Transcendental terms | Corresponding coefficients |
e2λ1 | λ′21+2γλ′1+1 |
e2λ2 | λ′22+2γλ′2+1 |
eλ1+λ2 | −2λ′1λ′2−2γ(λ′1+λ′2)+4δ−2 |
e2¯λ1 | 1 |
e2¯λ2 | 1 |
e¯λ1+¯λ2 | −2 |
eλ1+¯λ1 | 2αλ′1+2β |
eλ1+¯λ2 | −2αλ′1−2β |
e¯λ1+λ2 | −2αλ′2−2β |
eλ2+¯λ2 | 2αλ′2+2β |
In this paper, the multiple constraint least squares solution of the Sylvester equation AX+XB=C is discussed. The necessary and sufficient conditions for the existence of solutions to the considered matrix equation are given. Noting that the alternating direction method of multipliers (ADMM) is a one-step iterative method, a multi-step alternating direction method of multipliers (MSADMM) to solve the considered matrix equation is proposed and some convergence results of the proposed algorithm are proved. Problems that should be studied in the near future are listed. Numerical comparisons between MSADMM, ADMM and ADMM with Anderson acceleration (ACADMM) are included.
Citation: Siting Yu, Jingjing Peng, Zengao Tang, Zhenyun Peng. Iterative methods to solve the constrained Sylvester equation[J]. AIMS Mathematics, 2023, 8(9): 21531-21553. doi: 10.3934/math.20231097
[1] | Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974 |
[2] | Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685 |
[3] | Zhenguang Gao, Lingyun Gao, Manli Liu . Entire solutions of two certain types of quadratic trinomial q-difference differential equations. AIMS Mathematics, 2023, 8(11): 27659-27669. doi: 10.3934/math.20231415 |
[4] | Minghui Zhang, Jianbin Xiao, Mingliang Fang . Entire solutions for several Fermat type differential difference equations. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646 |
[5] | Wenju Tang, Keyu Zhang, Hongyan Xu . Results on the solutions of several second order mixed type partial differential difference equations. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110 |
[6] | Jingjing Li, Zhigang Huang . Radial distributions of Julia sets of difference operators of entire solutions of complex differential equations. AIMS Mathematics, 2022, 7(4): 5133-5145. doi: 10.3934/math.2022286 |
[7] | Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470 |
[8] | Hong Yan Xu, Zu Xing Xuan, Jun Luo, Si Min Liu . On the entire solutions for several partial differential difference equations (systems) of Fermat type in C2. AIMS Mathematics, 2021, 6(2): 2003-2017. doi: 10.3934/math.2021122 |
[9] | Zheng Wang, Zhi Gang Huang . On transcendental directions of entire solutions of linear differential equations. AIMS Mathematics, 2022, 7(1): 276-287. doi: 10.3934/math.2022018 |
[10] | Hua Wang, Hong Yan Xu, Jin Tu . The existence and forms of solutions for some Fermat-type differential-difference equations. AIMS Mathematics, 2020, 5(1): 685-700. doi: 10.3934/math.2020046 |
In this paper, the multiple constraint least squares solution of the Sylvester equation AX+XB=C is discussed. The necessary and sufficient conditions for the existence of solutions to the considered matrix equation are given. Noting that the alternating direction method of multipliers (ADMM) is a one-step iterative method, a multi-step alternating direction method of multipliers (MSADMM) to solve the considered matrix equation is proposed and some convergence results of the proposed algorithm are proved. Problems that should be studied in the near future are listed. Numerical comparisons between MSADMM, ADMM and ADMM with Anderson acceleration (ACADMM) are included.
We all know Fermat's last theorem: For an integer n>2, the equation xn+yn=zn for x,y,z has no positive integer solution. It took 356 years from when it was proposed in 1637, to 1993 when Wiles conquered it. This equation can also be extended to functional equations. In complex analysis, the researchers began to focus on meromorphic solutions of the equation fn(z)+gn(z)=hn(z). As far as we know, Montel [22] was the first scholar to study this problem, and later Gross and Baker carried out the follow-up research work [2,9,10]. Then, applying Nevanlinna theory to the study of this kind of functional equation became a hot topic. For example, Yang et al. [31] studied the transcendental meromorphic solution of the functional equation f(z)2+f′(z)2=1 and found that the solution to this equation must have the form of f(z)=12(peλz+1pe−λz), where p,λ are nonzero constants. With the establishment of the Nevanlinna theory with the difference of meromorphic function [8,11], more attention was paid to Fermat-type functional equation with the difference of meromorphic function. Liu et al. [15,16,17] studied the finite order transcendental entire solutions of Fermat-type difference equations f(z+c)2+f(z)2=1 and f(z+c)2+f′(z)2=1, and they obtained that the solutions of these two equations are sine functions. Subsequently, more attention has been paid to this area of research [14,18,19,20,21,23,24,25,28,29,30,33,34].
In 2016, Liu and Yang [18] studied the existence of solutions to quadratic trinomial functional equations, as well as the entire function and its derivatives and differences, and they converted the equations in the following two theorems into Fermat- type equations by transformation.
Theorem 1.1. ([18, Theorem 1.4]) If α≠0,±1, then the finite order transcendental entire solution of equation
f(z)2+2αf(z)f(z+c)+f(z+c)2=1 |
is of order one.
Theorem 1.2. ([18, Theorem 1.6]) If α≠0,±1, then the equation
f(z)2+2αf(z)f′(z)+f′(z)2=1 |
has no transcendental meromorphic solutions.
On the other hand, Han and Lü [12] studied the existence of solutions to the Fermat-type equation when the right side was an exponential function. Here we only list the n=2 case in their results.
Theorem 1.3. ([12, Theorem 1.1]) The meromorphic solutions of f of the following differential equation
f(z)2+f′(z)2=eαz+β |
are
f(z)=eβ2sin(z+b) |
if α=0, and
f(z)=deαz+β2 |
if α≠0 with d2(1+(α2)2)=1.
In the same article, they also studied the case of replacing f′(z) with f(z+c) in the above equation, and found that the solution of equation
f(z)2+f(z+c)2=eαz+β |
is f(z)=deαz+β2 with d2(1+eac)=1.
Combining these conclusions above, Luo et al. [20] studied the following three equations with finite order transcendental entire solutions. These three equations are
f(z+c)2+2αf(z)f(z+c)+f(z)2=eg(z), | (1.1) |
f(z+c)2+2αf′(z)f(z+c)+f′(z)2=eg(z) | (1.2) |
and
f(z)2+2αf(z)f′(z)+f′(z)2=eg(z), | (1.3) |
where α≠0,±1, c are constants and g(z) is a polynomial. If all these equations admit finite order transcendental entire solutions, g(z) must be a polynomial with the degree of one, and the solutions f of these equations are all exponential functions or the sum of two exponential functions whose exponents are polynomials of the degree of one, as seen in Theorems 2.1–2.3 [20]. Each of these three equations contains only two terms of f(z),f′(z) or f(z+c), so can we consider a quadratic equation that contains all three of these terms?
Inspired by this, we shall study the problem of finite order transcendental entire solutions of functional equations involving the quadratic of f, its derivative and its difference. In fact, we studied the finite order transcendental entire solution for (1.4) below.
Theorem 1.4. Suppose that α≠0,±1, β≠0, γ≠0 and c≠0 are four constants such that α2+β2+γ2≠1+2αβγ, and g(z) is a nonconstant polynomial. If the complex equation
[f′(z)]2+[f(z+c)]2+f2(z)+2αf′(z)f(z+c)+2βf(z)f(z+c)+2γf(z)f′(z)=eg(z) | (1.4) |
admits a transcendental entire solution f(z) of finite order, then for
δ=1−α2−β2−γ2+2αβγ1−α2, |
the solution has two forms:
(1)
f(z)=deaz+b22i√δ, |
where a≠0 and b is an arbitrary constant. Moreover, g(z)=az+b, and d is a constant with
1+a24+eac+(aα+2β)eac/2+aγ=−4δd2. |
(2)
f(z)=ea1z+b1−ea2z+b22i√δ, |
where a1,a2(a1≠a2) are nonzero constants satisfying (1.5), and b1,b2 are arbitrary constants, g(z)=(a1+a2)z+b1+b2.
{a21+2γa1+e2a1c+(2αa1+2β)⋅ea1c+1=0;a22+2γa2+e2a2c+(2αa2+2β)⋅ea2c+1=0;[ea1c−ea2c+α(a1−a2)]2+(1−α2)(a1−a2)2+4δ=0. | (1.5) |
Let's give two examples to show that Theorem 1.4 is true.
