
A new class of fuzzy constrained multi-objective games with fuzzy payoffs (FCMGFPs) is considered in this paper. First, Berge's maximum theorem for the fuzzy-vector-valued function is obtained. Based on this theorem and the Fan-Glicksberg fixed point theorem, the existence theorem of the fuzzy Pareto-Nash equilibrium for the FCMGFP is established. Second, the abstract rationality function for the FCMGFP is given by using a nonlinear scalarization function of interval vectors. Finally, a series of results, such as structural stability ((γ,ϵ)-stability) and robustness to ϵ-equilibrium ((γ,ϵ)-robustness), are obtained.
Citation: Wen Li, Deyi Li, Yuqiang Feng, Du Zou. Existence and stability of fuzzy Pareto-Nash equilibria for fuzzy constrained multi-objective games with fuzzy payoffs[J]. AIMS Mathematics, 2023, 8(7): 15907-15931. doi: 10.3934/math.2023812
[1] | Paolo Luzzini, Paolo Musolino . Perturbation analysis of the effective conductivity of a periodic composite. Networks and Heterogeneous Media, 2020, 15(4): 581-603. doi: 10.3934/nhm.2020015 |
[2] | Mohamed Camar-Eddine, Laurent Pater . Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures. Networks and Heterogeneous Media, 2013, 8(4): 913-941. doi: 10.3934/nhm.2013.8.913 |
[3] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[4] | Zhi Mao, Dan Luo . A robust adaptive grid method for first-order nonlinear singularly perturbed Fredholm integro-differential equations. Networks and Heterogeneous Media, 2023, 18(3): 1006-1023. doi: 10.3934/nhm.2023044 |
[5] | Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255 |
[6] | Dag Lukkassen, Annette Meidell, Peter Wall . On the conjugate of periodic piecewise harmonic functions. Networks and Heterogeneous Media, 2008, 3(3): 633-646. doi: 10.3934/nhm.2008.3.633 |
[7] | Fabio Camilli, Claudio Marchi . On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6(1): 61-75. doi: 10.3934/nhm.2011.6.61 |
[8] | Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017 |
[9] | François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006 |
[10] | Timothy Blass, Rafael de la Llave . Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241 |
A new class of fuzzy constrained multi-objective games with fuzzy payoffs (FCMGFPs) is considered in this paper. First, Berge's maximum theorem for the fuzzy-vector-valued function is obtained. Based on this theorem and the Fan-Glicksberg fixed point theorem, the existence theorem of the fuzzy Pareto-Nash equilibrium for the FCMGFP is established. Second, the abstract rationality function for the FCMGFP is given by using a nonlinear scalarization function of interval vectors. Finally, a series of results, such as structural stability ((γ,ϵ)-stability) and robustness to ϵ-equilibrium ((γ,ϵ)-robustness), are obtained.
In the present paper we study the effective conductivity of an
(λ+,λ−)∈[0,+∞[2∗≡[0,+∞[2∖{(0,0)}. |
We note that the limit case of zero conductivity corresponds to a thermal insulator. On the other hand, if the conductivity tends to
We now introduce the geometry of the problem. If
q=(q110⋯00⋱⋯0⋮⋮⋱⋮00⋯qnn), | (1) |
and
Q≡n∏j=1]0,qjj[⊆Rn. | (2) |
The set
˜Q≡]0,1[n,˜q≡In≡(10⋯00⋱⋯0⋮⋮⋱⋮00⋯1). |
Then we take
α∈]0,1[ and a bounded open connected subset Ω of Rn of class C1,α such that Rn∖¯Ω is connected. | (3) |
The symbol '
Sq[qI[ϕ]]≡⋃z∈Zn(qz+qI[ϕ]),Sq[qI[ϕ]]−≡Rn∖¯Sq[qI[ϕ]]. |
The set
With the aim of introducing the definition of the effective conductivity, we first have to introduce a boundary value problem for the Laplace equation. If
{Δu+j=0in Sq[qI[ϕ]],Δu−j=0in Sq[qI[ϕ]]−,u+j(x+qeh)=u+j(x)+δhjqjj∀x∈¯Sq[qI[ϕ]],∀h∈{1,…,n},u−j(x+qeh)=u−j(x)+δhjqjj∀x∈¯Sq[qI[ϕ]]−,∀h∈{1,…,n},λ+∂∂νqI[ϕ]u+j−λ−∂∂νqI[ϕ]u−j=0on ∂qI[ϕ],u+j−u−j=0on ∂qI[ϕ],∫∂qI[ϕ]u+jdσ=0, | (4) |
where
Definition 1.1. Let
λeff[q,ϕ,(λ+,λ−)]≡(λeffij[q,ϕ,(λ+,λ−)])i,j=1,…,n |
is the
λeffij[q,ϕ,(λ+,λ−)]≡1|Q|n{λ+∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx}∀i,j∈{1,…,n}. |
Remark 1.2. Under the assumptions of Definition 1.1, by applying the divergence theorem, one can verify that
λeffij[q,ϕ,(λ+,λ−)]=1|Q|n{λ+∫qI[ϕ]Du+i[q,ϕ,(λ+,λ−)](x)⋅Du+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−i[q,ϕ,(λ+,λ−)](x)⋅Du−j[q,ϕ,(λ+,λ−)](x)dx}∀i,j∈{1,…,n}. |
Indeed, if we set
˜u+k[q,ϕ,(λ+,λ−)](x)=u+k[q,ϕ,(λ+,λ−)](x)−xk∀x∈¯Sq[qI[ϕ]]˜u−k[q,ϕ,(λ+,λ−)](x)=u−k[q,ϕ,(λ+,λ−)](x)−xk∀x∈¯Sq[qI[ϕ]]−∀k∈{1,…,n}, |
then
1|Q|n{λ+∫qI[ϕ]Du+i[q,ϕ,(λ+,λ−)](x)⋅Du+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−i[q,ϕ,(λ+,λ−)](x)⋅Du−j[q,ϕ,(λ+,λ−)](x)dx}=1|Q|n{λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D(xi+˜u+i[q,ϕ,(λ+,λ−)](x))dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D(xi+˜u−i[q,ϕ,(λ+,λ−)](x))dx}=1|Q|n{λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅Dxidx+λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅Dxidx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx}=1|Q|n{λ+∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx+λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx}. |
