{\epsilon }}(g)e^{i{\eta }_{{laS}_{\delta }}(g)} = {\mathrm{max} \{{\nu }_{laS}(g)e^{{i\eta }_{laS}(g)}, \epsilon e^{i\delta }\}\ }

    \begin{eqnarray*} & = &\mathrm{max}\{{\nu }_S({(la)}^{-1}g)e^{i{\eta }_S({(la)}^{-1}g)},\ \epsilon e^{i\delta }\} \\& = &{\mathrm{max} \{{\nu }_S(a^{-1}(l^{-1}g))e^{i{\eta }_S(a^{-1}(l^{-1}g))},\ \epsilon e^{i\delta }\}\ }\\ & = &{\nu }_{aS_{\epsilon }}(l^{-1}g)e^{{i\eta }_{aS_{\delta }}(l^{-1}g)} \\& = &{\nu }_{bS_{\epsilon }}(l^{-1}g)e^{{i\eta }_{bS_{\delta }}(l^{-1}g)}\\& = &{\mathrm{max} \{{\nu }_S(b^{-1}(l^{-1}g))e^{{I\eta }_S(b^{-1}(l^{-1}g))},\epsilon e^{i\delta }\}\ } \\& = &{\mathrm{max} \{{\nu }_S(l^{-1}(gb^{-1})),\epsilon e^{i\delta }\}\ } \\& = &{\nu }_{lS_{\epsilon }}(gb^{-1})e^{{i\eta }_{lS_{\delta }}(gb^{-1})} \\& = &{\nu }_{lS_{\epsilon }}(gb^{-1})e^{{i\eta }_{mS_{\delta }}(gb^{-1})}\\& = &{\mathrm{max} \{{\nu }_S(m^{-1}({gb}^{-1}))e^{{i\eta }_S(m^{-1}({gb}^{-1}))},\epsilon e^{i\delta }\}\ } \\& = &\mathrm{max} \{{\nu }_S(m^{-1}g)b^{-1}e^{{i\eta }_S(m^{-1}g)b^{-1}},\epsilon e^{i\delta }\} \ \\& = &{\mathrm{max} \{{\nu }_S(b^{-1}m^{-1}(g))e^{{I\eta }_S(b^{-1}m^{-1}(g))},\epsilon e^{i\delta }\}\ } \\& = &{\mathrm{max} \{{\nu }_S({(mb)}^{-1}(g))e^{{I\eta }_S({(mb)}^{-1}(g))},\epsilon e^{i\delta }\}\ }\\& = &{\nu }_{qbS_{\epsilon }}(g)e^{{i\eta }_{qbS_{\delta }}(g)}. \end{eqnarray*}

    Hence, the operation * on { {G}}/{S_{(\epsilon, \delta)}} is well defined. It can be observed that * operation is a closed and associative on set { {G}}/{S_{(\epsilon, \delta)}} . Moreover,

    {\nu }_{S_{\epsilon }}e^{i{\eta }_{S_{\delta }}\ } * {\nu }_{{lS}_{\epsilon }}e^{i{\eta }_{lS_{\delta }}\ } = {\nu }_{eS_{\epsilon }}e^{i{\eta }_{eS_{\delta }}\ } * \ {\nu }_{{lS}_{\epsilon }}e^{i{\eta }_{lS_{\delta }}\ } = {\nu }_{lS_{\epsilon }}e^{i{\eta }_{lS_{\delta }}\ } = {\nu }_{lS_{\epsilon }}e^{i{\eta }_{lS_{\delta }}\ } \Longrightarrow {\nu }_{S_{\epsilon }}e^{i{\eta }_S\ } is neutral element of { {G}}/{S_{(\epsilon, \delta)}} . Obviously, the inverse of every entity of { {G}}/{S_{(\epsilon, \delta)}}\ exist if {\nu }_{lS_{\epsilon }}e^{i{\eta }_{lS_{\delta }}\ }\in { {G}}/{S_{(\epsilon, \delta)}} , so there is a element, {\nu }_{l^{-1}S_{\epsilon }}e^{i{\eta }_{l^{-1}S_{\delta }}\ }\in { {G}}/{S_{(\epsilon, \delta)}}\ \text{such that}\; {\nu }_{l^{-1}pS_{\epsilon }}e^{i{\eta }_{l^{-1}{lS}_{\delta }}\ } = {\nu }_{S_{\epsilon }}e^{i{\eta }_{S_{\delta }}\ }. As a consequence, { {G}}/{S_{(\epsilon, \delta)}} is a group. The group { {G}}/{S_{(\epsilon, \delta)}} is known as quotient group of the {G} by S_{(\epsilon, \delta)} .