Example 1.5. Suppose α=1/3, β=γ=1 and c=2 in (1.4), then δ=−1/2. Set a=2,b=2, then by the relationship of a and d, we have
d=√2√4+83e2+e4. |
We can verify that the entire function
f(z)=±1√4+83e2+e4⋅ez+1 |
is a solution of
[f′(z)]2+[f(z+2)]2+f2(z)+23f′(z)f(z+2)+2f(z)f(z+2)+2f(z)f′(z)=e2z+2. |
Example 1.6. Suppose
α=3πi4,β=1+3π22,γ=−5πi4 |
and c=1 in (1.4), then δ=π2. a1=πi,a2=3πi, b1,b2 are arbitrary constants. We can verify that the entire function
f(z)=eπiz+b1−e3πiz+b2±2πi |
is a solution of
[f′(z)]2+[f(z+1)]2+f2(z)+3πi2f′(z)f(z+1)+(2+3π2)f(z)f(z+1)−5πi2f(z)f′(z)=e4πiz+b1+b2. |
From Theorem 1.4 we have the following corollary.
Corollary 1.7. Under the assumption of Theorem 1.4, if the degree of polynomial g(z) is greater than one, then (1.4) does not have a transcendental solution with finite order.
If q(≠0,1) is a constant, then f(qz) is called the q-difference of meromorphic function f(z). The q-difference is also an important research content in the value distribution theory, and the research on it can be traced back to the early 20th century [5,13].
In recent decades, with the establishment of Nevanlinna theory related to it [3], the research on q-difference has been vigorously developed, and this theory has been applied to many q-difference equations to get a lot of results [4,6,7,16,26,27]. Therefore, we considered to replace f(z+c) in (1.4) by f(qz) as to get a q-difference functional equation, and then studied the finite order transcendental entire solution of this equation. Through the complicated discussion and calculation of different cases, we came to the following conclusion.
Theorem 1.8. Suppose that α≠0,±1, β≠0, γ≠0,±1 and q≠0,1 are four constants such that α2+β2+γ2≠1+2αβγ, and g(z) is a nonconstant polynomial. If the complex equation
[f′(z)]2+[f(qz)]2+f2(z)+2αf′(z)f(qz)+2βf(z)f(qz)+2γf(z)f′(z)=eg(z) | (1.6) |
admits a transcendental entire solution f(z) of finite order, then
f(z)=±eaz+b2 |
and g(z)=aqz+b, b is an arbitrary constant, a≠0 and γ2≠1 such that
{a24+γa+1=0,αa+2β=0. | (1.7) |
Here is an example to test the truth of the Theorem 1.8.
Example 1.9. Suppose α=1/2,β=−1,γ=−5/4 and q is any constant except 0,1 in (1.6), then we can verify that the entire function f(z)=±e2z+1 is a solution of
[f′(z)]2+[f(qz)]2+f2(z)+f′(z)f(qz)−2f(z)f(qz)−52f(z)f′(z)=e4qz+2. |
A corollary also can be obtained from Theorem 1.8.
Corollary 1.10. Under the assumption of Theorem 1.8, if the degree of polynomial g(z) is greater than one, then (1.6) does not admit transcendental entire solution with finite order.
Remark 1.11. Equations (1.4) and (1.6) can be transformed into three term quadratic equations by linear transformation. The purpose of restrictions α2≠1 and α2+β2+γ2≠1+2αβγ in Theorems 1.4 and 1.8 is to not allow these three term quadratic equations to degenerate into quadratic equations with two or one terms, which have been studied in previous literatures. This can be seen easily from (3.2) in the proof below.
Remark 1.12. From the proof of Theorems 1.4 and 1.8 and the above three examples, we can find that if the two equations have finite order transcendental entire solutions, then the solutions of both equations are exponential functions and their exponents are polynomials with the degree of one. For (1.4), after the solution was substituted into the equation, the terms of the equation contained the common factor eg(z). After dividing both sides of the equation by eg(z), the relationship between the coefficients of the equation and the coefficients of the exponent was obtained. For (1.6), when one substitutes the solution into it, the term eg(z) in the right side of the equation is equal to [f(qz)]2 in the left side, which can be subtracted from both sides of the equation. The signs of the other two mixed terms containing f(qz) are opposite to each other, so these two mixed terms were canceled out.
The following lemma played a key role in the proofs of this paper. It is about the factorization of an entire function. In particular, if f(z) was a finite order entire function without zero, then f(z)=eh(z) where h(z) was a nonconstant polynomial, as seen in Theorems 1.42 and 1.44 [32].
Lemma 2.1. (Hadamard's factorization theorem) [32, Theorem 2.5] Let f be an entire function of finite order λ(f) with zeros {a1,a2,⋯}⊂C∖{0} and a k-fold zero at the origin. Then,
f(z)=zkP(z)eQ(z) |
where P(z) is the canonical product of f formed with the non-null zeros of f,
P(z)=∞∏n=1(1−zan)ezan+12(zan)2+⋯+1h(zan)h, |
and h is the smallest integer for which this series converges, called the genus of the canonical product. Q(z) is a polynomial of degree ≤λ(f) and h≤λ.
The second lemma belongs to Borel. It's about the combination of entire functions, and we'll use it repeatedly in the proofs in Sections 3 and 4. When using it, the key is to verify the second condition below.
Lemma 2.2. [32, Theorem 1.52] If fj(z)(j=1,2,⋯,n) and gj(z)(j=1,2,⋯,n)(n≥2) are entire functions satisfying
(1) ∑nj=1fj(z)egj(z)≡0,
(2) the orders of fj are less than that of egh(z)−gk(z) for 1≤j≤n,1≤h<k≤n.
Then, fj≡0,(j=1,2,⋯,n).
According to the linear algebra, any quadratic form can be reduced to the standard form by a non-degenerate linear transformation. So, setting
{f(z)=w,f′(z)=u−αv+αβ−γ1−α2w,f(z+c)=v−β−αγ1−α2w | (3.1) |
and substituting it into (1.4), we obtain that
u2+(1−α2)v2+1−α2−β2−γ2+2αβγ1−α2w2=eg(z). | (3.2) |
For simplicity and convenience, let's denote
δ:=1−α2−β2−γ2+2αβγ1−α2, |
then (3.2) can convert into
(√u2+(1−α2)v2eg(z)2)2+(√δweg(z)2)2=1. | (3.3) |
Consequently, we have
(√u2+(1−α2)v2eg(z)2+i⋅√δweg(z)2)⋅(√u2+(1−α2)v2eg(z)2−i⋅√δweg(z)2)=1. | (3.4) |
By Hadamard's factorization theorem, if the multiplicities of any zeros of the entire function u2+(1−α2)v2 is even number, then √u2+(1−α2)v2 is also an entire function. The following (3.5) holds in the complex plane, where p(z) is a polynomial. If u2+(1−α2)v2 have some zeros with odd number multiplicities, then √u2+(1−α2)v2 has branch points in the complex plane. Branches are obtained by connecting finite branch points and infinity points appropriately by line segments. These segments are called branch cuts, and √u2+(1−α2)v2 is analytic and univalent in every branch [1,35]. Since the two analytical factors on the left side of (3.4) have no zeros in each branch, there exists an analytical function p(z) such that the equations
{√u2+(1−α2)v2eg(z)2+i⋅√δweg(z)2=ep(z),√u2+(1−α2)v2eg(z)2−i⋅√δweg(z)2=e−p(z) | (3.5) |
hold in every branch. Denote
λ1(z):=p(z)+g(z)2, λ2(z):=−p(z)+g(z)2, |
then,
w=eλ1(z)−eλ2(z)2i√δ | (3.6) |
hold in every branch. Moreover, noting that w=f(z) is an entire function with finite order, the righthand side of (3.6) can be extended to the whole complex plane. Therefore, one can supplement the definition of function p(z) at the points on branch cuts by the limiting values, and it is still called p(z) after supplementary definition. Thus, p(z) is analytic on the whole complex plane, so it's an entire function. Because ep(z) is of finite order, p(z) is actually a polynomial, so we get
u2+(1−α2)v2=(eλ1(z)+eλ2(z)2)2. | (3.7) |
Noting that f(z)=w, we have
{f(z)=eλ1(z)−eλ2(z)2i√δ,f′(z)=λ′1(z)eλ1(z)−λ′2(z)eλ2(z)2i√δ,f(z+c)=eλ1(z+c)−eλ2(z+c)2i√δ. | (3.8) |
From (3.1), we know that
u=f′(z)+αf(z+c)+γf(z) |
and
v=f(z+c)+β−αγ1−α2f(z). |
Substituting the above u,v into (3.7) we get
[f′(z)]2+[f(z+c)]2+β2+γ2−2αβγ1−α2f2(z)+2αf′(z)f(z+c)+2βf(z+c)f(z)+2γf′(z)f(z)=e2λ1(z)+e2λ2(z)+2eλ1(z)+λ2(z)4. | (3.9) |
For simplicity and convenience, we give the following notation:
λ1:=λ1(z),λ2:=λ2(z),¯λ1:=λ1(z+c),¯λ2:=λ2(z+c). |
Substituting (3.8) into (3.9) we obtain
λ′21e2λ1+λ′22e2λ2−2λ′1λ′2eλ1+λ2−4δ+e2¯λ1+e2¯λ2−2e¯λ1+¯λ2−4δ+β2+γ2−2αβγ1−α2⋅e2λ1+e2λ2−2eλ1+λ2−4δ+2α⋅λ′1eλ1+¯λ1−λ′1eλ1+¯λ2−λ′2e¯λ1+λ2+λ′2eλ2+¯λ2−4δ+2β⋅eλ1+¯λ1−eλ1+¯λ2−e¯λ1+λ2+eλ2+¯λ2−4δ+2γ⋅λ′1e2λ1−λ′1eλ1+λ2−λ′2eλ1+λ2+λ′2e2λ2−4δ=e2λ1+e2λ2+2eλ1+λ24. | (3.10) |
The transcendental terms appearing in the above equation have exponents
2λ1,2λ2,λ1+λ2,2¯λ1,2¯λ2,¯λ1+¯λ2,λ1+¯λ1,λ1+¯λ2,¯λ1+λ2andλ2+¯λ2. |
In order to apply Lemma 2.2 to (3.10), we checked whether the pairwise difference between these exponents was constant. If λ1≡λ2, then f(z)≡0 this was impossible, so λ1≢λ2. The following two cases are discussed.