Therefore, in order to conclude that the two definitions are equivalent, we need to show that
λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx=0. | (5) |
By an application of the divergence theorem for
∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx=∫∂qI[ϕ](∂∂νqI[ϕ]u+j[q,ϕ,(λ+,λ−)](x))˜u+i[q,ϕ,(λ+,λ−)](x)dσx | (6) |
and
∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx=∫∂Q(∂∂νQu−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx−∫∂qI[ϕ](∂∂νqI[ϕ]u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx. | (7) |
By the periodicity of
∫∂Q(∂∂νQu−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx=∫∂Q(∂∂νQxj)˜u−i[q,ϕ,(λ+,λ−)](x)dσx+∫∂Q(∂∂νQ˜u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx=∫∂Q(νQ(x)⋅ej)˜u−i[q,ϕ,(λ+,λ−)](x)dσx+∫∂Q(νQ(x)⋅D˜u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx=0, | (8) |
since contributions on opposite sides of
λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx=λ+∫∂qI[ϕ](∂∂νqI[ϕ]u+j[q,ϕ,(λ+,λ−)](x))˜u+i[q,ϕ,(λ+,λ−)](x)dσx−λ−∫∂qI[ϕ](∂∂νqI[ϕ]u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx. | (9) |
Since the validity of (4) implies that
˜u+i[q,ϕ,(λ+,λ−)](x)=˜u−i[q,ϕ,(λ+,λ−)](x)∀x∈∂qI[ϕ] |
and that
λ+∂∂νqI[ϕ]u+j[q,ϕ,(λ+,λ−)](x)−λ−∂∂νqI[ϕ]u−j[q,ϕ,(λ+,λ−)](x)=0∀x∈∂qI[ϕ], |
we then deduce by (9) that (5) holds true.
As a consequence, the effective conductivity matrix of Definition 1.1 coincides with the one analyzed by Ammari, Kang, and Touibi [5,p. 121] for a periodic two-phase composite and which can be deduced by classical homogenization theory (see, e.g., Allaire [1], Bensoussan, Lions, and Papanicolaou [6], Jikov, Kozlov, and Oleĭnik [27], Milton [41]). We emphasize that the justification of the expression of the effective conductivity via homogenization theory holds for 'small' values of the periodicity parameters. For further remarks on the definition of effective conductivity we refer to Gluzman, Mityushev, and Nawalaniec [24,§2.2].
The main goal of our paper is to give an answer to the following question:
What can be said on the regularity of the map(q,ϕ,(λ+,λ−))↦λeff[q,ϕ,(λ+,λ−)]? | (10) |
We answer to the above question by proving that for all
Λij:D+n(R)×(C1,α(∂Ω,Rn)∩A˜Q∂Ω)×]−1−ε,1+ε[→R |
such that
λeffij[q,ϕ,(λ+,λ−)]=δijλ−+(λ++λ−)Λij[q,ϕ,λ+−λ−λ++λ−] | (11) |
for all
In particular, in the present paper we follow the strategy of [39] where we have studied the behavior of the longitudinal flow along a periodic array of cylinders upon perturbations of the shape of the cross section of the cylinders and the periodicity structure, when a Newtonian fluid is flowing at low Reynolds numbers around the cylinders. More precisely, we transform the problem into a set of integral equations defined on a fixed domain and depending on the set of variables
Formula (11) implies that the effective conductivity
(q,ϕ,(λ+,λ−))↦λeffij[q,ϕ,(λ+,λ−)] | (12) |
from
λeffij[qδ,ϕδ,(λ+δ,λ−δ)]=∞∑k=0ckδk | (13) |
for
Furthermore, such a high regularity result can be seen as a theoretical justification which guarantees that differential calculus may be used in order to characterize critical periodicity-shape-conductivity triples
As already mentioned, our method is based on integral equations, that are derived by potential theory. However, integral equations could also be deduced by the generalized alternating method of Schwarz (cf. Gluzman, Mityushev, and Nawalaniec [24] and Drygaś, Gluzman, Mityushev, and Nawalaniec [19]), which also allows to produce expansions in the concentration.
Incidentally, we observe that the are several contributions concerning optimization of effective parameters from many different points of view. For example, one can look for optimal lattices without confining to rectangular distributions. In this direction, Kozlov [29] and Mityushev and Rylko [44] have discussed extremal properties of hexagonal lattices of disks. On the other hand, even if, in wide generality, the optimal composite does not exist (cf. Cherkaev [13]), one can discuss the dependence on the shape under some specific restrictions. For example, one could build composites with prescribed effective conductivity as described in Lurie and Cherkaev [38] (see also Gibiansky and Cherkaev [22]). In Rylko [49], the author has studied the influence of perturbations of the shape of the circular inclusion on the macroscopic conductivity properties of 2D dilute composites. Inverse problems concerning the determination of the shape of equally strong holes in elastic structures were considered by Cherepanov [12]. For an experimental work concerning the analysis of particle reinforced composites we mention Kurtyka and Rylko [30]. Also, we mention that one could apply the topological derivative method as in Novotny and Sokołowski [46] for the optimal design of microstructures.