    Lemma 4.12. Assume that a natural homomorphism from group {G} onto { {G}}/{S_{(\epsilon, \delta)}} is f: {G}\; \mathit{\text{to}}\; { {G}}/{S_{(\epsilon, \delta)}} and the rule specifies, f(l)\ = lS_{(\epsilon, \delta)} with kernel f = S^e_{(\epsilon, \delta)} .

    Proof. Suppose an arbitrary elements l, \ m taken from group {G} , then f(lm) = lmS_{(\epsilon, \delta)} = {\nu }_{lmS_{\epsilon }}e^{i{\eta }_{lmS_{\delta }}\ } = {\nu }_{lS_{\epsilon }}e^{i{\eta }_{lS_{\delta }}\ } * \ {\nu }_{mS_{\epsilon }}e^{i{\eta }_{mS_{\delta }}\ } = lS_{(\epsilon, \delta)} * mS_{(\epsilon, \delta)} = f(l)* s(m). Hence f is a homomorphism and f is an onto mapping.

    \begin{eqnarray*} \text{Then},\; Ker f & = &\{l\in {G}:f\ (l) = eS_{(\epsilon, \delta )}\}\\& = &\{l\in {G}:\ lS_{(\epsilon, \delta )} = eS_{(\epsilon, \delta )}\ \} \\& = &\{l\in {G}:le^{-1}\in S^e_{(\epsilon, \delta )}\}\\& = &\{l\in {G}:l\in S^e_{(\epsilon, \delta )}\}\\& = &S^e_{(\epsilon, \delta )}. \end{eqnarray*}

    As a result of this, we introduce (\epsilon, \delta) - {C}{A}{F}{G} of quotient group generates by normal subgroup S^e_{\epsilon, \delta} .

    Theorem 4.13. Let S^e_{\epsilon, \delta } be normal subgroup of {G} . If S_{(\epsilon, \delta)} = \{(l, {\nu }_{S_{\epsilon }}(l)e^{{i\eta }_{S_{\delta }}(l)}):l\in {G}\} is (\epsilon, \delta) - {C}{A}{F}{S} G. Then the (\epsilon, \delta) -complex anti fuzzy set {\overline{S}}_{(\epsilon, \delta)} = \{(lS^e_{(\epsilon, \delta)}, {\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta)})e^{{i\overline{\eta }}_{S_{\delta }}(lS^e_{(\epsilon, \delta)})}):l\in {G}\} of { {G}}/{S^e_{(\epsilon, \delta)}} is also a (\epsilon, \delta) - {C}{A}{F}{S} G of { {G}}/{S^e_{\epsilon, \delta }} . Where {\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta)})e^{{i\overline{\eta }}_{S_{\delta }}(lS^e_{(\epsilon, \delta)})} = {\mathrm{min} \{{\nu }_{S_{\epsilon }}(la)e^{i{\eta }_{S_{\delta }}(la)} :a\in S^e_{(\epsilon, \delta)}\}\ }.

    Proof. First we shall prove that {\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta)})e^{{i\overline{\eta }}_{S_{\delta }}(mS^e_{(\epsilon, \delta)})} is well defined. Let {lS}^e_{\epsilon, \delta } = mS^e_{\epsilon, \delta } then m = la, for some a\in S^e_{\epsilon, \delta } . Now {\overline{\nu }}_{S_{\epsilon }}(mS^e_{(\epsilon, \delta)})e^{{i\overline{\eta }}_{S_{\delta }}(mS^e_{\epsilon, \delta })} = {\mathrm{min} \{{\nu }_{S_{\epsilon }}(mb)e^{{i\eta }_{S_{\delta }}(mb)}:b\in S^e_{(\epsilon, \delta)}\}\ }

    \begin{eqnarray*} & = &{\mathrm{min} \{{\nu }_{S_{\epsilon }}(lab)e^{{i\eta }_{S_{\delta }}(lab)}:c = ab\in S^e_{(\epsilon, \delta )}\}\ } \\& = &{\mathrm{min} \{{\nu }_{S_{\epsilon }}(lc)e^{{i\eta }_{S_{\delta }}(lc)}:c\in S^e_{(\epsilon, \delta )}\}\ } \\& = &{\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta )})\ e^{{i\overline{\eta }}_{S_{\delta }}(lS^e_{(\epsilon, \delta )})} \end{eqnarray*}

    Therefore, {\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta)})e^{{i\overline{\eta }}_{S_{\delta }}(lS^e_{(\epsilon, \delta)})} is well defined.