Case 1. If λ1−λ2 is a nonzero constant, then p(z) is a constant, denoted by p in the following. Consequently, for p≠kπi(k∈Z),
f(z)=w=(ep−e−p)eg(z)/22i√δ. | (3.11) |
Then,
f′(z)=(ep−e−p)eg(z)/22i√δ⋅g′(z)2 | (3.12) |
and
f(z+c)=(ep−e−p)eg(z+c)/22i√δ. | (3.13) |
Substituting (3.11)–(3.13) into (1.4), the terms in the left side of (1.4) can be expressed respectively as
{[f′(z)]2=d2eg(z)−4δ⋅(g′(z))24,[f(z+c)]2=d2eg(z+c)−4δ,f2(z)=d2eg(z)−4δ,2αf′(z)f(z+c)=2α⋅d2eg(z)+g(z+c)2−4δ⋅g′(z)2,2βf(z)f(z+c)=2β⋅d2eg(z)+g(z+c)2−4δ,2γf(z)f′(z)=2γ⋅d2eg(z)−4δ⋅g′(z)2, | (3.14) |
where d:=ep−e−p. If the degree of polynomial g(z) is greater than one, the three exponents g(z),g(z+c) and g(z)+g(z+c)2 are pairwise distinct. By Lemma 2.2, we obtained that after combining like terms, the coefficients of these three exponential terms eg(z),eg(z+c) and eg(z)+g(z+c)2 are zero. In particular, d2−4δ=0 since it's the coefficient of the sole term eg(z+c). This is impossible, because that means f≡0, so the degree of g(z) is one. Therefore, suppose g(z)=az+b, a(≠0),b are constants. Substitute it into (3.14), then into (1.4), and eliminate eg(z) from both sides of this equation. Then, we get
1+a24+eac+(aα+2β)eac/2+aγ=−4δd2. | (3.15) |
This means if the constants α,β,γ,c in the original (1.4) are known, then the solution is
f(z)=deaz+b22i√δ, |
where constants a,d should satisfy the relationship of (3.15), and b is an arbitrary constant.
Case 2. If λ1−λ2 is not a constant, then p(z) is not a constant; instead, it is a nonconstant polynomial. For (3.10) we multiply −4δ on both sides, combine like terms and move all the terms to the left side of this equation, then the right side is just zero. Thus, the coefficients of the distinct transcendental terms can be listed in Table 1.
Transcendental terms | Corresponding coefficients |
e2λ1 | λ′21+2γλ′1+1 |
e2λ2 | λ′22+2γλ′2+1 |
eλ1+λ2 | −2λ′1λ′2−2γ(λ′1+λ′2)+4δ−2 |
e2¯λ1 | 1 |
e2¯λ2 | 1 |
e¯λ1+¯λ2 | −2 |
eλ1+¯λ1 | 2αλ′1+2β |
eλ1+¯λ2 | −2αλ′1−2β |
e¯λ1+λ2 | −2αλ′2−2β |
eλ2+¯λ2 | 2αλ′2+2β |
Because the difference between any two of 2λ1,2λ2,λ1+λ2 is not constant, the term containing e2λ1 cannot combine with terms containing e2λ2 or eλ1+λ2.
Suppose that deg(λ1)=m>1 and deg(λ2)=n>1. If the term containing e2λ1 cannot combine with any other transcendental terms, then its coefficient has to be zero for any z∈C by Lemma 2.2. This is impossible, since its coefficients are nonconstant polynomials. The only term in the coefficient that may cancel out with λ′21 is the term that contains λ′2. They must have the same degree, so we have 2(m−1)=n−1. By the same arguments, we have m−1=2(n−1) by considering λ′22 with λ′1. Then, we get a contradiction, and it yields that deg(λ1),deg(λ2) are both at most one.
Therefore, we can assume that λ1=a1z+b1 and λ2=a2z+b2 where a1≠a2 are constants, and b1,b2 are arbitrary constants. The transcendental terms and the corresponding coefficients in Table 1 can convert into those in Table 2. Since the three transcendental terms e2λ1, e2λ2 and eλ1+λ2 cannot be combined with each other, we get the following system of (3.16) with respect to the coefficients by Lemma 2.2.
{a21+2γa1+e2a1c+(2αa1+2β)⋅ea1c+1=0,a22+2γa2+e2a2c+(2αa2+2β)⋅ea2c+1=0,−2a1a2−2γ(a1+a2)−2e(a1+a2)c−(2αa1+2β)⋅ea2c−(2αa2+2β)⋅ea1c+4δ−2=0. | (3.16) |
Before | After | Corresponding coefficients |
e2λ1 | e2λ1 | a21+2γa1+1 |
e2¯λ1 | e2λ1 | e2a1c |
eλ1+¯λ1 | e2λ1 | (2αa1+2β)⋅ea1c |
e2λ2 | e2λ2 | a22+2γa2+1 |
e2¯λ2 | e2λ2 | e2a2c |
eλ2+¯λ2 | e2λ2 | (2αa2+2β)⋅ea2c |
eλ1+λ2 | eλ1+λ2 | −2a1a2−2γ(a1+a2)+4δ−2 |
e¯λ1+¯λ2 | eλ1+λ2 | −2e(a1+a2)c |
eλ1+¯λ2 | eλ1+λ2 | (−2αa1−2β)⋅ea2c |
e¯λ1+λ2 | eλ1+λ2 | (−2αa2−2β)⋅ea1c |
Adding the three equations in (3.16) together, they convert into
{a21+2γa1+e2a1c+(2αa1+2β)⋅ea1c+1=0,a22+2γa2+e2a2c+(2αa2+2β)⋅ea2c+1=0,[ea1c−ea2c+α(a1−a2)]2+(1−α2)(a1−a2)2+4δ=0. | (3.17) |
Therefore, the original (1.4) has solutions of the form
f(z)=ea1z+b1−ea2z+b22i√δ, |
where a1,a2(a1≠a2) are nonzero constants satisfying (3.17), and b1,b2 are arbitrary constants.
For an exponential polynomial f(z) with finite order, the exponents for each exponential terms of f′(z) are the same as those of f(z), but the exponents of f(qz) are not the same as the exponents of f(z) for q≠0,1. The term eg(z) in the right side of (1.6) with coefficient one must combine with one of these two kinds of exponential terms, transcendental terms in f(z) or f(qz), by Lemma 2.2. The following are divided into two cases for discussion.