Let
Let
Sq[ΩQ]≡⋃z∈Zn(qz+ΩQ),Sq[ΩQ]−≡Rn∖¯Sq[ΩQ]. |
If
Ckb(¯Sq[ΩQ]−)≡{u∈Ck(¯Sq[ΩQ]−):Dγu is bounded ∀γ∈Nn s. t. |γ|≤k}, |
and we endow
‖u‖Ckb(¯Sq[ΩQ]−)≡∑|γ|≤ksupx∈¯Sq[ΩQ]−|Dγu(x)|∀u∈Ckb(¯Sq[ΩQ]−), |
where
Ck,βb(¯Sq[ΩQ]−)≡{u∈Ck,β(¯Sq[ΩQ]−):Dγu is bounded ∀γ∈Nn s. t. |γ|≤k}, |
and we endow
‖u‖Ck,βb(¯Sq[ΩQ]−)≡∑|γ|≤ksupx∈¯Sq[ΩQ]−|Dγu(x)|+∑|γ|=k|Dγu:¯Sq[ΩQ]−|β∀u∈Ck,βb(¯Sq[ΩQ]−), |
where
Ckq(¯Sq[ΩQ]−)≡{u∈Ckb(¯Sq[ΩQ]−):u is q-periodic}, |
which we regard as a Banach subspace of
Ck,βq(¯Sq[ΩQ]−)≡{u∈Ck,βb(¯Sq[ΩQ]−):u is q-periodic}, |
which we regard as a Banach subspace of
Our method is based on a periodic version of classical potential theory. In order to construct periodic layer potentials, we replace the fundamental solution of the Laplace operator by a
ΔSq,n=∑z∈Znδqz−1|Q|n, |
where
Sq,n(x)=−∑z∈Zn∖{0}1|Q|n4π2|q−1z|2e2πi(q−1z)⋅x |
in the sense of distributions in
We now introduce periodic layer potentials. Let
vq[∂ΩQ,μ](x)≡∫∂ΩQSq,n(x−y)μ(y)dσy∀x∈Rn,wq,∗[∂ΩQ,μ](x)≡∫∂ΩQνΩQ(x)⋅DSq,n(x−y)μ(y)dσy∀x∈∂ΩQ, |
for all
v+q[∂ΩQ,μ]≡vq[∂ΩQ,μ]|¯Sq[ΩQ] v−q[∂ΩQ,μ]≡vq[∂ΩQ,μ]|¯Sq[ΩQ]−. |
We collect in the following theorem some properties of
Theorem 2.1. Let
(i) The map from
(ii) Let
∂∂νΩQv±q[∂ΩQ,μ]=∓12μ+wq,∗[∂ΩQ,μ]on ∂ΩQ. |
Moreover,
∫∂ΩQwq,∗[∂ΩQ,μ]dσ=(12−|ΩQ|n|Q|n)∫∂ΩQμdσ. |
(iii) Let
Δvq[∂ΩQ,μ]=0in Rn∖∂Sq[ΩQ]. |
(iv) The operator
In order to consider shape perturbations of the inclusions of the composite, we introduce a class of diffeomorphisms. Let
A˜Q∂Ω≡{ϕ∈A∂Ω:ϕ(∂Ω)⊆˜Q},A˜Q¯Ω′≡{Φ∈A¯Ω′:Φ(¯Ω′)⊆˜Q}. | (14) |
If
We conclude this section of preliminaries with some results on problem (4). By means of the following proposition, whose proof is of immediate verification, we can transform problem (4) into a
Proposition 2.2. Let
(u+j,u−j)∈C1,αloc(¯Sq[qI[ϕ]])×C1,αloc(¯Sq[qI[ϕ]]−) |
solves problem (4) if and only if the pair
(˜u+j,˜u−j)∈C1,αq(¯Sq[qI[ϕ]])×C1,αq(¯Sq[qI[ϕ]]−) |
delivered by
˜u+j(x)=u+j(x)−xj∀x∈¯Sq[qI[ϕ]],˜u−j(x)=u−j(x)−xj∀x∈¯Sq[qI[ϕ]]−, |
solves
{Δ˜u+j=0in Sq[qI[ϕ]],Δ˜u−j=0in Sq[qI[ϕ]]−,˜u+j(x+qeh)=˜u+j(x)∀x∈¯Sq[qI[ϕ]],∀h∈{1,…,n},˜u−j(x+qeh)=˜u−j(x)∀x∈¯Sq[qI[ϕ]]−,∀h∈{1,…,n},λ+∂∂νqI[ϕ]˜u+j−λ−∂∂νqI[ϕ]˜u−j=(λ–λ+)(νqI[ϕ])jon ∂qI[ϕ],˜u+j−˜u−j=0on ∂qI[ϕ],∫∂qI[ϕ]˜u+jdσ=−∫∂qI[ϕ]yjdσy. | (15) |
Next, we show that problems (4) and (15) admit at most one solution.