    Consider, {\overline{\nu }}_{S_{\epsilon }}\{(lS^e_{(\epsilon, \delta)})(mS^e_{(\epsilon, \delta)})\}e^{{i\overline{\eta }}_{S_{\delta }}\{(lS^e_{(\epsilon, \delta)})(mS^e_{(\epsilon, \delta)})\}}

    \begin{eqnarray*} & = &{\overline{\nu }}_{S_{\epsilon }}(lmS^e_{(\epsilon, \delta )})e^{{i\overline{\eta }}_{S_{\delta }}(lmS^e_{(\epsilon, \delta )})}\\& = &{\mathrm{min} \{{\nu }_{S_{\epsilon }}(lma)e^{{i\eta }_{S_{\delta }}(lma)}:\ a\in S^e_{(\epsilon, \delta )}\}\ } \\&\le& \mathrm{min} \{\mathrm{max} \{{\nu }_{S_{\epsilon }}(lb)e^{{i\eta }_{S_{(\epsilon, \delta )}}(lb)},\\&&{\nu }_{S_{\epsilon }}(mc)e^{{i\eta }_{S_{\delta }}(mc)}\}\ :b,c\in S^e_{\epsilon ,\delta }\} \\&\le& \mathrm{max} \{{\mathrm{min} \{{\nu }_{S_{\epsilon }}(lb)e^{{i\eta }_{S_{\delta }}(lb)}\}\ }:b\in S^e_{\epsilon ,\delta },\\&&{\mathrm{min} \{{\nu }_{S_{\epsilon }}(mc)e^{{i\eta }_{S_{\delta }}(mc)}\}\ }:c\in S^e_{\epsilon ,\delta }\ \} \\&\le& \mathrm{max} \{{\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta )})e^{{i\overline{\eta }}_{S_{\delta }}(lS^e_{(\epsilon, \delta )})},\\&&{\overline{\nu }}_{S_{\epsilon }}(mS^e_{(\epsilon, \delta )})e^{{i\overline{\eta }}_{S_{\delta }}(mS^e_{(\epsilon, \delta )})}\}. \end{eqnarray*}
    \begin{eqnarray*} \text{Also,}\; \; &\; & {\overline{\nu }}_{S_{\epsilon }}({(lS^e_{(\epsilon, \delta )})}^{-1})e^{{i\overline{\eta }}_{S_{\delta }}({(lS^e_{(\epsilon, \delta )})}^{-1})} = \\&&{\overline{\nu }}_{S_{\epsilon }}(l^{-1}S^e_{\epsilon ,\delta })e^{{i\overline{\eta }}_{S_{\delta }}(l^{-1}S^e_{\epsilon ,\delta })} \\& = &{\mathrm{min} \{{\nu }_{S_{\epsilon }}(l^{-1}a)e^{{i\eta }_{S_{\delta }}(l^{-1}a)}:a\in S^e_{\epsilon ,\delta }\}\ } \\ &\le& {\mathrm{min} \{{\nu }_{S_{\epsilon }}(la)e^{{i\eta }_{S_{\delta }}(la)}:\ a\in S^e_{\epsilon ,\delta }\}\ } \\& = &{\overline{\nu }}_{S_{\epsilon }}(lS^e_{(\epsilon, \delta )})e^{{i\overline{\eta }}_{S_{\delta }}(lS^e_{(\epsilon, \delta )})}. \end{eqnarray*}

    This established the proof.

    Definition 4.14. Let S_{(\epsilon, \delta)} be a (\epsilon, \delta) - {C}{A}{F}{S}G of finite the group {G}. Then the cardinality of the set {G} /{S_{(\epsilon, \delta)}} for (\epsilon, \delta) - {C}{A}{F} left cosets of {G} by S_{(\epsilon, \delta)} is known as the index of (\epsilon, \delta) - {C}{A}{F}{S}G and is represent by [ {G}:l].

    Theorem 4.15. (\epsilon, \delta) -complex anti fuzzification of Lagrange's Theorem: Assume that {G} be finite group and S_{(\epsilon, \delta)} be (\epsilon, \delta) - {C}{A}{F} {S}G of {G} then {G} is divisible by the index of (\epsilon, \delta) - {C}{A}{F}{S}G of {G} .