Case 1. If eg(z) can combine with the exponential terms in f(z), then replacing f(z+c) by f(qz) in Section 3 and using the same methods in it we get
{f(z)=eλ1(z)−eλ2(z)2i√δ,f′(z)=λ′1(z)eλ1(z)−λ′2(z)eλ2(z)2i√δ,f(qz)=eλ1(qz)−eλ2(qz)2i√δ, | (4.1) |
where λ1(z),λ2(z),δ are the same as in Section 3, and we also have
u=f′(z)+αf(qz)+γf(z),v=f(qz)+β−αγ1−α2f(z). |
Substituting the above u,v into
u2+(1−α2)v2=(eλ1(z)+eλ2(z)2)2, | (4.2) |
it yields
[f′(z)]2+[f(qz)]2+β2+γ2−2αβγ1−α2f2(z)+2αf′(z)f(qz)+2βf(qz)f(z)+2γf′(z)f(z)=e2λ1(z)+e2λ2(z)+2eλ1(z)+λ2(z)4. | (4.3) |
For simplicity and convenience, we denote
λ1:=λ1(z),λ2:=λ2(z),~λ1:=λ1(qz),~λ2:=λ2(qz). |
Substituting (4.1) into (4.3) we get
λ′21e2λ1+λ′22e2λ2−2λ′1λ′2eλ1+λ2−4δ+e2~λ1+e2~λ2−2e~λ1+~λ2−4δ+β2+γ2−2αβγ1−α2⋅e2λ1+e2λ2−2eλ1+λ2−4δ+2α⋅λ′1eλ1+~λ1−λ′1eλ1+~λ2−λ′2e~λ1+λ2+λ′2eλ2+~λ2−4δ+2β⋅eλ1+~λ1−eλ1+~λ2−e~λ1+λ2+eλ2+~λ2−4δ+2γ⋅λ′1e2λ1−λ′1eλ1+λ2−λ′2eλ1+λ2+λ′2e2λ2−4δ=e2λ1+e2λ2+2eλ1+λ24. | (4.4) |
The transcendental terms appearing in (4.4) have exponents
2λ1,2λ2,λ1+λ2,2~λ1,2~λ2,~λ1+~λ2,λ1+~λ1,λ1+~λ2,~λ1+λ2andλ2+~λ2. |
In order to apply Lemma 2.2 to (4.4), we checked whether the pairwise difference between these exponents was constant. If λ1≡λ2, then f(z)≡0. This is impossible, so λ1≢λ2.
Subcase 1.1. If λ1(z)−λ2(z) is a nonzero constant, then p(z) is a nonzero constant, denoted by p in the following for simplicity. Consequently,
f(z)=w=(ep−e−p)eg(z)/22i√δ. | (4.5) |
Then,
f′(z)=(ep−e−p)eg(z)/22i√δ⋅g′(z)2 | (4.6) |
and
f(qz)=(ep−e−p)eg(qz)/22i√δ. | (4.7) |
Substituting (4.5)–(4.7) into (1.6), the terms in the left side of this equation can be expressed as
{[f′(z)]2=d2eg(z)−4δ⋅(g′(z))24,[f(qz)]2=d2eg(qz)−4δ,f2(z)=d2eg(z)−4δ,2αf′(z)f(qz)=2α⋅d2eg(z)+g(qz)2−4δ⋅g′(z)2,2βf(z)f(qz)=2β⋅d2eg(z)+g(qz)2−4δ,2γf(z)f′(z)=2γ⋅d2eg(z)−4δ⋅g′(z)2, | (4.8) |
where d:=ep−e−p.
If polynomial g(z) contains at least two nonconstant terms, without loss of generality, we set
g(z)=anzn+⋯+amzm+⋯+a0,n>m, |
then,
g(qz)=an(qz)n+⋯+am(qz)m+⋯+a0 |
and
g(qz)−g(z)=an(qn−1)zn+⋯+am(qm−1)zm+⋯. |
If g(qz)−g(z) is a constant and one has q=1, then this contradicts the assumption and g(qz)−g(z) is not a constant. By the same argument, g(qz)−g(z)+g(qz)2 is also not a constant. Therefore, the three exponential terms, eg(z),eg(qz) and eg(z)+g(qz)2, are pairwise distinct, even if we don't consider their constant coefficients. Substituting (4.8) into (1.6) and applying Lemma 2.2 to the obtained equation, we get that the coefficients of the three exponential terms are zero. In particular, d2−4δ=0 since it's the coefficient of the sole term eg(qz). This is impossible, because that means that f≡0.
So, g(z) is the form of g(z)=anzn+b, where an(≠0),b are constants. Substitute this into (4.8) and we obtain that
{[f′(z)]2=d2eanzn+b−4δ⋅(nanzn−1)24,[f(qz)]2=d2eanqnzn+b−4δ,f2(z)=d2eanzn+b−4δ,2αf′(z)f(qz)=2α⋅nanzn−12⋅d2ean(1+qn)zn2+b−4δ,2βf(z)f(qz)=2β⋅d2ean(1+qn)zn2+b−4δ,2γf(z)f′(z)=2γ⋅d2eanzn+b−4δ⋅nanzn−12, | (4.9) |
then take the above expressions into (1.6). If qn≠1, the expression of [f(qz)]2 has a zero coefficient by Lemma 2.2, that is d2−4δ=0, which is impossible, so qn=1. Then, for all z∈C we have
(nanzn−1)24+2+(α+β)nanzn−1+2β≡−4δd2 |
by eliminating eg(z) from both sides of (1.6), so n has to be one, and q=qn=1, which contradicts the assumption.
Subcase 1.2. If λ1−λ2 is not a constant, then p(z) is not a constant; instead, it is a nonconstant polynomial. We multiply −4δ, combine like terms in (4.4), and move all the terms to the left side of the equation, then the right side is just zero. Thus, the coefficients of the distinct transcendental terms are listed in Table 3.
Transcendental terms | Corresponding coefficients |
e2λ1 | λ′21+2γλ′1+1 |
e2λ2 | λ′22+2γλ′2+1 |
eλ1+λ2 | −2λ′1λ′2−2γ(λ′1+λ′2)+4δ−2 |
e2~λ1 | 1 |
e2~λ2 | 1 |
e~λ1+~λ2 | −2 |
eλ1+~λ1 | 2αλ′1+2β |
eλ1+~λ2 | −2αλ′1−2β |
e~λ1+λ2 | −2αλ′2−2β |
eλ2+~λ2 | 2αλ′2+2β |
By the same method in Case 2 of Section 3 (proof of Theorem 1.4), the degree of λ1(z) and λ2(z) both are at most one. Set λ1(z)=a1z+b1 and λ2(z)=a2z+b2, where a1≠a2, b1,b2 are arbitrary constants, then ~λ1(z)=a1qz+b1 and ~λ2(z)=a2qz+b2. Substituting these into Table 3, we get the results in Table 4.
No. | Before | After | Corresponding coefficients |
① | e2λ1 | e2a1z+2b1 | a21+2γa1+1 |
② | e2λ2 | e2a2z+2b2 | a22+2γa2+1 |
③ | eλ1+λ2 | e(a1+a2)z+b1+b2 | −2a1a2−2γ(a1+a2)+4δ−2 |
④ | e2~λ1 | e2a1qz+2b1 | 1 |
⑤ | e2~λ2 | e2a2qz+2b2 | 1 |
⑥ | e~λ1+~λ2 | e(a1+a2)qz+b1+b2 | −2 |
⑦ | eλ1+~λ1 | ea1(1+q)z+2b1 | 2αa1+2β |
⑧ | eλ1+~λ2 | e(a1+a2q)z+b1+b2 | −2αa1−2β |
⑨ | e~λ1+λ2 | e(a1q+a2)z+b1+b2 | −2αa2−2β |
⑩ | eλ2+~λ2 | ea2(1+q)z+2b2 | 2αa2+2β |
The coefficient of term ④ in Table 4 is one and it must combine with some like terms by Lemma 2.2. 2a1q in term ④ may be equal to 2a2 in term ②, a1+a2 in term ③, a1+a2q in term ⑧ and a2+a2q in term ⑩ since q≠1,a1≠a2. Then, we also considered that terms ⑤ and ⑥ must combine with some other like terms, respectively, since their coefficients are both nonzero, so there are many cases that have to be discussed. Through discussion for all possible cases, it is impossible to have a finite order entire solution (see the Appendix).
Case 2. If eg(z) can combine with the exponential terms in f(qz), then
{u=f′(z)+αf(qz)+γf(z),v=f(z)+β−αγ1−γ2f(qz),w=f(qz), | (4.10) |
and (1.6) can convert into
u2+(1−γ2)v2+δ′w2=eg(z), | (4.11) |
where
δ′:=1−α2−β2−γ2+2αβγ1−γ2. |
By the same method in Section 3, we have
{f(qz)=eλ1(z)−eλ2(z)2i√δ′,f(z)=eλ1(z/q)−eλ2(z/q)2i√δ′,f′(z)=λ′1eλ1(z/q)−λ′2eλ2(z/q)2qi√δ′, | (4.12) |
where
λ1(z)=p(z)+g(z)/2, λ2(z)=−p(z)+g(z)/2, |
p(z) is a polynomial. Here, λ1(z/q), λ2(z/q) are composite functions with respect to z, and according to the chain rule for derivatives, λ′1 and λ′2 represent the derivative of the outer function. By the same method in Case 1, we can divide into two subcases.