Proposition 2.3. Let
(i) Problem (4) has at most one solution in
(ii) Problem (15) has at most one solution in
Proof. By the equivalence of problems (4) and (15) of Proposition 2.2, it suffices to prove statement (ⅱ), which we now consider. By the linearity of the problem, it clearly suffices to show that if
{Δ˜u+j=0in Sq[qI[ϕ]],Δ˜u−j=0in Sq[qI[ϕ]]−,˜u+j(x+qeh)=˜u+j(x)∀x∈¯Sq[qI[ϕ]],∀h∈{1,…,n},˜u−j(x+qeh)=˜u−j(x)∀x∈¯Sq[qI[ϕ]]−,∀h∈{1,…,n},λ+∂∂νqI[ϕ]˜u+j−λ−∂∂νqI[ϕ]˜u−j=0on ∂qI[ϕ],˜u+j−˜u−j=0on ∂qI[ϕ],∫∂qI[ϕ]˜u+jdσ=0, | (16) |
then
Let
∂∂νqI[ϕ]˜u−j=0on ∂qI[ϕ]. |
Accordingly, the divergence theorem implies that
0≤∫Q∖¯qI[ϕ]|D˜u−j(y)|2dy=∫∂Q˜u−j(y)∂∂νQ˜u−j(y)dσy−∫∂qI[ϕ]˜u−j(y)∂∂νqI[ϕ]˜u−j(y)dσy=0. |
Indeed, by the
∫∂Q˜u−j(y)∂∂νQ˜u−j(y)dσy=0. |
Then, there exists
Next we consider the case
∂∂νqI[ϕ]˜u+j=0on ∂qI[ϕ]. |
By the uniqueness of the solution of the interior Neumann problem up to constants, there exists
In this section, we convert problem (4) into an equivalent integral equation. As done in [39] for the longitudinal flow along a periodic array of cylinders, we do so by representing the solution in terms of single layer potentials, whose densities solve certain integral equations. Therefore, we first start with the following proposition regarding the invertibility of an integral operator that will appear in such integral formulation of problem (4).
Proposition 3.1. Let
Kγ[μ]=12μ−γwq,∗[∂qI[ϕ],μ]on ∂qI[ϕ],∀μ∈C0,α(∂qI[ϕ]). |
Then the following statements hold.
(i)
(ii)
Proof. We first consider statement (ⅰ). If
γ=γ+−γ−γ++γ−. |
Accordingly, we have to consider only the limit cases
K1[μ]=12μ−wq,∗[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
The jump formula for the normal derivative of the single layer potential of Theorem 2.1 (ⅱ) implies that
μ=∂∂νqI[ϕ]v−q[∂qI[ϕ],μ]−∂∂νqI[ϕ]v+q[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
Next, we consider the case
K−1[μ]=12μ+wq,∗[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
The jump formula for the normal derivative of the single layer potential of Theorem 2.1 (ⅱ) implies that
μ=∂∂νqI[ϕ]v−q[∂qI[ϕ],μ]−∂∂νqI[ϕ]v+q[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
Next, we consider statement (ⅱ). The Fredholm alternative theorem and the compactness of
Kγ[μ]=12μ−γwq,∗[∂qI[ϕ],μ]=0, | (17) |
then
0=∫∂qI[ϕ]Kγ[μ]dσ={12−γ(12−|qI[ϕ]||Q|)}∫∂qI[ϕ]μdσ. |
A straightforward computation shows that
We are now ready to show that problem (4) can be reformulated in terms of an integral equation which admits a unique solution.
Theorem 3.2. Let
(u+j[q,ϕ,(λ+,λ−)],u−j[q,ϕ,(λ+,λ−)])∈C1,αloc(¯Sq[qI[ϕ]])×C1,αloc(¯Sq[qI[ϕ]]−). |
Moreover
u+j[q,ϕ,(λ+,λ−)](x)=v+q[∂qI[ϕ],μj](x)−−∫∂qI[ϕ]v+q[∂qI[ϕ],μj](y)dσy−−∫∂qI[ϕ]yjdσy+xj∀x∈¯Sq[qI[ϕ]],u−j[q,ϕ,(λ+,λ−)](x)=v−q[∂qI[ϕ],μj](x)−−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](y)dσy−−∫∂qI[ϕ]yjdσy+xj∀x∈¯Sq[qI[ϕ]]−, | (18) |
where
12μj−λ+−λ−λ++λ−wq,∗[∂qI[ϕ],μj]=λ+−λ−λ++λ−(νqI[ϕ])jon ∂qI[ϕ]. | (19) |
Proof. We first note that, by Proposition 2.3 (ⅱ), problem (4) has at most one solution in
(νqI[ϕ])j∈C0,α(∂qI[ϕ])0, |
Proposition 3.1 (ⅰ) implies that there exists a unique solution
λ+(−12μj+wq,∗[∂qI[ϕ],μj])−λ−(12μj+wq,∗[∂qI[ϕ],μj])=(λ–λ+)(νqI[ϕ])jon ∂qI[ϕ],v+q[∂qI[ϕ],μj]−−∫∂qI[ϕ]v+q[∂qI[ϕ],μj]dσ−v−q[∂qI[ϕ],μj]+−∫∂qI[ϕ]v−q[∂qI[ϕ],μj]dσ=0on ∂qI[ϕ]. |
Accordingly, the properties of the single layer potential (see Theorem 2.1) together with Proposition 2.2 imply that the pair of functions defined by (18) solves problem (4).