    Proof. By Lemma 4.13, natural homomorphism h introduced from {G} to { {G}}/{S_{(\epsilon, \delta)}} . A subgroup is introduced by {H} = \{w\in {G}:{wS}_{(\epsilon, \delta)} = {eS}_{(\epsilon, \delta)}\} . By attempting to make use of the definition w\in {H} and g\in {G} , we have {wS}_{(\epsilon, \delta)}(g) = {eS}_{(\epsilon, \delta)}(g) . This indicates S_{(\epsilon, \delta)}(w^{-1}g) = S_{(\epsilon, \delta)}(g) . By Theorem 4.11, which shows that w\in S^e_{(\epsilon, \delta)}. As a result {H} is contain in S^e_{(\epsilon, \delta)}. Now, we can take arbitrary element w\in S^e_{(\epsilon, \delta)} and applying knowledge S^e_{(\epsilon, \delta)} is subgroup of {G} , we have S_{(\epsilon, \delta)}(w^{-1}) = S_{(\epsilon, \delta)}(e). From Theorem 4.11, the elements w^{-1}, \ g\in S^e_{(\epsilon, \delta)}, this mean {wS}_{(\epsilon, \delta)} = {eS}_{(\epsilon, \delta)}, implies that w\in {H}. Hence S^e_{(\epsilon, \delta)} is contain in {H} . We can conclude this the discussion that {H} = S^e_{(\epsilon, \delta)}.

    Unions of disjoint of right cosets is establish the partition of group {G} and is defined as {G} = z_1 {G} \cup z_2 {H}\cup \dots \cup z_l {H} . Where z_1{H} = {H}. There is a (\epsilon, \delta) - CAF cosets z_iS_{(\epsilon, \delta)} in { {G}}/{S^e_{(\epsilon, \delta)}} and also is a differentiable.

    Consider any coset z_iS^e_{(\epsilon, \delta)}. Let w\in S^e_{(\epsilon, \delta)}, then

    \begin{eqnarray*} h(z_iw) = z_iwS_{(\epsilon, \delta )} & = & z_iS_{(\epsilon, \delta )}wS_{(\epsilon, \delta )} \\& = & z_iS_{(\epsilon, \delta )}eS_{(\epsilon, \delta )}\\& = & z_iS_{(\epsilon, \delta )}. \end{eqnarray*}

    Hence, h maps every entity of z_iS^e_{(\epsilon, \delta)} into the (\epsilon, \delta) - CAF cosets z_iS_{(\epsilon, \delta)}.

    Currently, we can establish a basic association. {h}\ among the set \{z_iS^e_{(\epsilon, \delta)}:1\le i\le l\ \} and the set { {G}}/{S^e_{(\epsilon, \delta)}} defined by

    {h}(z_iS^e_{(\epsilon, \delta )}) = z_iS_{(\epsilon, \delta )},\ 1\le i\le l.

    The h is injective.

    As a result, suppose z_iS_{(\epsilon, \delta)} = z_lS_{(\epsilon, \delta)}, then {z^{-1}_lz}_iS_{(\epsilon, \delta)} = eS_{(\epsilon, \delta)} . Using (S) , we have {z^{-1}_lz}_i\in {H}, this means that z_iS^e_{(\epsilon, \delta)} = z_iS^e_{(\epsilon, \delta)} and thus {h} is injective. It is evident from the preceding discussion that [ {G}:\ S^e_{(\epsilon, \delta)}]\ and\ [ {G}:S_{(\epsilon, \delta)}] are equal. Since [ {G}:\ S^e_{(\epsilon, \delta)}] divides O({G}).

    This algebraic concept is shown in example.

    Example 4.16. Assume {G} = \{ < l, m:l^3 = m^2 = e, \ lm = ml^2 \} be a group of order 6 finite permutations. The (\epsilon, \delta) - {C} {A} {F} {S} G S_{(\epsilon, \delta)} of {G} according to the value \epsilon = 0.2 and \delta = {\frac{\pi}{4}} is discuss.

    \begin{equation*} S_{(\epsilon, \delta )}(\omega) = \!{\begin{cases} 0.3e^{\frac{\pi i}{3}} \quad \text{if}\; \omega = e,\\ 0.4e^{\frac{\pi i}{2}}, \quad \text{if} \; \omega = l, l^2 ,\\ 0.6e^{\pi i}, \quad \text{otherwise.} \\ \end{cases}} \end{equation*}

    The set of all (\epsilon, \delta) - CAF left cosets of {G} by S_{(\epsilon, \delta)} is given by:

    {G}/{S_{(\epsilon, \delta )}} = \{{eS}_{(\epsilon, \delta )},\ {lS}_{(\epsilon, \delta )},\ {mS}_{(\epsilon, \delta )}\}.