Subcase 2.1. If λ1(z)−λ2(z) is a constant, then (4.12) can be rewritten as
{f(z)=deg(z/q)22i√δ′,f′(z)=deg(z/q)22i√δ′⋅g′2q,f(qz)=deg(z)22i√δ′, | (4.13) |
where d=ep−e−p. Here, g(z/q) is a composite function with respect to z, and according to the chain rule for derivatives, g′ here represents the derivative of the outer function. Substituting (4.13) into each term in the right side of (1.6), we have
{[f′(z)]2=d2eg(z/q)−4δ′⋅(g′)24q2,[f(qz)]2=d2eg(z)−4δ′,f2(z)=d2eg(z/q)−4δ′,2αf′(z)f(qz)=2α⋅d2eg(z)+g(z/q)2−4δ′⋅g′2q,2βf(z)f(qz)=2β⋅d2eg(z)+g(z/q)2−4δ′,2γf(z)f′(z)=2γ⋅d2eg(z/q)−4δ′⋅g′2q. | (4.14) |
If polynomial g(z) contains at least two nonconstant terms, without loss of generality we set
g(z)=anzn+⋯+amzm+⋯+a0, n>m, |
then
g(z/q)=an(z/q)n+⋯+am(z/q)m+⋯+a0 |
and
g(z/q)−g(z)=an(1qn−1)zn+⋯+am(1qm−1)zm+⋯. |
If g(z/q)−g(z) is a constant and one has q=1, this contradicts the assumption and g(z/q)−g(z) is not a constant. By the same argument, g(z/q)−g(z)+g(z/q)2 is also not a constant. Therefore, the three exponential terms, eg(z),eg(qz) and eg(z)+g(qz)2, are distinct and can't combine like terms. Substituting (4.14) into (1.6) and applying Lemma 2.2 to the obtained equation, we get that the coefficients of the three exponential terms are zeroes after combining like terms:
{d2−4δ′−1≡0,d2−4δ′⋅(g′)24q2+d2−4δ′+2γ⋅d2−4δ′⋅g′2q≡0,2α⋅d2−4δ′⋅g′2q+2β⋅d2−4δ′≡0. | (4.15) |
Since the three equations hold for all z∈C, g(z/q) has a degree of one, and so does g(z).
Therefore, we can set g(z/q)=az+b, then g(z)=aqz+b, where a≠0 and b is an arbitrary constant. Noting that g′ represents the derivative of the outer function, so g′=aq, then the above equations convert into
{d2−4δ′=1,a24+1+2γa≡0,αa+2β≡0. | (4.16) |
Thus, it yields α2+β2−2αβγ=0 and γ2≠1.
In other words, (1.6) admits a solution in this case with the form f(z)=eaz+b2 and g(z)=aqz+b such that
{a24+1+2γa≡0,αa+2β≡0, | (4.17) |
then α2+β2−2αβγ=0 and γ2≠1.
Subcase 2.2. If λ1(z)−λ2(z) is nonconstant, then from (4.11) we have
u2+(1−γ2)v2=(eλ1(z)+eλ2(z)2)2. | (4.18) |
Substituting (4.10) into (4.18) we deduce that
[f′(z)]2+[f(z)]2+α2+β2−2αβγ1−γ2[f(qz)]2+2αf′(z)f(qz)+2βf(qz)f(z)+2γf′(z)f(z)=e2λ1(z)+e2λ2(z)+2eλ1(z)+λ2(z)4. | (4.19) |
For simplicity and convenience, we denote
λ1:=λ1(z),λ2:=λ2(z),^λ1:=λ1(z/q),^λ2:=λ2(z/q). |
Substituting (4.12) into (4.19) we obtain
1q2⋅λ′21e2^λ1+λ′22e2^λ2−2λ1′λ2′e^λ1+^λ2−4δ′+e2^λ1+e2^λ2−2e^λ1+^λ2−4δ′+α2+β2−2αβγ1−γ2⋅e2λ1+e2λ2−2eλ1+λ2−4δ′+2α⋅1q⋅λ′1eλ1+^λ1−λ′1e^λ1+λ2−λ′2eλ1+^λ2+λ′2eλ2+^λ2−4δ′+2β⋅eλ1+^λ1−eλ1+^λ2−e^λ1+λ2+eλ2+^λ2−4δ′+2γ⋅1q⋅λ′1e2^λ1−λ′1e^λ1+^λ2−λ′2e^λ1+^λ2+λ′2e2^λ2−4δ′=e2λ1+e2λ2+2eλ1+λ24. | (4.20) |
Let's multiply both sides of (4.20) by −4δ′ and move all terms to the left side of the equation. After combining the terms of the same kind, we get the results in Table 5. Using the method in Subcase 1.2, we can also obtain that there are no suitable finite order transcendental entire solutions for (1.6) in this case. The details are omitted here.
Transcendental terms | Corresponding coefficients |
e2λ1 | 1 |
e2λ2 | 1 |
eλ1+λ2 | 4δ′−2 |
e2^λ1 | 1q2⋅λ′21+2γq⋅λ′1+1 |
e2^λ2 | 1q2⋅λ′22+2γq⋅λ′2+1 |
e^λ1+^λ2 | −2q2λ′1λ′2−2γq(λ′1+λ′2)−2 |
eλ1+^λ1 | 2αqλ′1+2β |
eλ1+^λ2 | −2αqλ′2−2β |
e^λ1+λ2 | −2αqλ′1−2β |
eλ2+^λ2 | 2αqλ′2+2β |
In this paper we proved two theorems (Theorems 1.4 and 1.8), studied the finite order entire solutions of (1.4) and (1.6), respectively and found the concrete forms of solutions of these two equations, both of which were exponential functions. Examples 1.5 and 1.6 verified the two cases of solutions of the equation in Theorem 1.4, and Example 1.9 verified the truth of Theorem 1.8. The equations studied in this paper can be transformed into the Fermat-type equation with three quadratic terms by linear transformation, which improves the previous Fermat-type equations with only two quadratic terms, so it is very novel.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Natural Science Foundation of Henan (No. 232300420129) and the Key Scientific Research Project of Colleges and Universities in Henan Province (No. 22A110004), China. The author would like to thank the referee for a careful reading of the manuscript and valuable comments.
The author declares no conflict of interest.
We divided Table 4 into the following four cases with 10 subcases, but in each case there is no finite order transcendental entire solution. The classification is based on the fact that terms ④, ⑤ and ⑥ in Table 4 must be combined with other terms, since their coefficients are nonzero. Otherwise, they contradict with Lemma 2.2.
Case A1. Term ④ can combine with term ② and ⑨ in Table 4, that is, a1q=a2. Since term ⑤ should also combine with other terms, we split into some subcases.
Subcase A1.1. Term ⑤ may combine with term ① in Table 4. Thus, we get the results in Table A1.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−2a1z | e2b2(a21−2γa1+1) |
③ | e0 | eb1+b2(2a21+4δ−2) |
④ | e−2a1z | e2b1 |
⑤ | e2a1z | e2b2 |
⑥ | e0 | −2eb1+b2 |
⑦ | e0 | e2b1(2αa1+2β) |
⑧ | e2a1z | eb1+b2(−2αa1−2β) |
⑨ | e−2a1z | eb1+b2(2αa1−2β) |
⑩ | e0 | e2b2(−2αa1+2β) |
After combining terms of the same kind in Table A1, according to Lemma 2.2, we know that the coefficients must always be zero, and the following equations were obtained
{e2b1(a21+2γa1+1)+e2b2+eb1+b2(−2αa1−2β)=0,e2b2(a21−2γa1+1)+e2b1+eb1+b2(2αa1−2β)=0,eb1+b2(a21+2δ−2)+e2b1(αa1+β)+e2b2(−αa1+β)=0. |
Thus, we have
{eb1=±eb2,α=±γ,β=±1, |
it yields δ=0, which is impossible.
Subcase A1.2. Term ⑤ may combine with term ③ in Table 4. Then, we obtained the results in Table A2 as follows.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−a1z | e2b2(a214−γa1+1) |
③ | ea12⋅z | eb1+b2(a21−γa1+4δ−2) |
④ | e−a1z | e2b1 |
⑤ | ea12⋅z | e2b2 |
⑥ | e−a14⋅z | −2eb1+b2 |
⑦ | ea12⋅z | e2b1(2αa1+2β)=0 |
⑧ | e5a14⋅z | eb1+b2(−2αa1−2β)=0 |
⑨ | e−a1z | eb1+b2(αa1−2β)=eb1+b2(−3β) |
⑩ | e−a14⋅z | e2b2(−αa1+2β) |
Combining terms of the same kind and according to Lemma 2.2, we know that the coefficients must always be zero, and the following equations are obtained
{e2b1(a21+2γa1+1)=0,e2b2(a214−γa1+1)+e2b1+eb1+b2(αa1−2β)=0,eb1+b2(a21−γa1+4δ−2)+e2b2+e2b1(2αa1+2β)=0,−2eb1+b2+e2b2(−αa1+2β)=0,eb1+b2(−2αa1−2β)=0. |
For the above equation system, there is no suitable solution a1.