The previous theorem provides an integral equation formulation of problem (4) and a representation formula for its solution. We conclude this section by writing the effective conductivity in a form which makes use of the density
∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx=∫∂qI[ϕ]u+j[q,ϕ,(λ+,λ−)](y)(νqI[ϕ](y))idσy=∫∂qI[ϕ](v+q[∂qI[ϕ],μj](y)−−∫∂qI[ϕ]v+q[∂qI[ϕ],μj](z)dσz−−∫∂qI[ϕ]zjdσz+yj)(νqI[ϕ](y))idσy=∫∂qI[ϕ]v+q[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]v+q[∂qI[ϕ],μj](z)dσz−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]zjdσz+δij|qI[ϕ]|n. |
Similarly, we have
∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx=∫∂Qu−j[q,ϕ,(λ+,λ−)](y)(νQ(y))idσy−∫∂qI[ϕ]u−j[q,ϕ,(λ+,λ−)](y)(νqI[ϕ](y))idσy=δij|Q|n−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy+∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](z)dσz+∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]zjdσz−δij|qI[ϕ]|n. |
Indeed
∫∂Q(v−q[∂qI[ϕ],μj](y)−−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](z)dσz−−∫∂qI[ϕ]zjdσz+yj)(νQ(y))idσy=∫∂Qyj(νQ(y))idσy=δij|Q|n. |
Moreover, by the divergence theorem, we have
∫∂qI[ϕ](νqI[ϕ](y))idσy=0∀i∈{1,…,n}. |
Accordingly, by the continuity of the single layer potential, we have that
λeffij[q,ϕ,(λ+,λ−)]=1|Q|n{λ+∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx}=1|Q|n{δijλ−|Q|n+(λ+−λ−)(∫∂qI[ϕ]vq[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]vq[∂qI[ϕ],μj](z)dσz−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]zjdσz+δij|qI[ϕ]|n)}=δijλ−+(λ++λ−){1|Q|n(λ+−λ−)(λ++λ−)(∫∂qI[ϕ]vq[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy+δij|qI[ϕ]|n)}. | (20) |
Thanks to Theorem 3.2, the study of problem (4) can be reduced to the study of the boundary integral equation (19). Therefore, our first step in order to study the dependence of the solution of problem (4) upon the triple
Before starting with this plan, we note that equation (19) is defined on the
Lemma 4.1. Let
12θj(t)−λ+−λ−λ++λ−∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(θj∘ϕ(−1))(q−1s)dσs=λ+−λ−λ++λ−(νqI[ϕ](qϕ(t)))j∀t∈∂Ω, | (21) |
if and only if the function
μj(x)=(θj∘ϕ(−1))(q−1x)∀x∈∂qI[ϕ] | (22) |
solves equation (19). Moreover, equation (21) has a unique solution in
Proof. The equivalence of equation (21) in the unknown
Inspired by Lemma 4.1, for all
Mj:D+n(R)×(C1,α(∂Ω,Rn)∩A˜Q∂Ω)×]−2,2[×C0,α(∂Ω)→C0,α(∂Ω) |
by setting
Mj[q,ϕ,γ,θ](t)≡12θ(t)−γ∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(θ∘ϕ(−1))(q−1s)dσs−γ(νqI[ϕ](qϕ(t)))j∀t∈∂Ω, | (23) |
for all
Mj[q,ϕ,λ+−λ−λ++λ−,θ]=0 on ∂Ω. | (24) |
Our aim is to recover the regularity of the solution
Lemma 4.2. Let
(i) The map from
V[q,ϕ,θ](t)≡∫qϕ(∂Ω)Sq,n(qϕ(t)−s)(θ∘ϕ(−1))(q−1s)dσs∀t∈∂Ω, |
is real analytic.
(ii) The map from
W∗[q,ϕ,θ](t)≡∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(θ∘ϕ(−1))(q−1s)dσs∀t∈∂Ω, |
is real analytic.
Next, we state the following technical lemma about the real analyticity upon the diffeomorphism
Lemma 4.3. Let
(i) For each
∫ϕ(∂Ω)w(s)dσs=∫∂Ωw∘ϕ(y)˜σ[ϕ](y)dσy,∀ω∈L1(ϕ(∂Ω)). |
Moreover, the map
(ii) The map from
We are now ready to prove that the solutions of (24) depend real analytically upon the triple 'periodicity-shape-contrast'. We do so by means of the following.
Proposition 4.4. Let
(i) For each
Mj[q,ϕ,γ,θj]=0on ∂Ω, |
and we denote such a function by
(ii) There exist
D+n(R)×(C1,α(∂Ω,Rn)∩A˜Q∂Ω)×]−1−ε,1+ε[ |
to
θj[q,ϕ,γ]=Θj[q,ϕ,γ]∀(q,ϕ,γ)∈D+n(R)×(C1,α(∂Ω,Rn)∩A˜Q∂Ω)×[−1,1]. |
Proof. The proof of statement (ⅰ) is a straightforward modification of the proof of Lemma 4.1. Indeed, it suffices to replace
Next we turn to consider statement (ⅱ). As a first step we have to study the regularity of the map
∂θMj[q,ϕ,γ,θj[q,ϕ,γ]](ψ)(t)=12ψ(t)−γ∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(ψ∘ϕ(−1))(q−1s)dσs∀t∈∂Ω, |
for all
In this section we prove our main result that answers to question (10) on the behavior of the effective conductivity upon the triple 'periodicity-shape-conductivity'. To this aim, we exploit the representation formula in (20) of the effective conductivity and the analyticity result of Proposition 4.4.