    It represents that [ {G}:S_{(\epsilon, \delta)}] = Card({G}/{S_{(\epsilon, \delta)}}) = 3.

    In this article, we defined the concept of \left(\epsilon, \delta \right) - {C}{A}{F}{S} as a useful modification of classical {C}{A}{F}{S} . We established \left(\epsilon, \delta \right) - {C}{A}{F}{S}{G} s and presented certain fundamental algebraic characterizations of this novel framework. In addition, we developed the \left(\epsilon, \delta \right) - CAF cosets and analyzed some of their algebraic characteristics. Furthermore, we investigated the \left(\epsilon, \delta \right) - CAFNSG that generates the \left(\epsilon, \delta \right) - CAFQG . As for the future works, we will extend the novel approach to the different algebraic models and then apply on the extension of group theory, and introduce (\epsilon, \delta) - CAF subrings. Furthermore, we will work on its applications. Moreover, the proposed method can be applied to other areas, such as design concept evaluation, and the assessment of a method for complex products based on cloud rough numbers [39]. This assessment can be regarded as multi-attribute group decision-making.

    The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

    This research work funded by Researchers Supporting Project number : RSPD2024R934, King Saud University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] F. M. Amirouche, Computational methods in multibody dynamics, Englewood Cliffs, NJ: Prentice-Hall, 1992.
    [2] J. G. De Jalon, E. Bayo, Kinematic and dynamic simulation of multibody systems: The real-time challenge, Springer, 2012. https://doi.org/10.1007/978-1-4612-2600-0
    [3] W. Jens, Dynamics of systems of rigid bodies, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-322-90942-8
    [4] Y. Liu, Z. Pan, X. Ge, Dynamics of multibody systems, Beijing: Higher Education Press, 2014.
    [5] P. E. Nikravesh, Computer-aided analysis of mechanical systems, Upper Saddle River: Prentice-Hall, 1988.
    [6] R. E. Roberson, R. Schwertassek, Dynamics of multibody systems, Berlin: Springer, 2012. https://doi.org/10.1007/978-3-642-86464-3
    [7] A. A. Shabana, Dynamics of multibody systems, New York: Cambridge University Press, 2020. https://doi.org/10.1017/9781108757553
    [8] S. Werner, Multibody systems handbook, Berlin: Springer, 1990. https://doi.org/10.1007/978-3-642-50995-7
    [9] W. M. Silver, On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators, Int. J. Rob. Res., 1 (1982), 60–70. https://doi.org/10.1177/027836498200100204 doi: 10.1177/027836498200100204
    [10] A. Cammarata, R. Sinatra, P. D. Maddìo, Static condensation method for the reduced dynamic modeling of mechanisms and structures, Arch. Appl. Mech., 89 (2019), 2033–2051. https://doi.org/10.1007/s00419-019-01560-x doi: 10.1007/s00419-019-01560-x
    [11] R. Featherstone, Rigid body dynamics algorithms, Springer, 2014. https://doi.org/10.1007/978-1-4899-7560-7
    [12] F. I. T. Petrescu, Advanced dynamics processes applied to an articulated robot, Processes, 10 (2022), 640. https://doi.org/10.3390/pr10040640 doi: 10.3390/pr10040640
    [13] X. Rui, J. Zhang, X. Wang, B. Rong, B. He, Z. Jin, Multibody system transfer matrix method: The past, the present, and the future, Int. J. Mech. Syst. Dyn., 2 (2022), 3–26. https://doi.org/10.1002/msd2.12037 doi: 10.1002/msd2.12037
    [14] R. Xue, D. Bestle, Reduced multibody system transfer matrix method using decoupled hinge equations, Int. J. Mech. Syst. Dyn., 1 (2021), 12. https://doi.org/10.1002/msd2.12026 doi: 10.1002/msd2.12026