Case A2. Term ④ can combine with term ③ in Table 4, that is, 2a1q=a1+a2. Since term ⑤ should also combine with other terms, we split it into three subcases.
Subcase A2.1. Term ⑤ may combine with term ① in Table 4. We get the results in Table A3.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−4a1z | e2b2(4a21−4γa1+1) |
③ | e−a1z | eb1+b2(4a21+2γa1+4δ−2) |
④ | e−a1z | e2b1 |
⑤ | e2a1z | e2b2 |
⑥ | ea12⋅z | −2eb1+b2 |
⑦ | ea12⋅z | e2b1(2αa1+2β) |
⑧ | e2a1z | eb1+b2(−2αa1−2β) |
⑨ | e−5a12z | eb1+b2(4αa1−2β) |
⑩ | e−a1z | e2b2(−4αa1+2β) |
From Table A3, after combining terms of the same kind, according to Lemma 2.2, we know that the coefficients must always be zero, and the following equations are obtained
{e2b1(a21+2γa1+1)+e2b2+eb1+b2(−2αa1−2β)=0,e2b2(4a21−4γa1+1)=0,eb1+b2(4a21+2γa1+4δ−2)+e2b1+e2b2(−4αa1+2β)=0,−2eb1+b2+e2b1(2αa1+2β)=0,eb1+b2(4αa1−2β)=0. |
For the above equation system, there is no suitable solution a1.
Subcase A2.2. Term ⑤ may combine with term ⑦ in Table 4. Then, we get the results in Table A4.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−3a1z | e2b2(94a21−3γa1+1) |
③ | e−12a1z | eb1+b2(3a21+γa1+4δ−2) |
④ | e−12a1z | e2b1 |
⑤ | e34a1z | e2b2 |
⑥ | e18a1z | −2eb1+b2 |
⑦ | e34a1⋅z | e2b1(2αa1+2β) |
⑧ | e118a1z | eb1+b2(−2αa1−2β) |
⑨ | e−7a14z | eb1+b2(3αa1−2β) |
⑩ | e−98a1z | e2b2(−3αa1+2β) |
In Table A4, the term ⑥ cannot combine with other transcendental terms; it's impossible.
Subcase A2.3. Term ⑤ may combine with term ⑨ in Table 4. Then, we deduce the results in Table A5.
No. | Transcendental terms | Corresponding coefficients |
① | e2a1z | e2b1(a21+2γa1+1) |
② | e−a1z | e2b2(a22+2γa2+1) |
③ | e12a1z | eb1+b2(−2a1a2−2γ(a1+a2)+4δ−2) |
④ | e12a1z | e2b1 |
⑤ | e−14a1z | e2b2 |
⑥ | e18a1z | −2eb1+b2 |
⑦ | e54a1z | e2b1(2αa1+2β) |
⑧ | e78a1z | eb1+b2(−2αa1−2β) |
⑨ | {\mathrm e}^{-\frac{1}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{8}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
In Table A5, the term ⑥ cannot combine with other transcendental terms; it's impossible.
Case A3. Term ④ can combine with term ⑧ in Table 4, that is, 2a_1q = a_1+a_2q . Since term ⑤ should also combine with other terms, we split it into two subcases.
Subcase A3.1. Term ⑤ may combine with term ③ in Table 4. We get the results in Table A6.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{4}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{1}{2}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
The term ⑥ cannot combine with other transcendental terms; this is impossible.
Subcase A3.2. Term ⑤ may combine with term ⑨ in Table 4. We get the results in Table A7.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{4}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{2}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{4}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
By ⑦ and ⑩ in Table A7, we have a_1 = a_2 , which is a contradiction.
Case A4. Term ④ can combine with term ⑩ in Table 4, that is, 2a_1q = a_2+a_2q . Since term ⑤ should also combine with other terms, we split it into three subcases.
Subcase A4.1. Term ⑤ may combine with term ① in Table 4. We get the results in Table A8.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4a_1^2-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{2}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
Subcase A4.2. Term ⑤ may combine with term ③ in Table 4. Then, we have the results in Table A9.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{1}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{12}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{6}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{11}{12}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
The term ⑥ cannot combine with other transcendental terms; it's impossible.
Subcase A4.3. Term ⑤ may combine with term ⑦ in Table 4. Then, we get the results in Table A10.
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{4}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
From ⑧ and ⑨ in Table A10, we have a_1 = a_2 ; it's impossible.
[1] |
R. Bhatia, P. Rosenthal, How and why to solve the operator equation AX-XB = Y, Bull. London Math. Soc., 29 (1997), 1–21. https://doi.org/10.1112/S0024609396001828 doi: 10.1112/S0024609396001828
![]() |
[2] | G. H. Golub, C. F. Van Loan, Matrix computations, 3 Eds., Johns Hopkins University Press, Baltimore, Maryland, 1996. |
[3] | V. Sima, Algorithms for linear quadratic optimization, Pure and Applied Mathematics, New York: Marcel Dekker, Inc., 1996. |
[4] | B. Datta, Numerical methods for linear control systems, Design and Analysis, Academic Press, 2004. https://doi.org/10.1016/B978-0-12-203590-6.X5000-9 |
[5] | A. Locatelli, Optimal control: an introduction, Birkhäuser Basel, 2001. |
[6] |
R. W. Aldhaheri, Model order reduction via real Schur-form decomposition, Int. J. Control, 53 (1991), 709–716. https://doi.org/10.1080/00207179108953642 doi: 10.1080/00207179108953642
![]() |
[7] | A. C. Antoulas, Approximation of large scale dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, 2005. |
[8] | U. Baur, P. Benner, Cross-gramian based model reduction for data-sparse systems, Electron. Trans. Numer. Anal., 31 (2008), 256–270. |
[9] |
D. C. Sorensen, A. C. Antoulas, The Sylvester equation and approximate balanced reduction, Linear Algebra Appl., 351-352 (2002), 671–700. https://doi.org/10.1016/S0024-3795(02)00283-5 doi: 10.1016/S0024-3795(02)00283-5
![]() |
[10] |
Y. Sun, C. Wu, S. Zhao, Applications of the Sylvester equation for the lattice BKP system, Theor. Math. Phys., 214 (2023), 354–368. https://doi.org/10.1134/S0040577923030042 doi: 10.1134/S0040577923030042
![]() |
[11] |
A. Altavilla, C. de Fabritiis, Equivalence of slice semi-regular functions via Sylvester operators, Linear Algebra Appl., 607 (2020), 151–189. https://doi.org/10.1016/j.laa.2020.08.009 doi: 10.1016/j.laa.2020.08.009
![]() |
[12] |
C. H. Choi, A. J. Laub, Efficient matrix-valued algorithm for solving stiff Riccati differential equations, IEEE Trans. Autom. Control, 35 (1989), 770–776. https://doi.org/10.1109/9.57015 doi: 10.1109/9.57015
![]() |
[13] |
L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM J. Numer. Anal., 29 (1992), 781–815. https://doi.org/10.1137/0729049 doi: 10.1137/0729049
![]() |
[14] |
W. H. Enright, Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations, ACM Trans. Math. Software, 4 (1978), 127–136. https://doi.org/10.1145/355780.355784 doi: 10.1145/355780.355784
![]() |
[15] |
R. H. Bartels, G. W. Stewart, Algorithm 432: the solution of the matrix equation AX-BX = C, Commun. ACM, 15 (1972), 820–826. https://doi.org/10.1145/361573.361582 doi: 10.1145/361573.361582
![]() |
[16] |
G. Golub, S. Nash, C. F. Van Loan, A Hessenberg-Schur method for the matrix equation AX+XB = C, IEEE Trans. Automat. Control, 24 (1979), 909–913. https://doi.org/10.1109/TAC.1979.1102170 doi: 10.1109/TAC.1979.1102170
![]() |
[17] |
J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Int. J. Control, 32 (1980), 677–687. https://doi.org/10.1080/00207178008922881 doi: 10.1080/00207178008922881
![]() |
[18] |
R. A. Smith, Matrix equation XA+BX = C, SIAM J. Appl. Math., 16 (1968), 198–201. https://doi.org/10.1137/0116017 doi: 10.1137/0116017
![]() |
[19] |
D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17 (1996), 165–186. https://doi.org/10.1137/S0895479894273687 doi: 10.1137/S0895479894273687
![]() |
[20] | N. Truhar, R. C. Li, On ADI method for Sylvester equations, Technical Report 2008-02, Department of Mathematics, University of Texas at Arlington, 2008. |
[21] |
E. L. Wachspress, Trail to a Lyapunov equation solver, Comput. Math. Appl., 55 (2008), 1653–1659. https://doi.org/10.1016/j.camwa.2007.04.048 doi: 10.1016/j.camwa.2007.04.048
![]() |
[22] | E. Wachspress, Adi iteration parameters for solving Lyapunov and Sylvester equations, Technical Report, March, 2009. |
[23] | P. Benner, Factorized solution of Sylvester equations with applications in control, Processing of the 16th International Symposium on Mathematical Theory of Network and Systems (MTNS 2004), Leuven, Belgium, 2004. |
[24] |
U. Baur, Low rank solution of data sparse Sylvester equations, Numer. Linear Algebra Appl., 15 (2008), 837–851. https://doi.org/10.1002/nla.605 doi: 10.1002/nla.605
![]() |
[25] | M. Konstantinov, D. W. Gu, V. Mehrmann, P. Petkov, Perturbation theory for matrix equations, Elsevier, 2003. |
[26] | N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadelphia, 1996. |
[27] | G. W. Stewart, J. G. Sun, Matrix perturbation theory, Academic Press, Harcourt Brace Jovanovich, 1990. |
[28] | G. B. Dantzig, Deriving a utility function for the economy, Technical Report SOL 85-6R, Department of Operations Research, Stanford University, Stanford, CA 1985. |
[29] |
H. Hu, I. Olkin, A numerical procedure for finding the positive definite matrix closest to a patterned matrix, Stat. Probab. Lett., 12 (1991), 511–515. https://doi.org/10.1016/0167-7152(91)90006-D doi: 10.1016/0167-7152(91)90006-D
![]() |
[30] |
M. Monsalve, J. Moreno, R. Escalante, M. Raydan, Selective alternating projections to find the nearest SDD^+ matrix, Appl. Math. Comput., 145 (2003), 205–220. https://doi.org/10.1016/S0096-3003(02)00478-2 doi: 10.1016/S0096-3003(02)00478-2
![]() |
[31] |
S. Q. Ma, Alternating proximal gradient method for convex minimization, J. Sci. Comput., 68 (2016), 546–572. https://doi.org/10.1007/s10915-015-0150-0 doi: 10.1007/s10915-015-0150-0
![]() |
[32] | D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed computation: numerical methods, Prentice-Hall, Inc., 1989. |
[33] |
J. Eckstein, D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293–318. https://doi.org/10.1007/BF01581204 doi: 10.1007/BF01581204
![]() |
[34] |
Z. Y. Peng, A matrix LSQR iterative method to solve matrix equation AXB = C, Int. J. Comput. Math., 87 (2010), 1820–1830. https://doi.org/10.1080/00207160802516875 doi: 10.1080/00207160802516875
![]() |
[35] |
D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM, 12 (1965), 547–560. https://doi.org/10.1145/321296.321305 doi: 10.1145/321296.321305
![]() |
[36] |
H. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl., 16 (2009), 197–221. https://doi.org/10.1002/nla.617 doi: 10.1002/nla.617
![]() |
[37] |
H. F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49 (2011), 1715–1735. https://doi.org/10.1137/10078356X doi: 10.1137/10078356X
![]() |
[38] |
N. J. Higham, N. Strabic, Anderson acceleration of the alternating projections method for computing the nearest correlation matrix, Numer. Algor., 72 (2016), 1021–1042. https://doi.org/10.1007/s11075-015-0078-3 doi: 10.1007/s11075-015-0078-3
![]() |
1. | Yihui Gong, Qi Yang, On Entire Solutions of Two Fermat-Type Differential-Difference Equations, 2025, 51, 1017-060X, 10.1007/s41980-024-00942-4 |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\overline{\lambda_1}}} | 1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | 1 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
Before | After | Corresponding coefficients |
{\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2{ \lambda_1}} | a_1^2+2\gamma a_1+1 |
{\mathrm e}^{2{\overline{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2a_1c} |
{\mathrm e}^{{ \lambda_1}+\overline{{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | (2\alpha a_1+2\beta)\cdot {\mathrm e}^{a_1c} |
{\mathrm e}^{2{ \lambda_2}} | {\mathrm e}^{2{ \lambda_2}} | a_2^2+2\gamma a_2+1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2c} |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | (2\alpha a_2+2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2 a_1 a_2-2\gamma(a_1+ a_2)+4\delta-2 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2{\mathrm e}^{(a_1+a_2)c} |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_1-2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_2-2\beta)\cdot {\mathrm e}^{a_1c} |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\widetilde{\lambda_1}}} | 1 |
{\mathrm e}^{2{\widetilde{\lambda_2}}} | 1 |
{\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
No. | Before | After | Corresponding coefficients |
① | {\mathrm e}^{2{\lambda_1}} | {\mathrm e}^{2a_1z+2b_1} | a_1^2+2\gamma a_1+1 |
② | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2z+2b_2} | a_2^2+2\gamma a_2+1 |
③ | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{(a_1+a_2)z+b_1+b_2} | -2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2 |
④ | {\mathrm e}^{2{\widetilde{\lambda_1}}} | {\mathrm e}^{2a_1qz+2b_1} | 1 |
⑤ | {\mathrm e}^{2{\widetilde{\lambda_2}}} | {\mathrm e}^{2a_2qz+2b_2} | 1 |
⑥ | {\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2)qz+b_1+b_2} | -2 |
⑦ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | {\mathrm e}^{a_1(1+q)z+2b_1} | 2\alpha a_1+2\beta |
⑧ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2q)z+b_1+b_2} | -2\alpha a_1-2\beta |
⑨ | {\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{(a_1q+a_2)z+b_1+b_2} | -2\alpha a_2-2\beta |
⑩ | {\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | {\mathrm e}^{a_2(1+q)z+2b_2} | 2\alpha a_2+2\beta |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | 1 |
{\mathrm e}^{2{\lambda_2}} | 1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | 4\delta'-2 |
{\mathrm e}^{2{\widehat{\lambda_1}}} | \frac{1}{q^2}\cdot \lambda_1'^2+\frac{2\gamma}{q}\cdot \lambda_1'+1 |
{\mathrm e}^{2{\widehat{\lambda_2}}} | \frac{1}{q^2}\cdot \lambda_2'^2+\frac{2\gamma}{q}\cdot \lambda_2'+1 |
{\mathrm e}^{\widehat{{\lambda_1}}+\widehat{{\lambda_2}}} | -\frac{2}{q^2}\lambda_1'\lambda_2'-\frac{2\gamma}{q}(\lambda_1'+\lambda_2')-2 |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_1}} | \frac{2\alpha}{q}\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_2}} | -\frac{2\alpha}{q}\lambda_2'-2\beta |
{\mathrm e}^{\widehat{{\lambda_1}}+{\lambda_2}} | -\frac{2\alpha}{q}\lambda_1'-2\beta |
{\mathrm e}^{{\lambda_2}+\widehat{\lambda_2}} | \frac{2\alpha}{q}\lambda_2'+2\beta |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_1^2-2\gamma a_1+1\right) |
③ | {\mathrm e}^0 | {\mathrm e}^{b_1+b_2}\left(2a_1^2+4\delta-2\right) |
④ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^0 | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^0 | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{b_1+b_2}\left(2\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^0 | {\mathrm e}^{2b_2}\left(-2\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(\frac{a_1^2}{4}-\gamma a_1+1\right) |
③ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{b_1+b_2}\left(a_1^2-\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right)=0 |
⑧ | {\mathrm e}^{\frac{5a_1}{4}\cdot z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right)=0 |
⑨ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(\alpha a_1-2\beta\right)={\mathrm e}^{b_1+b_2}(-3\beta) |
⑩ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | {\mathrm e}^{2b_2}\left(-\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4{a_1^2}-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5a_1}{2}z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-3a_1z} | {\mathrm e}^{2b_2}\left(\frac{9}{4}{a_1^2}-3\gamma a_1+1\right) |
③ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{b_1+b_2}\left(3a_1^2+\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{3}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{11}{8}a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7a_1}{4}z} | {\mathrm e}^{b_1+b_2}\left(3\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{9}{8}a_1 z} | {\mathrm e}^{2b_2}\left(-3\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{1}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{8}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{1}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{8}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{4}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{1}{2}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{4}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{2}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{4}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4a_1^2-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{2}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{1}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{12}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{6}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{11}{12}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{4}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\overline{\lambda_1}}} | 1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | 1 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