Theorem 5.1. Let
λeffij[q,ϕ,(λ+,λ−)]≡δijλ−+(λ++λ−)Λij[q,ϕ,λ+−λ−λ++λ−] | (25) |
for all
Proof. Let
Λij[q,ϕ,γ]≡1|Q|nγ{∫∂qI[ϕ]vq[∂qI[ϕ],(Θj[q,ϕ,γ]∘ϕ(−1))(q−1⋅)](y)(νqI[ϕ](y))idσy+δij|qI[ϕ]|n} |
for all
Λij[q,ϕ,γ]=1|Q|nγ{∫∂ΩV[q,ϕ,Θj[q,ϕ,γ]](y)(νqI[ϕ](qϕ(y)))i˜σ[qϕ](y)dσy+δij|qI[ϕ]|n} |
for all
|Q|n=n∏l=1qll∀q∈D+n(R), |
clearly
|qI[ϕ]|n=∫qI[ϕ]1dy=|Q|n∫I[ϕ]1dy=|Q|n1n∫ϕ(∂Ω)y⋅νI[ϕ](y)dσy=|Q|n1n∫∂Ωϕ(y)⋅νI[ϕ](ϕ(y))˜σ[ϕ](y)dσy. |
Then, by taking into account that the pointwise product in Schauder spaces is bilinear and continuous, and that the integral in Schauder spaces is linear and continuous, Lemma 4.3 implies that the map from
In the present paper we considered the effective conductivity of a two or three dimensional periodic two-phase composite material. The composite is obtained by introducing into a homogeneous matrix a periodic set of inclusions of a large class of sufficiently smooth shapes. We proved a regularity result for the effective conductivity of such a composite upon perturbations of the periodicity structure, of the shape of the inclusions, and of the conductivities of each material. Namely, we showed the real analytic dependence of the effective conductivity as a functional acting between suitable Banach spaces.
The consequences of our result are twofold. First, this high regularity result represents a theoretical justification to guarante that differential calculus may be used in order to characterize critical periodicity-shape-conductivity triples
λeffij[qδ,ϕδ,(λ+δ,λ−δ)]=∞∑k=0ckδk |
for
Both the authors are members of the 'Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni' (GNAMPA) of the 'Istituto Nazionale di Alta Matematica' (INdAM) and acknowledge the support of the Project BIRD191739/19 'Sensitivity analysis of partial differential equations in the mathematical theory of electromagnetism' of the University of Padova. P.M. acknowledges the support of the grant 'Challenges in Asymptotic and Shape Analysis - CASA' of the Ca' Foscari University of Venice. The authors wish to thank the anonymous referees for many valuable comments that have improved the presentation of the paper.
[1] | G. Alefeld, G. Mayer, Interval analysis: Theory and applications, J. Comput. Appl. Math., 121 (2000), 421–464. |
[2] | L. Anderlini, D. Canning, Structural stability implies robustness to bound rationality, J. Econ. Theory, 101 (2001), 395–322. |
[3] | J. P. Aubin, I. Ekeland, Applied nonlinear analysis, New York: John Wiley and Sons Inc., 1984. |
[4] | R. E. Bellman, L. A. Zadeh, Decision making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. |
[5] | C. Berge, Topological spaces, New York: Dover Publications, 1997. |
[6] | H. Bigdeli, H. Hassanpour, A satisfactory strategy of multiobjective two person matrix games with fuzzy payoffs, Iran. J. Fuzzy Syst., 13 (2016), 17–33. |
[7] | J. J. Buckley, Multiple goals non cooperative conflict under uncertainty: A fuzzy set approach, Fuzzy Set. Syst., 13 (1984), 107–124. |
[8] | D. Butnariu, Fuzzy games: A description of the concept, Fuzzy Set. Syst., 1 (1978), 181–192. |
[9] | L. Campos, Fuzzy linear programming models to solve fuzzy matrix games, Fuzzy Set. Syst., 32 (1989), 275–289. |
[10] |
Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, M. D. Jiménez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Set. Syst., 219 (2013), 49–67. http://dx.doi.org/10.1016/j.fss.2012.12.004 doi: 10.1016/j.fss.2012.12.004
![]() |
[11] | S. S. Chang, Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Set. Syst., 32 (1989), 359–367. |
[12] |
M. Clemente, F. R. Fernández, J. Puerto, Pareto-optimal security strategies in matrix games with fuzzy payoffs, Fuzzy Set. Syst., 176 (2011), 36–45. http://dx.doi.org/10.1016/j.fss.2011.03.006 doi: 10.1016/j.fss.2011.03.006
![]() |
[13] |
W. D. Collins, C. Hu, Studying interval valued matrix games with fuzzy logic, Soft Comput., 12 (2008), 147–155. http://dx.doi.org/10.1007/s00500-007-0207-6 doi: 10.1007/s00500-007-0207-6
![]() |
[14] |
X. P. Ding, Constrained multiobjective games in general topological spaces, Comput. Math. Appl., 39 (2000), 23–30. https://doi.org/10.1016/S0898-1221(99)00330-2 doi: 10.1016/S0898-1221(99)00330-2
![]() |
[15] | X. P. Ding, Existence of Pareto equilibria for constrained multiobjective games in H-space, Comput. Math. Appl., 39 (2000), 125–134. |
[16] |
X. P. Ding, Pareto equilibria of multicriteria games without compactness, continuity and concavity, Appl. Math. Mech., 17 (1996), 847–854. https://doi.org/10.1007/BF00127184 doi: 10.1007/BF00127184
![]() |
[17] |