    [15] H. Brandl, R. Johanni, M. Otter, A very efficient algorithm for the ssimulation of robots and similar multibody systems without inversion of the mass matrix, IFAC Proc., 19 (1986), 95–100. https://doi.org/10.1016/S1474-6670(17)59460-4 doi: 10.1016/S1474-6670(17)59460-4
    [16] A. Cammarata, R. Sinatra, P. D. Maddio, Interface reduction in flexible multibody systems using the floating frame of reference formulation, J. Sound Vib., 523 (2022). https://doi.org/10.1016/j.jsv.2021.116720 doi: 10.1016/j.jsv.2021.116720
    [17] K. S. Anderson, Recursive derivation of explicit equations of motion for efficient dynamic/control simulation of large multibody systems, Stanford University, 1990.
    [18] A. Jain, G. Rodriguez, Recursive flexible multibody system dynamics using spatial operators, J. Guid. Control Dyn., 15 (1992), 1453–1466. https://doi.org/10.2514/3.11409 doi: 10.2514/3.11409
    [19] H. Brandl, An algorithm for the simulation of multibody systems with kinematic loops, Proc.7th World Congr. Theory Mach. Mech., 1987.
    [20] F. Marques, A. P. Souto, P. Flores, On the constraints violation in forward dynamics of multibody systems, Multibody Syst. Dyn., 39 (2017), 385–419. https://doi.org/10.1007/s11044-016-9530-y doi: 10.1007/s11044-016-9530-y
    [21] P. E. Nikravesh, Some methods for dynamic analysis of constrained mechanical systems: a survey, Berlin: Springer, 1984. https://doi.org/10.1007/978-3-642-52465-3_14
    [22] J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng., 1 (1972), 1–16. https://doi.org/10.1016/0045-7825(72)90018-7 doi: 10.1016/0045-7825(72)90018-7
    [23] S. T. Lin, J. N. Huang, Stabilization of baumgarte's method using the Runge-Kutta approach, J. Mech. Design, 124 (2002). https://doi.org/10.1115/1.1519277 doi: 10.1115/1.1519277
    [24] P. Zhang, A Stabilization of constraints in the numerical solution of Euler-Lagrange equation, Chin. J. Eng. Math., 20 (2003), 13–18. https://doi.org/10.3969/j.issn.1005-3085.2003.04.003 doi: 10.3969/j.issn.1005-3085.2003.04.003
    [25] P. Flores, M. Machado, E. Seabra, T. Miguel, A parametric study on the baumgarte stabilization method for forward dynamics of constrained multibody systems, J. Comput. Nonlinear Dyn., 6 (2009), 011019. https://doi.org/10.1115/1.4002338 doi: 10.1115/1.4002338
    [26] K. T. Wehage, R. A. Wehage, B. Ravani, Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring, Mech. Mach. Theory, 92 (2015), 464–483. https://doi.org/10.1016/j.mechmachtheory.2015.06.006 doi: 10.1016/j.mechmachtheory.2015.06.006
    [27] P. Fisette, B. Vaneghem, Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme, Comput. Methods Appl. Mech. Eng., 135 (1996), 85–105. https://doi.org/10.1016/0045-7825(95)00926-4 doi: 10.1016/0045-7825(95)00926-4
    [28] E. J. Haug, J. Yen, Generalized coordinate partitioning methods for numerical integration of differential-algebraic equations of dynamics, In: Real-time integration methods for mechanical system simulation, Springer, 1991. https://doi.org/10.1007/978-3-642-76159-1_5
    [29] R. Singh, P. Likins, Singular value decomposition for constrained dynamical systems, J. Appl. Mech., 52 (1985), 943–948. https://doi.org/10.1115/1.3169173 doi: 10.1115/1.3169173
    [30] S. Kim, M. Vanderploeg, QR decomposition for state space representation of constrained mechanical dynamic systems, J. Mech. Design, 108 (1986), 183–188. https://doi.org/10.1115/1.3260800 doi: 10.1115/1.3260800
    [31] Q. Yu, J. Hong, A new violation correction method for constraint multibody systems, Chin. J. Theor. Appl., 30 (1998), 300–306. https://doi.org/10.6052/0459-1879-1998-3-1995-130 doi: 10.6052/0459-1879-1998-3-1995-130
    [32] G. Lyu, R. Liu, Errors control of constraint violation in dynamical simulation for constrained mechanical systems, J. Comput. Nonlinear Dyn., 14 (2019). https://doi.org/10.1115/1.4042493 doi: 10.1115/1.4042493