Before | After | Corresponding coefficients |
{\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2{ \lambda_1}} | a_1^2+2\gamma a_1+1 |
{\mathrm e}^{2{\overline{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | {\mathrm e}^{2a_1c} |
{\mathrm e}^{{ \lambda_1}+\overline{{ \lambda_1}}} | {\mathrm e}^{2{ \lambda_1}} | (2\alpha a_1+2\beta)\cdot {\mathrm e}^{a_1c} |
{\mathrm e}^{2{ \lambda_2}} | {\mathrm e}^{2{ \lambda_2}} | a_2^2+2\gamma a_2+1 |
{\mathrm e}^{2{\overline{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2c} |
{\mathrm e}^{{\lambda_2}+\overline{{\lambda_2}}} | {\mathrm e}^{2{\lambda_2}} | (2\alpha a_2+2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2 a_1 a_2-2\gamma(a_1+ a_2)+4\delta-2 |
{\mathrm e}^{\overline{{\lambda_1}}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2{\mathrm e}^{(a_1+a_2)c} |
{\mathrm e}^{{\lambda_1}+\overline{{\lambda_2}}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_1-2\beta)\cdot {\mathrm e}^{a_2c} |
{\mathrm e}^{\overline{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | (-2\alpha a_2-2\beta)\cdot {\mathrm e}^{a_1c} |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | \lambda_1'^2+2\gamma\lambda_1'+1 |
{\mathrm e}^{2{\lambda_2}} | \lambda_2'^2+2\gamma\lambda_2'+1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | -2\lambda_1'\lambda_2'-2\gamma(\lambda_1'+\lambda_2')+4\delta-2 |
{\mathrm e}^{2{\widetilde{\lambda_1}}} | 1 |
{\mathrm e}^{2{\widetilde{\lambda_2}}} | 1 |
{\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | -2 |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | 2\alpha\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | -2\alpha\lambda_1'-2\beta |
{\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | -2\alpha\lambda_2'-2\beta |
{\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | 2\alpha\lambda_2'+2\beta |
No. | Before | After | Corresponding coefficients |
① | {\mathrm e}^{2{\lambda_1}} | {\mathrm e}^{2a_1z+2b_1} | a_1^2+2\gamma a_1+1 |
② | {\mathrm e}^{2{\lambda_2}} | {\mathrm e}^{2a_2z+2b_2} | a_2^2+2\gamma a_2+1 |
③ | {\mathrm e}^{{\lambda_1}+{\lambda_2}} | {\mathrm e}^{(a_1+a_2)z+b_1+b_2} | -2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2 |
④ | {\mathrm e}^{2{\widetilde{\lambda_1}}} | {\mathrm e}^{2a_1qz+2b_1} | 1 |
⑤ | {\mathrm e}^{2{\widetilde{\lambda_2}}} | {\mathrm e}^{2a_2qz+2b_2} | 1 |
⑥ | {\mathrm e}^{\widetilde{{\lambda_1}}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2)qz+b_1+b_2} | -2 |
⑦ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_1}}} | {\mathrm e}^{a_1(1+q)z+2b_1} | 2\alpha a_1+2\beta |
⑧ | {\mathrm e}^{{\lambda_1}+\widetilde{{\lambda_2}}} | {\mathrm e}^{(a_1+a_2q)z+b_1+b_2} | -2\alpha a_1-2\beta |
⑨ | {\mathrm e}^{\widetilde{{\lambda_1}}+{\lambda_2}} | {\mathrm e}^{(a_1q+a_2)z+b_1+b_2} | -2\alpha a_2-2\beta |
⑩ | {\mathrm e}^{{\lambda_2}+\widetilde{{\lambda_2}}} | {\mathrm e}^{a_2(1+q)z+2b_2} | 2\alpha a_2+2\beta |
Transcendental terms | Corresponding coefficients |
{\mathrm e}^{2{\lambda_1}} | 1 |
{\mathrm e}^{2{\lambda_2}} | 1 |
{\mathrm e}^{{\lambda_1}+{\lambda_2}} | 4\delta'-2 |
{\mathrm e}^{2{\widehat{\lambda_1}}} | \frac{1}{q^2}\cdot \lambda_1'^2+\frac{2\gamma}{q}\cdot \lambda_1'+1 |
{\mathrm e}^{2{\widehat{\lambda_2}}} | \frac{1}{q^2}\cdot \lambda_2'^2+\frac{2\gamma}{q}\cdot \lambda_2'+1 |
{\mathrm e}^{\widehat{{\lambda_1}}+\widehat{{\lambda_2}}} | -\frac{2}{q^2}\lambda_1'\lambda_2'-\frac{2\gamma}{q}(\lambda_1'+\lambda_2')-2 |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_1}} | \frac{2\alpha}{q}\lambda_1'+2\beta |
{\mathrm e}^{{\lambda_1}+\widehat{\lambda_2}} | -\frac{2\alpha}{q}\lambda_2'-2\beta |
{\mathrm e}^{\widehat{{\lambda_1}}+{\lambda_2}} | -\frac{2\alpha}{q}\lambda_1'-2\beta |
{\mathrm e}^{{\lambda_2}+\widehat{\lambda_2}} | \frac{2\alpha}{q}\lambda_2'+2\beta |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_1^2-2\gamma a_1+1\right) |
③ | {\mathrm e}^0 | {\mathrm e}^{b_1+b_2}\left(2a_1^2+4\delta-2\right) |
④ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^0 | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^0 | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-2a_1z} | {\mathrm e}^{b_1+b_2}\left(2\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^0 | {\mathrm e}^{2b_2}\left(-2\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(\frac{a_1^2}{4}-\gamma a_1+1\right) |
③ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{b_1+b_2}\left(a_1^2-\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right)=0 |
⑧ | {\mathrm e}^{\frac{5a_1}{4}\cdot z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right)=0 |
⑨ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(\alpha a_1-2\beta\right)={\mathrm e}^{b_1+b_2}(-3\beta) |
⑩ | {\mathrm e}^{-\frac{a_1}{4}\cdot z} | {\mathrm e}^{2b_2}\left(-\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4{a_1^2}-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{a_1}{2}\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5a_1}{2}z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-3a_1z} | {\mathrm e}^{2b_2}\left(\frac{9}{4}{a_1^2}-3\gamma a_1+1\right) |
③ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{b_1+b_2}\left(3a_1^2+\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{3}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1\cdot z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{11}{8}a_1 z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7a_1}{4}z} | {\mathrm e}^{b_1+b_2}\left(3\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{9}{8}a_1 z} | {\mathrm e}^{2b_2}\left(-3\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{1}{4}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{8}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{8}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{1}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{8}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{4}a_1 z} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{5}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{1}{2}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{7}{4}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{5}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{4}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{2}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{4}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-4a_1z} | {\mathrm e}^{2b_2}\left(4a_1^2-4\gamma a_1+1\right) |
③ | {\mathrm e}^{-a_1z} | {\mathrm e}^{b_1+b_2}\left(4a_1^2+2\gamma a_1+4\delta-2\right) |
④ | {\mathrm e}^{-a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{2a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{\frac{1}{2}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{1}{2}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{2{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{5}{2}a_1z} | {\mathrm e}^{b_1+b_2}\left(4\alpha a_1-2\beta\right) |
⑩ | {\mathrm e}^{-a_1 z} | {\mathrm e}^{2b_2}\left(-4\alpha a_1+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{\frac{1}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{1}{2}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{1}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{-\frac{1}{12}a_1} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{3}{4}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{7}{6}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{11}{12}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{1}{2}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |
No. | Transcendental terms | Corresponding coefficients |
① | {\mathrm e}^{2a_1z} | {\mathrm e}^{2b_1}\left(a_1^2+2\gamma a_1+1\right) |
② | {\mathrm e}^{-2a_1z} | {\mathrm e}^{2b_2}\left(a_2^2+2\gamma a_2+1\right) |
③ | {\mathrm e}^{0} | {\mathrm e}^{b_1+b_2}\left(-2a_1 a_2-2\gamma(a_1+a_2)+4\delta-2\right) |
④ | {\mathrm e}^{-\frac{2}{3}a_1z} | {\mathrm e}^{2b_1} |
⑤ | {\mathrm e}^{\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2} |
⑥ | {\mathrm e}^{0} | -2{\mathrm e}^{b_1+b_2} |
⑦ | {\mathrm e}^{\frac{2}{3}a_1z} | {\mathrm e}^{2b_1}\left(2\alpha a_1+2\beta\right) |
⑧ | {\mathrm e}^{\frac{4}{3}{a_1} z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_1-2\beta\right) |
⑨ | {\mathrm e}^{-\frac{4}{3}a_1z} | {\mathrm e}^{b_1+b_2}\left(-2\alpha a_2-2\beta\right) |
⑩ | {\mathrm e}^{-\frac{2}{3}a_1 z} | {\mathrm e}^{2b_2}\left(2\alpha a_2+2\beta\right) |