D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613–626. https://doi.org/10.1080/00207727808941724 doi: 10.1080/00207727808941724
![]() |
[18] |
K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952), 121–126. http://dx.doi.org/10.1073/pnas.38.2.121 doi: 10.1073/pnas.38.2.121
![]() |
[19] | D. Garagic, J. B. Cruz, An approach to fuzzy non-cooperative Nash games, J. Optim. Theory Appl., 118 (2003), 475–491. |
[20] |
D. Ghosh, Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions, J. Appl. Math. Comput., 53 (2017), 709–731. http://dx.doi.org/10.1007/s12190-016-0990-2 doi: 10.1007/s12190-016-0990-2
![]() |
[21] |
D. Ghosh, R. S. Chauhan, R. Mesiar, A. K. Debnath, Generalized Hukuhara Gˆateaux and Frˊechet derivatives of interval-valued functions and their application in optimization with interval-valued functions, Inform. Sci., 510 (2020), 317–340. http://dx.doi.org/10.1016/j.ins.2019.09.023 doi: 10.1016/j.ins.2019.09.023
![]() |
[22] | I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170–174. |
[23] | A. González, M. A. Vila, A discrete method for studying indifference and order relations between fuzzy numbers, Inform. Sci., 56 (1991), 245–258. |
[24] |
N. V. Hung, V. M. Tam, D. O'Regan, Y. J. Cho, A new class of generalized multiobjective games in bounded rationality with fuzzy mappings: Structural (λ,ϵ)-stability and (λ,ϵ)-robustness to ϵ-equilibria, J. Comput. Appl. Math., 372 (2020), 112735. http://dx.doi.org/10.1016/j.cam.2020.112735 doi: 10.1016/j.cam.2020.112735
![]() |
[25] | W. K. Kim, K. H. Lee, Generalized fuzzy games and fuzzy equilibria, Fuzzy Set. Syst., 122 (2001), 293–301. |
[26] | M. Larbani, Solving bi-matrix games with fuzzy payoffs by introducing nature as a third player, Fuzzy Set. Syst., 160 (2009), 657–666. |
[27] |
D. F. Li, Linear programming approach to solve interval-valued matrix games, Omega, 39 (2011), 655–666. http://dx.doi.org/10.1016/j.omega.2011.01.007 doi: 10.1016/j.omega.2011.01.007
![]() |
[28] | W. Li, D. Y. Li, Y. Q. Feng, D. Zou, Weak Pareto-Nash equilibria of generalized interval-valued multiobjective games with fuzzy mappings, unpublished work. |
[29] | Z. Lin, Essential components of the set of weakly Pareto-Nash equilibrium points for multiobjective generalized games in two different topological spaces, J. Optim. Theory Appl., 124 (2005), 387–405. |
[30] |
S. T. Liu, C. Kao, Matrix games with interval data, Comput. Ind. Eng., 56 (2009), 1697–1700. http://dx.doi.org/10.1016/j.cie.2008.06.002 doi: 10.1016/j.cie.2008.06.002
![]() |
[31] |
V. Lupulescu, Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Inform. Sci., 248 (2013), 50–67. http://dx.doi.org/10.1016/j.ins.2013.06.004 doi: 10.1016/j.ins.2013.06.004
![]() |
[32] | T. Maeda, On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs, Fuzzy Set. Syst., 139 (2003), 283–296. |
[33] |
Y. Miyazaki, A remark on topological robustness to bounded rationality in semialgebraic models, J. Math. Econom., 55 (2014), 33–35. http://dx.doi.org/10.1016/j.jmateco.2014.09.008 doi: 10.1016/j.jmateco.2014.09.008
![]() |
[34] |
Y. Miyazaki, H. Azuma, (λ,ϵ)-stable model and essential equilibria, Math. Soc. Sci., 65 (2013), 85–91. http://dx.doi.org/10.1016/j.mathsocsci.2012.08.002 doi: 10.1016/j.mathsocsci.2012.08.002
![]() |
[35] | R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966. |
[36] | R. E. Moore, Method and applications of interval analysis, Philadelphia: Society for Industrial and Applied Mathematics, 1987. |
[37] | I. Nishizaki, M. Sakawa, Equilibrium solutions in multiobjective bimatrix games with fuzzy payoffs and fuzzy goals, Fuzzy Set. Syst., 111 (2000), 99–116. |
[38] |
R. Osuna-Gómez, Y. Chalco, B. Hernández-Jiménez, G. Ruiz-Garzón, New efficiency conditions for multiobjective interval-valued programming problems, Inform. Sci., 420 (2017), 235–248. http://dx.doi.org/10.1016/j.ins.2017.08.022 doi: 10.1016/j.ins.2017.08.022
![]() |
[39] | J. Ramík, J. Rímánek, Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Set. Syst., 16 (1985), 123–150. |
[40] |
V. Scalzo, On the existence of maximal elements, fixed points and equilibria of generalized games in a fuzzy environment, Fuzzy Set. Syst., 272 (2015), 126–133. http://dx.doi.org/10.1016/j.fss.2015.02.006 doi: 10.1016/j.fss.2015.02.006
![]() |
[41] |
Q. Q. Song, L. S. Wang, On the stability of the solution for multiobjective generalized games with the payoffs perturbed, Nonlinear Anal., 73 (2010), 2680–2685. http://dx.doi.org/10.1016/j.na.2010.06.048 doi: 10.1016/j.na.2010.06.048
![]() |
[42] |
L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311–1328. http://dx.doi.org/10.1016/j.na.2008.12.005 doi: 10.1016/j.na.2008.12.005
![]() |
[43] |
J. Tao, Z. Zhang, Properties of interval-valued function space under the gH-difference and their application to semi-linear interval differential equations, Adv. Differ. Equ., 2016 (2016), 45–72. http://dx.doi.org/10.1186/s13662-016-0759-9 doi: 10.1186/s13662-016-0759-9
![]() |
[44] | S. Y. Wang, Existence of a Pareto equilibrium, J. Optim. Theory Appl., 79 (1993), 373–384. |
[45] |
C. Wang, R. P. Agarwal, D. O'Regan, Calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued functions on time scales, Fuzzy Set. Syst., 375 (2019), 1–52. http://dx.doi.org/10.1016/j.fss.2018.12.008 doi: 10.1016/j.fss.2018.12.008
![]() |
[46] |
H. C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function, Eur. J. Oper. Res., 176 (2007), 46–59. http://dx.doi.org/10.1016/j.ejor.2005.09.007 doi: 10.1016/j.ejor.2005.09.007
![]() |
[47] |
Z. Yang, A coalitional extension of generalized fuzzy games, Fuzzy Set. Syst., 383 (2019), 68–79. http://dx.doi.org/10.1016/j.fss.2019.06.010 doi: 10.1016/j.fss.2019.06.010
![]() |
[48] |
C. Yu, J. Yu, Bounded rationality in multiobjective games, Nonlinear Anal.-Theor., 67 (2007), 930–937. http://dx.doi.org/10.1016/j.na.2006.06.050 doi: 10.1016/j.na.2006.06.050
![]() |
[49] |
C. Yu, J. Yu, On structural stability and robustness to bounded rationality, Nonlinear Anal.-Theor., 65 (2006), 583–529. http://dx.doi.org/10.1016/j.na.2005.09.039 doi: 10.1016/j.na.2005.09.039
![]() |
[50] | J. Yu, Game theory and nonlinear analysis, Beijing: Science Press, 2011. |
[51] |
J. Yu, H. Yang, C. Yu, Structural stability and robustness to bounded rationality for non-compact cases, J. Global Optim., 44 (2009), 149–157. http://dx.doi.org/10.1007/s10898-008-9316-8 doi: 10.1007/s10898-008-9316-8
![]() |
[52] | J. Yu, X. Z. Yuan, The study of Pareto equilibria for multiobjective games by fixed point and ky fan minimax inequality methods, Comput. Math. Appl., 35 (1998), 17–24. |
[53] |
J. Yu, Z. Yang, N. F. Wang, Further results on structural stability and robustness to bounded rationality, J. Math. Econ., 67 (2016), 49–53. http://dx.doi.org/10.1016/j.jmateco.2016.09.009 doi: 10.1016/j.jmateco.2016.09.009
![]() |
[54] | X. Z. Yuan, E. Tarafdar, Non-compact Pareto equilibria for multiobjective games, J. Math. Anal. Appl., 204 (1996), 156–163. |
[55] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |
[56] | M. Zeleny, Game with multiple payoffs, Int. J. Game Theory, 4 (1976), 179–191. |
1. | Wojciech Nawalaniec, Katarzyna Necka, Vladimir Mityushev, Effective Conductivity of Densely Packed Disks and Energy of Graphs, 2020, 8, 2227-7390, 2161, 10.3390/math8122161 | |
2. | Matteo Dalla Riva, Paolo Luzzini, Paolo Musolino, Multi-parameter analysis of the obstacle scattering problem, 2022, 38, 0266-5611, 055004, 10.1088/1361-6420/ac5eea | |
3. | Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino, 2021, Chapter 13, 978-3-030-76258-2, 513, 10.1007/978-3-030-76259-9_13 | |
4. | Matteo Dalla Riva, Riccardo Molinarolo, Paolo Musolino, Existence results for a nonlinear nonautonomous transmission problem via domain perturbation, 2022, 152, 0308-2105, 1451, 10.1017/prm.2021.60 | |
5. | Yu. V. Obnosov, Analytical Evaluation of the Effective Electric Resistivity and Hall Coefficient in the Rectangular and Triangular Checkerboard Composites, 2022, 43, 1995-0802, 2989, 10.1134/S1995080222130352 | |
6. | Vladimir Mityushev, Dmytro Nosov, Ryszard Wojnar, 2022, 9780323905435, 63, 10.1016/B978-0-32-390543-5.00008-6 | |
7. | Matteo Dalla Riva, Paolo Luzzini, Paolo Musolino, Roman Pukhtaievych, 2022, 9780323905435, 271, 10.1016/B978-0-32-390543-5.00019-0 | |
8. | Matteo Dalla Riva, Paolo Luzzini, Paolo Musolino, Shape analyticity and singular perturbations for layer potential operators, 2022, 56, 2822-7840, 1889, 10.1051/m2an/2022057 | |
9. | Natalia Rylko, Pawel Kurtyka, Olesia Afanasieva, Simon Gluzman, Ewa Olejnik, Anna Wojcik, Wojciech Maziarz, Windows Washing method of multiscale analysis of the in-situ nano-composites, 2022, 176, 00207225, 103699, 10.1016/j.ijengsci.2022.103699 | |
10. | Matteo Dalla Riva, Paolo Luzzini, Paolo Musolino, 2023, Chapter 20, 978-3-031-36374-0, 271, 10.1007/978-3-031-36375-7_20 | |
11. | Riccardo Molinarolo, Existence result for a nonlinear mixed boundary value problem for the heat equation, 2025, 543, 0022247X, 128878, 10.1016/j.jmaa.2024.128878 | |
12. | Natalia Rylko, Michał Stawiarz, Pawel Kurtyka, Vladimir Mityushev, Study of anisotropy in polydispersed 2D micro and nano-composites by Elbow and K-Means clustering methods, 2024, 276, 13596454, 120116, 10.1016/j.actamat.2024.120116 |