    [33] X. Xu, J. Luo, Z. Wu, Extending the modified inertia representation to constrained rigid multibody systems, J. Appl. Mech., 87 (2020), 011010. https://doi.org/10.1115/1.4045001 doi: 10.1115/1.4045001
    [34] J. Zhang, D. Liu, Y. Liu, A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix, Multibody Syst Dyn., 36 (2016), 87–110. https://doi.org/10.1007/s11044-015-9458-7 doi: 10.1007/s11044-015-9458-7
    [35] L. Zhang, X. Rui, J. Zhang, J. Gu, H. Zheng, T. Li, Study on transfer matrix method for the planar multibody system with closed-loops, J. Comput. Nonlinear Dyn., 16 (2021). https://doi.org/10.1115/1.4052433 doi: 10.1115/1.4052433
    [36] S. Yoon, R. M. Howe, D. T. Greenwood, Geometric elimination of constraint violations in numerical simulation of lagrangian equations, J. Mech. Design, 116 (1994), 1058–1064. https://doi.org/10.1115/1.2919487 doi: 10.1115/1.2919487
    [37] Y. Q, I. M. Chen, A direct violation correction method in numerical simulation of constrained multibody systems, Comput. Mech., 26 (2000), 52–57. https://doi.org/10.1007/s004660000149 doi: 10.1007/s004660000149
    [38] J. Hong, Computational multibody system dynamics, Beijing: Higher Education Press, 1999.
    [39] D. Negrut, A. Dyer, Adams/solver primer, MSC Software Ann Arbor, 2004.
    [40] J. Wittenburg, Dynamics of mulitibody systems-a brief review, Space Humanity, 1989, 89–92. https://doi.org/10.1016/B978-0-08-037877-0.50015-6 doi: 10.1016/B978-0-08-037877-0.50015-6
    [41] R. James, The unified modeling language reference manual, Addison-Wesley Professional, 2006.
    [42] F. Liu, J. Zhang, Q. Hu, A modified constraint force algorithm for flexible multibody dynamics with loop constraints, Nonlinear Dyn., 90 (2017), 1885–1906. https://doi.org/10.1007/s11071-017-3770-0 doi: 10.1007/s11071-017-3770-0
    [43] H. Lu, X. Rui, Y. Ding, Y. Chang, Y. Chen, J. Ding, X. Zhang, A hybrid numerical method for vibration analysis of linear multibody systems with flexible components, Appl. Math. Model., 101 (2022), 748–771. https://doi.org/10.1016/j.apm.2021.09.015 doi: 10.1016/j.apm.2021.09.015
    [44] Y. Lu, Z. Chang, Y. Lu, Y. Wang, Development and kinematics/statics analysis of rigid-flexible-soft hybrid finger mechanism with standard force sensor, Robot. Comput. Integr. Manuf., 67 (2021), 101978. https://doi.org/10.1016/j.rcim.2020.101978 doi: 10.1016/j.rcim.2020.101978
    [45] J. Zhang, X. Rui, F. Liu, Q. Zhou, L. Gu, Substructuring technique for dynamics analysis of flexible beams with large deformation, J. Shanghai Jiaotong Univ., 22 (2017), 562–569. https://doi.org/10.1007/s12204-017-1875-8 doi: 10.1007/s12204-017-1875-8
    [46] A. E. Nabawy, A. A. Abdelrahman, W. S. Abdalla, A. M. Abdelhaleem, S. S. Alieldin, Analysis of the dynamic behavior of the double wishbone suspension system, Int. J. Appl. Mech., 11 (2019), 1950044. https://doi.org/10.1142/S1758825119500443 doi: 10.1142/S1758825119500443
    [47] B. Zhang, Z. Li, Mathematical modeling and nonlinear analysis of stiffness of double wishbone independent suspension, J. Mech. Sci. Technol., 35 (2021), 5351–5357. https://doi.org/10.1007/s12206-021-1107-x doi: 10.1007/s12206-021-1107-x
  • This article has been cited by:

    1. Abd Ulazeez Alkouri, Eman A. Abuhijleh, Eman Almuhur, Ghada Alafifi, Sana Abu-Ghurra, Subgroups and Homomorphism Structures of Complex Pythagorean Fuzzy Sets, 2024, 23, 2224-2880, 614, 10.37394/23206.2024.23.65
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1870) PDF downloads(75) Cited by(1)

Figures and Tables

Figures(22)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog